Analysis and Implicit Deadline Synchronization of Distributed Transactions
Scheduled by EDF

Nicola Serreli, Giuseppe Lipari, Enrico Bini
Scuola Superiore Sant’Anna, Pisa, Italy
Email: {n.serreli,g.lipari,e.binf@sssup.it

Abstract—In real-time distributed systems, it is common to
model an application as a set of transactions, i.e. chains tdsks
activated periodically, that must complete before an endd-end
deadline.

In this paper, (i) we extend the analysis of transactions
scheduled by EDF to account for sporadic activations and (ji
we propose a protocol for assigning deadlines to tasks thatogs
not rely on a global time reference.

First, we show that the scenario of strictly periodic acti-
vations is not the worst when the transactions are activated
sporadically. For this reason we extend the demand bound
function (dbf) to sporadic transactions and we propose a
suitable schedulability analysis. Then, we propose IDSP ifi-
plicit Deadline Synchronization Protocol) to assign the abolute
deadlines to jobs at run time. The protocol does not require
synchronization between nodes and uses only local informiain.
We guarantee that the demand that can be generated at run
time is always bounded by the sporadicibf computed off-line.

I. INTRODUCTION

task, and hence its jitter, depends on the response time
of the preceding task), the analysis is iterated until eithe
a fixed-point solution is found or the set is deemed not
schedulable. Similar techniques have been applied to EDF
scheduling [3]-[6]. In this case, each task must be assigned
an intermediate deadline instead of a fixed priority. Halist
analysis also allows to mix different schedulers on différe
nodes, as long as the designer is able to compute the worst-
case response time of every task.

However, the holistic analysis gobal, in the sense that
it can be performed once the designer knows the parameters
of all transactions. Moreover, any variation in one paranet
(computation time, priority of an intermediate task,..anc
influence the temporal behavior of all the system.

In a component-based approach, instead, it is desirable to
perform the analysis in two steps: in the first step (local)
we analyze each transaction in isolation, summarizing its
temporal behavior with a (possibly small) set of temporal
parameters. In the second step (integration), we mustyverif

Distributed real-time systems are often modeled as a set @hat the overall system is schedulable by only considering
real-timetransactiong1]. Each transaction is a chain of real- the temporal parameters derived in the first step.

time tasks, and each task is allocated on a (possibly diffgre

Such an approach facilitates sensitivity analysis, iregea

computational node. The first task in the transaction isobustness of the solution, allows to easily substitute one

activated periodically, or by external events charactetizy

component with another, reduces the complexity of dynamic

a minimum interarrival time. The other tasks are activatetbn-line admission control, etc.

upon the completion of the preceding one. All tasks in the

transaction must complete within aend-to-enddeadline

In the local analysis it is not possible to use the response
times of the tasks, because they depend on the presence

relative to the activation time of the transaction. We allowof all other transactions. Therefore, in this paper we use
the end-to-end deadline to be larger than the period. Thighe slicing approach [7]. Each task is assignedex@cution
situation is quite common in real applications. For examplewindow and the execution windows of any two tasks of the
in multimedia streaming, the period at which video framessame transaction are not overlapping. This can be done by
are generated and processed may be lower than the end-t@ssigning appropriate offsets and deadlines to every task.

end deadline for delivering the frames to the user.

Following the slicing method, under EDF the temporal

An important problem is to check the schedulability of characteristics of the transactions are summarized by a set
the system, i.e. to test if all transactions will completeof demand bound function@lbfs) [8], one for each node.
before their end-to-end deadline under worst-case condiFhe integration analysis then consists on summing all the

tions. In fixed priority systems, th&olistic analysis[1],
[2] consists in reducing the overall distributed schedilitgb

dbfs for every node, and check that the resulting function
never exceeds the computational power of the node. In [9],

problem intop single-node problems that can be solvedwe used such a methodology for periodic transactions, and

using classical schedulability analysis. Each task isgassi
a priority, and task parameters like offsets, jitters, cese

we proposed a method for assigning intermediate deadlines
to minimize a function of thelbfs.

times are calculated so that the precedence constraints areHowever, two problems need to be solved to apply the

automatically guaranteed. Since all schedulability peots

slicing methodology to EDF. The first problem concerns

depend on one another (i.e. the activation of an intermediatwith extending the analysis to sporadic transactions. ¢t fa

unlike single tasks scheduled on uniprocessors, in theafase intermediate task deadlines based on the slicing approach
end-to-end deadlines larger than the period the compatatig9]. Our methods enables a component-based analysis.
of the dbf of a sporadic transaction is not trivial. Gantman et al. [15] presented a survey on synchronization
The other problem concerns with the run-time supportprotocols for real-time distributed systems. Among the ynan
When scheduling transactions with EDF, we must assign anlgorithms presented in the survey, the Release Guard-Proto
activation offset and an absolute deadline to each job.&hescol (originally proposed in [10]) achieves a smaller averag
in turn, depend on the activation of the transaction, whichend-to-end response time, greatly reduces start-timer,jitt
may happen on a different node. Moreover, if activationsand does not require a global clock synchronization. The
are sporadic, we cannot predict the activation window ofprotocol uses only local information regarding the minimum
future jobs. Therefore, it may seem that a precise globaseparation time between instances of the same task, and
clock synchronization protocol is needed. Fortunatelg, th appropriately delays future instances so to guarantee that
global clock synchronization can be avoided in fixed priorit higher priority tasks do not interfere too much with lower
systems by using the Release Guard Protocol [10]. Theriority tasks. However, the Release Guard Protocol only
idea is to release the constraint on separating the executiovorks with fixed priority schedulers, and assumes that the
windows of jobs residing on different nodes, guaranteeingznd-to-end deadline does not exceed the period. The pilotoco
instead only the correct separation between two jobs on thkas been enhanced by Zhang et al. [16] to deal with sporadic
same processor. The protocol is simple and effective, but itransactions, again on fixed priority schedulers.
was conceived for fixed priority schedulers only.
I1l. SYSTEM MODEL AND NOTATION
A. Contributions of this paper. A distributed real-time application is modeled by a set
of transaction 7, ..., 7,,}. To simplify the presentation,
since our work investigates each transaction in isolation,
éhroughout the paper we drop the index of the transactions.

In this paper, we present two original contributions. First
we propose an algorithm to correctly compute dhés of a
sporadic transaction on each node, and prove its correctne))
Second, we propose AlgorithiDSP (Implicit Deadline Transaction T is co_mppsed b_y a set of tasks
Synchronization Protocol) to assign absolute deadlines téTl""’_T”}' Task 7, W'th_l > 1,1s actlvgted upon the
jobs in an EDF scheduler. Our protocol guarantees thanmpIetlon of the prec_edlng ong_ and t';ﬁ _has a com-
under certain conditions, the run-time demand of the jop®utation timeC;. The first taskr, of the (™ instance of

oo . y .
on each node never exceeds t# computed off-line. the_ tra_nsactlon is actlvatéed @tt;1 f[hat is calledabsolute
activation We denote byr; the /" instance of the task;.

We consider sporadic transactions with minimum iteratriva

time T'. Hence we have
The use of the demand bound function was initially

: - ¢ —1

proposed by Baruah et al., for testing the schedulability of -0 >T. 1)
_Srit of taiksd S|Ched.UIedl by kEDF on 5|:1F?Ie procesgors [8]- 1o describe a possible scenario of activations for the

IS .me,t' odology 1S also known as Frocessor emanci:poradic transaction under analysis, we need to list the
Criterion” [11]. The computation of thelbf was later ex- ssible values of absolute activatiod$. We label the
tended to more complex task models, such as the generalizgtk,- \~a of the transaction under analysisObyMoreover
multiframe tasks ,[12]' Recently, Zhang and Burns. [13]We operate a time translation, so to set the activation &f thi
proposed a technlqye to reduce the number of p0|_nts Bansaction at time reference Therefore, we sep® = 0.
check during analysis based on demand bound function. The successive instancesill be denoted by positive

The processor demand criterion has been extended to ﬂi‘ﬁdexes@ > 0, and their absolute activations &}, &2

analysis of distribute_d real-time tran_sacti_ons by Rahni eTSimiIarIy, the previous instancesvill be denoted by neg-
al. _[6_]. However, their methodology is still based on the o4\ 0 indexes? < 0, and their absolute activations by
holistic analysis: the activation time of a task is set eqoal g-1 -2

the finishing time of the previous task in the transaction. Tf’1e following vector represents theporadic activation

In [7] authors proposed a methodology to analyze thepattern
schedulability of task graphs. The methodology also com- = (0, . o))
putes intermediate deadlines by using an heuristic approac Y
and it is based on thgicing approach: each task is assignedwherek, andk; depend on the number of instances we need
a slice that does not overlap with the slices of other tasksto consider in the analysis (see Section V). Findllys the
Later [14] uses time slices to decouple the schedulabilityset of all possible sporadic activation patterns.
analysis of each node, reducing the complexity of the We remark that, similarly to what it happens in multipro-
analysis. Such an approach improves the robustness of tleessor scheduling [17], activating the transactions aly ear
schedule, and allows to analyze each transaction in isolas possible (i.e. periodically$ not the worst-casefor the
tion. We recently proposed a new algorithm for assigningactivation pattern. In Section V we show this by an example.

Il. RELATED WORK

Each transactiory has anend-to-end deadlined that
is the maximum tolerable time from the activation of the Di1=D; Dy D,
first task 1 to the completion of the last task,. Since jg Cs c, JL
the analysis of the constrained deadline < T) is a
straightforward extension of the classic analysis, thhmug b2 —
the paper we always assunie> T'. In such a case, it may ¢3=D> én=Dp_1
happen that a task is activated before its previous instance
has completed. In this paper, we assume that the different T
activations of each task are served in a FIFO order. Figure 1: Notation for tasks.

The application is distributed acrogsprocessing nodes,
and each task; of the transaction7 is mapped onto

computational noder; € {1,...,p}. Hence, we define IV. PERIODIC DEMAND BOUND FUNCTION
Ty ={m € T : x; = k} as the subset of tasks ih mapped First, we recall the concept of demand bound function
onto nodek andn as the cardinality off}. for a transaction that is strictly periodic (i.¢¢, ®* = (T).

The delay due to network communication can be easilyThen, in the next section we extend the demand bound
taken into account by considering the network as a speciglinction to the sporadic case.
processing node, and messages as tasks. The methodologyrhe computational requirement of the sub@gtof tasks
presented in this paper is valid also when different schedulallocated on node: is modeled by itsdemand bound
ing policies are used on the processing nodes. However, tRinction (dbf).
simplify the presentation, in this paper we make two assump- Definition 1: Thedemand functiomn nodek, denoted by
tions: we neglect the delay due to network communicationf, (¢,), is the total computation time of all the instances
(for example, restricting to a multiprocessor system withof the tasks irf;,, having activation time and deadline within
shared memory); and we assume EDF as the only schedulirjg, ¢,].
algorithm in the system. A more general investigation will For periodic transaction, the demand function can be
be presented in a future work. computed as follows [8]:

Each task is assigned amermediate deadlin®;, that is —
the interval of time between the activation of the transacti — f; (t9,7,) © 3 Qtl - DiJ B FO - ¢i-‘ N 1) c,
and the absolute deadline of the task. Hence, using the e T T 0
notation introduced so far, the absolute deadline of ke (7)
instance ofr;, is As suggested by Rahni et al. [6], the overdémand

d = o' + D;. 3) bound functionof 7;, in an interval of lengthy, is defined
as:

We enforce the precedence relationship between tasks by dbf (t) = max dfy (to, to +1) (8)
the slicing technique [7]: for each task we set gativation
offset ¢;, relative to the activation of the transactidrf,
equal to the intermediate deadline of the preceding one:

A necessary and sufficient schedulability test for non-
concrete transactions (i.e. periodic transactions witke fr
initial offset), scheduled by EDF consists in checking that
b1 =0, di=Dj1 i=2,...,n (4) the demand never exceeds the length of the interval on every
processor

Clearly, the task absolute activation is Vk=1,.. . .p V>0 Zdbfk(T, £ <t)
T

ai = o + ¢;. (5)
where the sum is made over all the transactions in the
Moreover, we define the tasklative deadlineD; as system, andibf (7 ,t) denotes the demand bound function
o — of 7 on nodek. In this case, first thelbf is computed
D; = D; — ¢i. for each transaction and for each node (applying the max

.] o _operator), and then we sum all tdef together to compute
The relationship between activation offsets and relativgne gverall computational requirement on ndde

deadlines is depicted in Figure 1. Clearly, In Figure 2 we illustrate the definitions introduced in
n this section by an example. Consider a transaction whose
ZDi - D (6) parameters are: peridl = 5, end-to-end deadlin® = 8,
im1 task deadlinesD; = 2 and D, = 6, computation time
C; = 1 and Cy; = 3. Both tasks are assigned to a

The values ofT', ®‘, D, C;, D;, D;, ¢; are all real num- single node. In the lower part of Figure 2, we show three
bers. Finally, we use the notatign = max{0, -}. consecutive instances of the transaction on three differen

Periodic

Cpul [
h 3 — { Cpu2 [
h_t:l__—‘ T=%

18

w
wl
~
®
=
S}
=
N

Sporadic

Figure 3: Example of sporadic transaction.

10 12 1¢

Figure 2: Example of demand bound function. Hence, the analysis based on the classic periodic demand
bound function is not applicable if transactions are spicrad
One of the contributions of this paper is to extend the
lines. In the upper part, we show the values of 3 functionsdemand bound function to sporadic transactions.
the demand if0, t]; the demand 2, 2+t]; and the demand A job 7f in 7, runs inside intervalto, ¢] if its absolute
bound function. We represent the points wheredh&has deadlined! is not smaller thar;
a step by a thick dot. The steps are tightly related to task

deadlines. For example in the figure, the poipisps, ps t > df =D, + ®* (10)
depend on the deadlines of task while the pointspy, ps
depend on the deadlines of. and its activation is not earlier thap

To compute thalbf of a periodic transaction, it is suffi-
cient to consider the value of the demand functions obtained
on the intervals that start with the activation of a task,
as shown in [6]. Also, thelbf has a periodic pattern: its
value for a generic large interval can be computed as By introducing the function
dbf(t')+jC, whereC = Zﬂ_eTk Ci,j>0andt =t—jT
(see Section 4.1 in [6]). 0 ifz<O

step(z) = .
{ 1 ifxz>0

to < af = ¢; + @ (11)

(12)
V. SPORADIC DEMAND BOUND FUNCTION

Unfortunately, for sporadic transactions, the worst cas§ye can define the following binary-valued function
does not occur with periodic activations. Consider the

following transaction with 3 tasks on 2 processors. The . . —
transactgi]on has period = 5 and end—toFiend deadline joblnf(to, t1) = step(t; — D; — ®)-step(¢; + @ —t) (13)

D = 12. The task parameters are reported in Table I.]) o)
that returnsl if the job 7/ has both activation and deadline

c T D in [to,t1], and it returng) otherwise.
Hence, the demand of all the tasks belonging to the
transactior7; can be expressed as:

Task
T1
2
T3

p

N

3
4

ww |
or old

(&)]

Table I: Parameters for the example k1
dfi(to,t1) Emax > Y joblnj(to,t1)C; (14)

In Figure 3, we show two possible activation patterns. The el ko i€ Th

first one corresponds to a periodic activati@ (= 7): in

this case, it is easy to see that the maximum demand owherek, andk; are indexes of transaction instances (later
processof in any interval of lengtts is at most3 units of ~ determined in Eq. (18)) that may have an effect on the
computation. demand infto, t1].

In the second activation pattern we delay the activation of The sum on all the transaction instandesan be split
the second instance by 2 units of time!(= T +2). As a in three parts: the first part is the sum over the indexes
consequence, the demand in interifall 2] becomest units corresponding to theast instancegfrom —kq to —1); the
of time, because one extra instancerpenters the interval. second part is theurrent instance(with ¢ = 0), and the
Thus, delaying an instance can increase the demand. third part is the sum over th&iture instancegfrom 1 to

1: intervalSet « () > initialize the set of intervals
2: STORHNTERVALS > store intervals inntervalSet
al 3: sortintervalSet by increasingt; — ¢y
=1

k1). Hence Equation (14) becomes

—1
dfk(t(), tl): @aX{ZjObln?(to,tl)Ci =+ Z ..

Ter 4: lastDBFval < 0

i t=1ko 5. for eachlty, 1] € intervalSet do > loop on all intervals
_ Z o max Z Z o 6: I'~,I't —(> init sets of past and future patterns
- (@ ko, etyer- F= 7: SPANPATTERNS(¢g, t1) > store all patterns
K 8: curDBFval « df(t1, o) > Eq. (15)
+ o omax YN (15) 9: if curDBFval > lastDBFval then > Eq. (16)
(@1, @R)ert = < 10: store the poin{t; — to, curDBFval)
whereI'™ and '™ are the sets of the possible activation 1L else
patterns of the past and the future instances respectivel)}.z d_o nothing (dominated by previous point)
Although Eq. (15) is apparently more complex than Eq. (14),+3 end if
it will be more useful for our purposes because it has thel4 €nd for
advantage of decoupling the dependecy on past and future Figure 5: Algorithm for computing thelbf.

instances (see Sections V-A and V-B).
Finally, as for the periodicdbf, the sporadicdbf is
the maximum among all the sporadic demand function

computed on intervals with the same length: SSectlon V-A we describe the procedus@ ORENTERVALS

for performing this step. After sorting the intervéls, ¢1] in
dbfy () & max dfi(to, to + t) (16) intervalSet by increasing; —t, (at line 3), we search for the

fo activation patternd that maximizes the demand [, t1].

Figure 4 shows that, for the same parameters of Table In Section V-B we describe the proced8BANPATTERNS
the sporadialbf computed from Eq. (16) is larger than the that computes the sét of all possible activation patterns.

periodicdbf (EqQ. (8)).
A. Enumerating the intervals

—_ periodicdbf

: The first stage requires to enumerate all the intervals
---- sporadicdbf ¥ g

[to, t1]. The pseudocode of this stage is reported in Figure 6.
First, we claim thatt, must coincide with the activation
of some job. In fact, if this does not happen then we
could increase, achieving a shorter interval with the same
! demand. Hence we sé equal to the activation of the job
70, i.e. to spans on{¢; : 7, € Tz} (see line 4 of the
algorithm). Notice that, without loss of generality, we d¢hb
! by 0 the transaction instance which this job belongs to.
Pr PP Fr PT P PP R M Regarding the possible valuestof it is easy to see that it
— ¥ is sufficient to test only the absolute deadlimés In fact if
Oh_l——_i t, = d" for some task; € 7; and some transaction instance
=0 *_l——_$ h, then a reduction of; by an arbitrary small amountwill
o . — I S | decrease the demanid by at leastC;. However, the main
difficulty here is that the absolute activations are not fixed
Figure 4: An example of sporaditbf. hence we do not know where the deadlines are until we fix
the sporadic activation patterh.

Equation (16) is a nice and compact expression ofitife First, we I_|st the value_s ot assomafced with the ab-
It is however unclear how suchdbf should be practically Solute deadlines of the instance (see lines 5-9). Then
computed: how many instancésof the transaction should W invoke the recursive procedureSTUREDEADLINE and
we consider in the sum of Eq. (15)? How many values oiPASTDEAIZ_)LINE that list the gbsolute deadlines of the future
to should we consider in the maximum of Eq. (16)? and past instances, respectively. _ o
We follow a strategy similar to the one used for computing 1hese_two procedures explore the possible activation
the dbf of periodic transaction. The strategy consists in thePatternse such that task activations are aligned wigh For
algorithm reported in Figure 5. First (at line 2), we computeeaCh pattern the values of absolute deadlines are recorded
the list intervalSet of all the significantintervals [to,¢,], @S candidate values for.
i.e. the intervals such that > 0 both the demandsf;, (o + We conclude the section by showing that, after a transient
e,t1) anddfy (to, t; —¢) arestrictly less thandfy (¢, t1). In that is long at mosD + 7', the dbf becomes periodic.

1: procedure STORHNTERVALS

2 intervalSet « () > initialize
3 for eachr; € 7;, do > loop ontg
4 to +— @i

5: for 7; € 7;, do

6 if D; >t then

7 store[tg, D;] in intervalSet

8 end if

9: end for

10: FUTUREDEADLINE(Zy, 1, 0)

11: ko «— [D;tﬂ -1

12: PASTDEADLINE (tg, —ko, —2ko(D + T))

13: end for

14: end procedure

15: procedure FUTUREDEADLINE (tg, £, ®/~1)
16: for all ®¢ ¢ {(I)Z71 + T} U {to — ¢ tg — ¢ >
Q1+ T 7 € Tp,} do

17: for eachr; € 7;, do

18: t] = ot + El

19: if t1 > tg then

20: store|[to, t1] in intervalSet

21: end if

22: end for

23: if ¢ < [2E2L] then

24: FUTUREDEADLINE (to, £ + 1, ®%)
25: end if

26: end for
27: end procedure

28: procedure PASTDEADLINE (tg, £, ®¢T1)
20: for all ¢ € {(T, & +T}U{tg—¢; : 1 +T <
to — ¢; < T, 7; € Tp.} do

30: for eachr; € 7, do

31: t] = Pt + El

32 if t1 >ty then

33: store|[to, 1] in intervalSet
34: end if

35: end for

36: if £ < —1 then

37: PASTDEADLINE(tg, £ + 1, ®°)
38: end if

39: end for
40: end procedure

Figure 6: Algorithm for enumerating intervals.

Lemma 1:For large values of, thedbf(¢) has a periodic
pattern. More formally:

Vt> D+ T dbfy(t+T) = dbfy(t) + CF.
whereC* = °

T €T} Ci.

that give the value ofibf,(¢) in Equations (16) and (15)
respectively, and let us sét = ¢y + t.

We identify with ¢ the first transaction instance with
activation®‘ > t,, hence®‘~! < ;. Since we are in the
worst case an@’ > t,, then

Vh>(o —@hl=T (17)

otherwise, we could anticipate ali” with » > ¢ without
removing any job from the interval. On the contrary, the
deadline of a job may enter the interval, and the worst-
case activation pattern cannot de anymore, causing a
contradiction.

From (17) and the definition of, we notice that the
instancel of the transaction ends earlier than Clearly
this is also true for all instances befofeFormally

Pl <ty = D' <ty+T
P+ D<ty+T+D<t.

From (17), it follows that any interval of lengfth starting
after®‘+ D contains exactly one activation and one deadline
of each task. Hence the demand generated in the interval
[to, t1 + T increases by one job for all tasks g, i.e. C*.

Suppose by absurd thabf,(t + T) > dbf.(t) + C*.
Then, it exists an intervdtg, ¢, +t+7"] with demand larger
thandbf(t) + C*. Let ® be its activation pattern, and let
us call ¢’ the first instance withb’ > t}. Followong the
same reasoning as above, the demarid,iri(, +¢] decreases
by C*. However, this is absurd because we obtain a new
interval with the same lengthbut with demand higher than
in [to,t0+t]. |

Since, thanks to the lemma, the transient part ofdbie
lasts for no longer thai® + 7" and the periodic part is long
T, it is possible to compute thdbf only for lengths of
intervals less tharD + 27

Now we present an algorithm for computing the activation
patterns that determines the maximum demand in a given
interval [to, t1].

B. Algorithm for enumerating the activation patterns

In this section we explain the procedure
SPANPATTERNS(to,t1) (see line 7 of the algorithm in
Figure 5) that checks all possible sporadic activation
patterns of past and future instances that may have an
impact on the intervalty, t1]. Therefore, we are interested
only in transaction instances that may overlap with the
interval [to,¢;]. The indexes of these transactions are from
—ko to k1, where

kO:{D;tO-‘—l k= P—l-‘—l. (18)

T

Hence the sum of transactions instances of Eq. (15) has to
be made foW = —kq,..., k1.
For the example of Table | (see also Figure 4 for a timeline

Proof: Let t, and® be the instant and activation pattern representation of the instances), if we ggt= ¢; = 0 and

1. procedure SPANPATTERNS(tg, t1)

ki=[%]-1 > see Eq. (18)

COMPUTHEFUTURE(L,(0, . ..,0))
N——

t; = 13, we find kg = 2 and k; = 2, meaning that in the
analysis of the demand in the interyal 12] we consider the
instances-2(= —ky), —1,0,1,2(= k) of the transaction.

In the exploration of the activation patterns we distinfuis k1
between future instances (with indéx> 0) and past in- 4 ko= [272] -1 > see Eq. (18)
stances (with index < 0). The guideline for the exploration 51 COMPUTEPAST(—1,(0,...,0))
of absolute activations of future instances is to align some T
task activationa! = ®‘ + ¢; with #,. This is possible by 6: end procedure
setting

ol =ty — ¢ (19) 7: procedure COMPUTEFUTURE(/, (®1,..., ®F1))
o) o o 8: if £> ky then > the exit condition
However, t_hIS is avalld absolute_actwatlon_only |_f it re_st_m 9 store (@1, .. ., (I)m) in T+ > T+ is global
the contraints of being a sporadic transaction with minimum, ,. else
interarrival 7', that is 11: P00
o> o1 4T, (20) 12 for all @ € {®“ "1 + T} U {to — ¢ : to — &5 >
1 4T, 7, € Tp.} do

This condition introduces a recurrent dependency betweens. COMPUTEFUTURE(! + 1, (®1,..., ®F1)):;
all the values®® &', ®2 ... ®* . The procedurecom- 14: end for
PUTEFUTURE for testing future istances is reported in Fig- 15 end if
ure 6. 16: end procedure

The same rationale is applied to past instances (the ones
with index £ < 0). In this case however, we aim at finding ;7. procedure cOMPUTEPAST(Y, (&~ *0, ... &~ 1))
the absolute activatio®’ such that some absolute deadline 5. if ¢ < —ko then
is aligned with¢;. The full algorithm that explores the g store(d—Fo, ... &=1)in T~
activation patterns is reported in Figure 7. 20 else

In the example of Figure 4, if we assung = 0 then ;. P00
®! should be testeq with the values Bf= T) Instead, if . for all ®¢ € {®+ —TYU{t;—D; : t1 — D; <
to = ¢3 = 7 then®! is checked both when it i5 and when O+ — T 1, € T;) do
it is to — ¢1 = 7, meaning that we align the activation of 23 ’ COMPUTEPAST(Z — 1, (& F0, ... &~ 1));
the instancel with the offsetgs =ty = 7. 24: end for
C. Complexity analysis 25 end if

. . 26: end procedure
We start by analysing the complexity of procedsmor-

EINTERVALS. The outer loop (line 3) is executed, times. Figure 7: Algorithm for generatingg— andI'*.

After adding the intervals for instance 0, procedures

TUREDEADLINE and PASTDEADLINE are invoked.
ProcedurerUTUREDEADLINE explores a number of in-

sttanges at most equal kg = [DJ”EFQ:_FW N L. Qf this, t_he first Notice that, while generating the the valuestef it is

LTOJ |nst.ances may vary their activation time, Wh'le_ for thg quite common to obtain many times always the same values.

successive ones, the worst-case corresponds to mtexlarrlvln average, we expect that the final size of the list is much

times equal tdl'. The numbert(?f possible combinations of smaller than its upper bound

activations (line 16) is them,gﬂ. For each combination,

nuks deadlines are generated. Regarding procedurePANPATTERNS, we apply a similar

reasoning. We address separately future and past instances

ProcedurePASTDEADLINE is very similar. The number : . .
of instances isk, (see Eq. (18)). The maximum number of ProcedurecoMPUTEFUTURE builds a tree in which at level
0 ') 1 sets the value ob!, at level 2 sets the value @f?, and

_elements g_enerated for eaCh combination of past "?‘Ct'\éatlonso on. There will bék; levels. Each node has at most +
is niko. Finally, the maximum number of combinations

(line 29) is (ny 4 2)%, 1 children. Hence, the number of leafs of such a tree is

kl T
Each generated interval must be inserted in a ordered IisEn’“ +1)™. Each leaf corresponds to a different value of

et " e : .
an operation that takes logarithmic time in the size of thel.q;u’ > ®). A similar tree can be built for past instances.

list. The size of the list at the end of the procedure is: s the complexity of enumerating all activation patterns

is
to

s = anLTJ—H + neko(ng + 2)k“
and the complexity i€)(3";_, log(i)). O((ng +)™ + (ng, + 1)F).

Finally, the complexity of computing the whotbf is Proof: Let ¢f = @’ 4 ¢; be the activation of job, df
. its absolute ?eadt!ine and lef < ¢f be its actual starting
: ko K time. Thend; — a; > D;.
© <; log(#) + s ((nk 1Y+ (e + 1))> ' Let t > D;, and letty, be such thatdf(to,to +) is
maximal. If the interval containg? andd! but notaf, then
We are aware that the proposed algorithm is very comthedbf may decrease. In all other cases, dbéin ¢ remains
plex. Most of the complexity lies in the sporadicity of the the same. m
transaction that requires to check all possible scenalios. Wwhile for the purpose of the analysis we impose that the
this paper, we focused on the exact analysis regardless @ttivation of a task is equal to the deadline of the previous
its complexity. We leave to future investigations the devel task, thanks to Lemma 2 at run-time we can activate a job at
opment of simplified algorithms as well as Fully Polynomial the completion of the previous job, as long as the deadlines
Time Approximation Schemes (FPTAS). are correctly set.
The second observation is that tiefs of different nodes
VI. IMPLICIT DEADLINE SYNCHRONIZATION PROTOCOL are not related to each other. If we restrict our attention to

In order to implement a system that uses the transactiof Nodek, as long as the system is schedulable and all tasks
must set the activation times and the deadlines of the job§ Zx as a reference time to compute all other parameters.
so that, if all tasks execute for less than their worst-case Before describing the protocol, we need an additional
execution timesC;, and the difference between two con- definition.

secutive transaction instances is greater than the minimum Deéfinition 2: We define agprecedence seP; of job 7/
interarrival timeT, the set of all jobs " of tasksr; € Ty, with h € {£,0—1,(—

1) every transaction always respects its end-to-end dea&l e 'é_. Ko}, thf'ﬂ h.ave absolute deadline less tﬁémnder
all possible activation patterns. The numlagrof instances

line; . .
2) in every interval, the sporadic demand of every transt© consider is: D
ko= [] 1

action is always less than or equal to the sporadic T
demand computed off-line.
At first glance, it may seem that we need a strict clock| "€ Precedence sets impose a partial order on the set of jobs
synchronization protocol to guarantee that the activation P€l0nging to previous instances. In practice, the deadijne

and the deadlines are correctly computed. In fact, in £f job 7/ must necessarily follow all the deadlines of jobs

. . y
distributed system the timing information are obtained on/: Under all possible activation patterns.

each node by reading local timer hardware interfaces, and A stronge.r property is the following.
different timers can have different offsets and different L&€mma 3_.Atgrun time, the distance betweef and any
speeds. Therefore, a global clock synchronization pratocd®f the jobs in7; cannot be less than

is often used to synchronize the different timing views to df > d;? L ({—h)T +D; - 33- (21)
the one taken as reference. :
In this paper, instead, we show that it is possible to remove Proof: Follows directly from the definitions. [|

the need for a common time reference. However, we still

assume that there is no drift among the timers of differenf*: The protocol

nodes. We plan to extend our analysis to distributed systems We now present thdDSP algorithm to compute the

with clock drifts in a future work. absolute deadline of a jolf at the instant of its activation
Our idea is similar to the Release Guard Protocola. The protocol consists of three simple rules.

(RGP) [10] by Sun and Liu. RGP has been thought for Rule 1 The separation between activation and deadline of

reducing the start-time jitter and guaranteeing a minimunv; must always be greater than its relative deadline:

separation time between two task activations in a fixed 0 4

priority system. RGP works by delaying the activations of a d; 2 a; + D (22)

task so that the distance between two consecutive instancesRyle 2 The second rule mandates a minimum separation

is never less than the minimum interarrival time. between the deadlines of the jobs of the same task:
The algorithm we propose uses a similar idea to impose . o
a minimum distance between deadlines. di > d; " +T. (23)

We start by observing that, once we assign the correct
deadline to a JOt?' we can also Iet_ I s_tart before its O_ﬁﬁet not be less than the minimum possible distance as computed
Lemma 2:Anticipating the activation of a task without ¢« iine 1n formula:
modifying its absolute deadline does not increase the spo- ' L
radic dbf. VT e PLodb > 5+ (¢ —)T +D; — D, (24)

Rule 3 The distance betweetff and any job inP/ must

It may happen that a job/ is activated before a job in its C. Proof of correctness

can be larger than period and previous jobs complete mucket P/ must be computed before we can compute deadline

earlier than their deadline. In such a case, the job iS;2 The following lemma proves that at run-time it is
. . . 72"
suspended and its deadline cannot be computed until weyfficient to only consideP’*.
K2

have computed the deadlines of all the jobs in its precedence Lemma 4:If all the jobs in P have been assigned a

set. deadline at run-time, then all the jobs iR/ have been
From the previous rules, the job deadlide can simply assigned a deadline.

be computed as the maximum among the RHS the three Proof: By contradiction. Suppose that aj@b c pf_

inequalities. Notice that we only use parameters that arg,/« has not been assigned a deadline, and/ldge the first
local to each nodedf, d;) or statically known D;, T', Di, job for which this happens at run-time.
P{, and the intermediate deadlifig for each jobr/* € ;). Sinced” < d but 7 does not belong t&;¢x, it must
exista jobr: € P;lx suchthat < s < ¢ andd! < d3 < df.
. o Then,TJh € P:. Sincet{ has been assigned a deadline at
SetP{ can be very large. We will now show that it is ryn-time, according to rule 3;" must have been assigned
possible to only compute a smaller subBgt that contains g deadline, against the hypothesis. I
at most one job per past instance. First of all, let us show The following lemma proves that the absolute deadlines
how to compute such reduced subset: assigned by algorithmiDSP never exceed the absolute
« Set P/* contains at most one job per each instancedeadlines assigned by an algorithm that uses global time.
0,0 —1,...0— ko. Initially, P{* is empty. Lemma 5:Let o’ be the activation of the/-th instance
« Considering instancé = ¢, we only need to know of transactionZ . Under the assumption that the transaction
the taskr; € 7;, that immediately precedes in the is schedulable, the absolute deadlide of every job 7/,
transaction. Thenrf is added toP*. If 7; has no computed dynamically using Equations (22)—(24), is never

B. Computing the precedence set

preceding task ir7;, we skip this step. larger thana® + D;.
o Then, we enter a cycle in which we compute the job Proof: The complete proof has been removed for space
for instanceh € ¢ — 1,0 —2,...,0 — ky. Let d,, be constraints. We just report here the intuition behind iteTh

the greatest deadline among the jobs alreadfPfn. proof is by induction. We first show that the lemma is true
Consider the latest jobj’? that has absolute deadline for the first job of the first instance. This is evident because
in interval (d,, d¢), under the assumption of periodic rule 1 is the only one that can be applied. Then, we prove

distance between all instances frdmto /. If such a the induction step: if the lemma is true for all jobs Rf,
job exists, its deadline’ is added toP/*. Else, we then it is true forr;. This can be proved by showing how

skip to the next instance. to computed! starting from rule 2 and rule 3. [|
« We iterate until instancé = ¢ — k. Lemma 5 guarantees that, if the transaction is locally
schedulable on each node, then no task misses the deadlines
that a global algorithm would have assigned on each node.

Now we want to prove that the protocol assigns deadlines
so that the sporadidbf, as computed in Section V-B and
V-A, is always respected.

Lemma 6:Let /" be any job inP/. Under the assumption
that the transaction is schedulable and all deadlines are
assigned using Equations (22)—(24), the distance between
dg? andd! is never smaller than the distance as computed in
Equation (21).

Proof: For 7] € P{*, the lemma follows directly from
Rule 3. For the other jobs, it is easy to see that we can
apply a similar reasoning to the one in Lemma 4 to derive
the thesis. |

Now the main theorem.

Theorem 1:Under the assumption that all tasks execute

¢ _ 4 01 £—1 £—2 for less than their WCET, and that for any interval the sum

d = max{ay +25,dy 7 +10,dy7 + 2, dg " A1) of the sporadicdbfs computed off-line ngver exceeds the

In general, the maximum number of elements to maximizdength of the interval, then thdbf computed on-line by
is upper bounded bynin{kq, nr — 1} + 2, so it depends on IDSP is always less or equal to the sporadisf.
the ratio between end-to-end deadline and period, and in no Proof: The proof has been removed for space con-
case is greater tham, + 1. straints. We report here only the intuition behind it.

An example of the procedure is shown in Figure 8.
Consider a transaction having 6 tasks, with perioe- 10
and end-to-end deadlin® = 25. Hence, we need to
considerky = 2 instances. The intermediate deadlines
are respectively3, 6,10, 14,21,25. We assume that tasks
T,73,75, are allocated on processér = 1, while task
79,74, T¢ are allocated on processér = 2. We want to
compute the precedence set of jgb(the second task in the
bottom line of Figure 8). By setting all preceding activaso
at distance equal t@', we have the activation pattern shown
in the figure. The precedence setxdf contains: 1) no job
of instance/, because there is not task precedingon
processor 2; 2) job; ~'; 3) job 74 2.

According to rule 3, we must check thadf > d{~' + 2
andd$ > d5 2 + 1. Therefore s can be computed as:

W
“rT”
H

10 14 21 d}P 25
[cpul h I_\]h I_\
- , 10 13 16 20 24 d€ 31
cpu i
L

Figure 8: Example of computation of the precedence set.

The proof is by contradiction. Lefto,¢;] be the first
and smaller interval in which the demand computed on-
line exceeds the sporadibf. The, t, must be coincident
with a task activation and, with a deadline, let it beif.
According to Lemma 6, the deadlines[ig, t1] are separated
by no less than their worst-case distance as computed by7]
Equation (21). Then, we show that by moving deadline and
activations in a conservative way (i.e. without decreasiimgy
on-line demand), we reach one of the situations enumerated
by the algorithms in Figures 7 and 6. Hence we obtain a[8] S. K. Baruah, R. Howell, and L. Rosier, “Algorithms and

contradiction, and the thesis is proved.

[]
VIl. CONCLUSIONS AND FUTURE WORK

(6]

In this paper we addressed the problem of analyzingq
the schedulability of sporadic transactions on a distadut
system scheduled by EDF, and how to support our method-
ology at run time. We proposed an algorithm to compute
the sporadic dbf offline on each node. We also proposed
the IDSP protocol that assigns appropriate deadlines to jobs1
guaranteeing that thébf computed on-line never exceeds
the dbf computed off-line.

As a future work, we plan to extend the methodology

to task graphs. Also, we would like to study the effect of
combining different scheduling strategies on differerdes
and the effects of network scheduling.

(1]

(2]

(3]

(4]

(5]

REFERENCES

K. W. Tindell, A. Burns, and A. Wellings, “An extendible

approach for analysing fixed priority hard real-time tasks,
Journal of Real Time Systemeol. 6, no. 2, pp. 133-152,

Mar. 1994.

J. C. Palencia and M. Gonzalez Harbour, “Schedulabilit
analysis for tasks with static and dynamic offsets,”Hro-
ceedings of thel9" IEEE Real-Time Systems Symposium
Madrid, Spain, Dec. 1998, pp. 26-37.

M. Spuri, “Holistic analysis for deadline scheduled Irgme
distributed systems,” INRIA, France, Tech. Rep. RR-2873,
Apr. 1996.

J. Palencia and M. G. Harbour, “Offset-based response ti
analysis of distributed systems scheduled under EDF,5th
Euromicro Conference on Real-Time SystelRwto, Portugal,
July 2003.

R. Pellizzoni and G. Lipari, “Holistic analysis of asyn-
chronous real-time transactions with earliest deadlihedal-
ing,” Journal of Computer and System Scienees. 73, no. 2,
pp. 186-206, Mar. 2007.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

A. Rahni, E. Grolleau, and M. Richard, “Feasibility aysik

of non-concrete real-time transactions with edf assigrimen
priority,” in Proceedings of thé6™ conference on Real-Time
and Network Systemfennes, France, Oct. 2008, pp. 109—
117.

M. Di Natale and J. A. Stankovic, “Dynamic end-to-end
guarantees in distributed real time systems,Pioceedings
of the 15" IEEE Real-Time Systems Symposian Juan,
Puerto Rico, Dec. 1994, pp. 215-227.

complexity concerning the preemptive scheduling of peciod
real-time tasks on one processdrgal-Time Systemsol. 2,
pp. 301-324, 1990.

N. Serreli, G. Lipari, and E. Bini, “Deadline assignment
component-based analysis of real-time transactionsfhib
ted to 2nd Workshop on Compositional Theory and Technol-
ogy for Real-Time Embedded Systems, colocated to RTSS
‘09, available at http://retis.sssupribini/publications/.

J. Sun and J. W.-S. Liu, “Synchronization protocols is-d
tributed real-time systems,” im ICDCS 1996, pp. 38-45.

G. C. Buttazzo,Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applicationand ed.
Springer Verlag, 2004, iISBN: 0-387-23137-4.

S. Baruah, D. Chen, S. Gorinsky, and A. K. Mok, “Gener-
alized multiframe tasks,Real-Time Systemsol. 17, no. 1,
pp. 5-22, 1999.

F. Zhang and A. Burns, “Schedulability analysis forlreame
systems with edf scheduling,” Real-Time Systems Group,
University of York, techreport YCS-2008-426, February 200

S. Jiang, “A decoupled scheduling approach for distedl
real-time embedded automotive systems,IREE Real Time
Technology and Applications SymposiumlEEE Computer
Society, 2006, pp. 191-198.

A. Gantman, P.-N. Guo, J. Lewis, and F. Rashid, “Schedul
real-time tasks in distributed systems: A survey,” Uniitgrs
of California San Diego, Tech. Rep., 1998, available at:http
/lcseweb.ucsd.edu/classes/fa98/cse221/0SSurveyd-p8ip

Y. Zhang, D. K. Krecker, C. D. Gill, C. Lu, and G. H. Thaker
“Practical schedulability analysis for generalized spara
tasks in distributed real-time systems,” ECRTS |IEEE
Computer Society, 2008, pp. 223-232.

S. Baruah and K. Pruhs, “Open problems in real-time dahe
ing,” Journal of Scheduling2009.

