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Abstract—In real-time distributed systems, it is common to
model an application as a set of transactions, i.e. chains oftasks
activated periodically, that must complete before an end-to-end
deadline.

In this paper, (i) we extend the analysis of transactions
scheduled by EDF to account for sporadic activations and (ii)
we propose a protocol for assigning deadlines to tasks that does
not rely on a global time reference.

First, we show that the scenario of strictly periodic acti-
vations is not the worst when the transactions are activated
sporadically. For this reason we extend the demand bound
function (dbf) to sporadic transactions and we propose a
suitable schedulability analysis. Then, we propose IDSP (Im-
plicit Deadline Synchronization Protocol) to assign the absolute
deadlines to jobs at run time. The protocol does not require
synchronization between nodes and uses only local information.
We guarantee that the demand that can be generated at run
time is always bounded by the sporadicdbf computed off-line.

I. I NTRODUCTION

Distributed real-time systems are often modeled as a set of
real-timetransactions[1]. Each transaction is a chain of real-
time tasks, and each task is allocated on a (possibly different)
computational node. The first task in the transaction is
activated periodically, or by external events characterized by
a minimum interarrival time. The other tasks are activated
upon the completion of the preceding one. All tasks in the
transaction must complete within anend-to-enddeadline
relative to the activation time of the transaction. We allow
the end-to-end deadline to be larger than the period. This
situation is quite common in real applications. For example,
in multimedia streaming, the period at which video frames
are generated and processed may be lower than the end-to-
end deadline for delivering the frames to the user.

An important problem is to check the schedulability of
the system, i.e. to test if all transactions will complete
before their end-to-end deadline under worst-case condi-
tions. In fixed priority systems, theholistic analysis[1],
[2] consists in reducing the overall distributed schedulability
problem into p single-node problems that can be solved
using classical schedulability analysis. Each task is assigned
a priority, and task parameters like offsets, jitters, response
times are calculated so that the precedence constraints are
automatically guaranteed. Since all schedulability problems
depend on one another (i.e. the activation of an intermediate

task, and hence its jitter, depends on the response time
of the preceding task), the analysis is iterated until either
a fixed-point solution is found or the set is deemed not
schedulable. Similar techniques have been applied to EDF
scheduling [3]–[6]. In this case, each task must be assigned
an intermediate deadline instead of a fixed priority. Holistic
analysis also allows to mix different schedulers on different
nodes, as long as the designer is able to compute the worst-
case response time of every task.

However, the holistic analysis isglobal, in the sense that
it can be performed once the designer knows the parameters
of all transactions. Moreover, any variation in one parameter
(computation time, priority of an intermediate task,. . . ) can
influence the temporal behavior of all the system.

In a component-based approach, instead, it is desirable to
perform the analysis in two steps: in the first step (local)
we analyze each transaction in isolation, summarizing its
temporal behavior with a (possibly small) set of temporal
parameters. In the second step (integration), we must verify
that the overall system is schedulable by only considering
the temporal parameters derived in the first step.

Such an approach facilitates sensitivity analysis, increases
robustness of the solution, allows to easily substitute one
component with another, reduces the complexity of dynamic
on-line admission control, etc.

In the local analysis it is not possible to use the response
times of the tasks, because they depend on the presence
of all other transactions. Therefore, in this paper we use
the slicing approach [7]. Each task is assigned anexecution
window, and the execution windows of any two tasks of the
same transaction are not overlapping. This can be done by
assigning appropriate offsets and deadlines to every task.

Following the slicing method, under EDF the temporal
characteristics of the transactions are summarized by a set
of demand bound functions(dbfs) [8], one for each node.
The integration analysis then consists on summing all the
dbfs for every node, and check that the resulting function
never exceeds the computational power of the node. In [9],
we used such a methodology for periodic transactions, and
we proposed a method for assigning intermediate deadlines
to minimize a function of thedbfs.

However, two problems need to be solved to apply the
slicing methodology to EDF. The first problem concerns
with extending the analysis to sporadic transactions. In fact,



unlike single tasks scheduled on uniprocessors, in the caseof
end-to-end deadlines larger than the period the computation
of the dbf of a sporadic transaction is not trivial.

The other problem concerns with the run-time support.
When scheduling transactions with EDF, we must assign an
activation offset and an absolute deadline to each job. These,
in turn, depend on the activation of the transaction, which
may happen on a different node. Moreover, if activations
are sporadic, we cannot predict the activation window of
future jobs. Therefore, it may seem that a precise global
clock synchronization protocol is needed. Fortunately, the
global clock synchronization can be avoided in fixed priority
systems by using the Release Guard Protocol [10]. The
idea is to release the constraint on separating the execution
windows of jobs residing on different nodes, guaranteeing
instead only the correct separation between two jobs on the
same processor. The protocol is simple and effective, but it
was conceived for fixed priority schedulers only.

A. Contributions of this paper.

In this paper, we present two original contributions. First,
we propose an algorithm to correctly compute thedbfs of a
sporadic transaction on each node, and prove its correctness.
Second, we propose AlgorithmIDSP (Implicit Deadline
Synchronization Protocol) to assign absolute deadlines to
jobs in an EDF scheduler. Our protocol guarantees that,
under certain conditions, the run-time demand of the jobs
on each node never exceeds thedbf computed off-line.

II. RELATED WORK

The use of the demand bound function was initially
proposed by Baruah et al., for testing the schedulability of
set of tasks scheduled by EDF on single processors [8].
This methodology is also known as “Processor Demand
Criterion” [11]. The computation of thedbf was later ex-
tended to more complex task models, such as the generalized
multiframe tasks [12]. Recently, Zhang and Burns [13]
proposed a technique to reduce the number of points to
check during analysis based on demand bound function.

The processor demand criterion has been extended to the
analysis of distributed real-time transactions by Rahni et
al. [6]. However, their methodology is still based on the
holistic analysis: the activation time of a task is set equalto
the finishing time of the previous task in the transaction.

In [7] authors proposed a methodology to analyze the
schedulability of task graphs. The methodology also com-
putes intermediate deadlines by using an heuristic approach,
and it is based on theslicing approach: each task is assigned
a slice that does not overlap with the slices of other tasks.
Later [14] uses time slices to decouple the schedulability
analysis of each node, reducing the complexity of the
analysis. Such an approach improves the robustness of the
schedule, and allows to analyze each transaction in isola-
tion. We recently proposed a new algorithm for assigning

intermediate task deadlines based on the slicing approach
[9]. Our methods enables a component-based analysis.

Gantman et al. [15] presented a survey on synchronization
protocols for real-time distributed systems. Among the many
algorithms presented in the survey, the Release Guard Proto-
col (originally proposed in [10]) achieves a smaller average
end-to-end response time, greatly reduces start-time jitter,
and does not require a global clock synchronization. The
protocol uses only local information regarding the minimum
separation time between instances of the same task, and
appropriately delays future instances so to guarantee that
higher priority tasks do not interfere too much with lower
priority tasks. However, the Release Guard Protocol only
works with fixed priority schedulers, and assumes that the
end-to-end deadline does not exceed the period. The protocol
has been enhanced by Zhang et al. [16] to deal with sporadic
transactions, again on fixed priority schedulers.

III. SYSTEM MODEL AND NOTATION

A distributed real-time application is modeled by a set
of transactions{T1, . . . , Tm}. To simplify the presentation,
since our work investigates each transaction in isolation,
throughout the paper we drop the index of the transactions.

Transaction T is composed by a set ofn tasks
{τ1, . . . , τn}. Task τi, with i > 1, is activated upon the
completion of the preceding oneτi−1 and it has a com-
putation timeCi. The first taskτ1 of the ℓth instance of
the transaction is activated atΦℓ, that is calledabsolute
activation. We denote byτ ℓ

i the ℓth instance of the taskτi.
We consider sporadic transactions with minimum iterarrival
time T . Hence we have

Φℓ − Φℓ−1 ≥ T. (1)

To describe a possible scenario of activations for the
sporadic transaction under analysis, we need to list the
possible values of absolute activationsΦℓ. We label the
instance of the transaction under analysis by0. Moreover,
we operate a time translation, so to set the activation of this
transaction at time reference0. Therefore, we setΦ0 = 0.

The successive instanceswill be denoted by positive
indexesℓ > 0, and their absolute activations byΦ1, Φ2, . . .

Similarly, the previous instanceswill be denoted by neg-
ative indexesℓ < 0, and their absolute activations by
Φ−1, Φ−2, . . .

The following vector represents thesporadic activation
pattern:

Φ = (Φ−k0 , . . . , Φk1) (2)

wherek0 andk1 depend on the number of instances we need
to consider in the analysis (see Section V). Finally,Γ is the
set of all possible sporadic activation patterns.

We remark that, similarly to what it happens in multipro-
cessor scheduling [17], activating the transactions as early
as possible (i.e. periodically)is not the worst-casefor the
activation pattern. In Section V we show this by an example.



Each transactionT has anend-to-end deadlineD that
is the maximum tolerable time from the activation of the
first task τ1 to the completion of the last taskτn. Since
the analysis of the constrained deadline (D ≤ T ) is a
straightforward extension of the classic analysis, throughout
the paper we always assumeD > T . In such a case, it may
happen that a task is activated before its previous instance
has completed. In this paper, we assume that the different
activations of each task are served in a FIFO order.

The application is distributed acrossp processing nodes,
and each taskτi of the transactionT is mapped onto
computational nodexi ∈ {1, . . . , p}. Hence, we define
Tk = {τi ∈ T : xi = k} as the subset of tasks inT mapped
onto nodek andnk as the cardinality ofTk.

The delay due to network communication can be easily
taken into account by considering the network as a special
processing node, and messages as tasks. The methodology
presented in this paper is valid also when different schedul-
ing policies are used on the processing nodes. However, to
simplify the presentation, in this paper we make two assump-
tions: we neglect the delay due to network communication
(for example, restricting to a multiprocessor system with
shared memory); and we assume EDF as the only scheduling
algorithm in the system. A more general investigation will
be presented in a future work.

Each task is assigned anintermediate deadlineDi, that is
the interval of time between the activation of the transaction
and the absolute deadline of the task. Hence, using the
notation introduced so far, the absolute deadline of theℓth

instance ofτi, is

dℓ
i = Φℓ + Di. (3)

We enforce the precedence relationship between tasks by
the slicing technique [7]: for each task we set theactivation
offset φi, relative to the activation of the transactionΦℓ,
equal to the intermediate deadline of the preceding one:

φ1 = 0, φi = Di−1 i = 2, . . . , n (4)

Clearly, the task absolute activation is

aℓ
i = Φℓ + φi. (5)

Moreover, we define the taskrelative deadlineDi as

Di
def
= Di − φi.

The relationship between activation offsets and relative
deadlines is depicted in Figure 1. Clearly,

n∑

i=1

Di = D (6)

The values ofT, Φℓ, D, Ci, Di, Di, φi are all real num-
bers. Finally, we use the notation(·)0

def
= max{0, ·}.

φ2

φ3 =D2

φn =Dn−1

T

D1=D1 D2 Dn

D = Dn

C1 C2 Cn

Figure 1: Notation for tasks.

IV. PERIODIC DEMAND BOUND FUNCTION

First, we recall the concept of demand bound function
for a transaction that is strictly periodic (i.e.∀ℓ, Φℓ = ℓT ).
Then, in the next section we extend the demand bound
function to the sporadic case.

The computational requirement of the subsetTk of tasks
allocated on nodek is modeled by itsdemand bound
function (dbf).

Definition 1: Thedemand functionon nodek, denoted by
dfk(t0, t1), is the total computation time of all the instances
of the tasks inTk, having activation time and deadline within
[t0, t1].

For periodic transaction, the demand function can be
computed as follows [8]:

dfk(t0, t1)
def
=
∑

τi∈Tk

(⌊
t1 −Di

T

⌋

−

⌈
t0 − φi

T

⌉

+ 1

)

0

Ci

(7)
As suggested by Rahni et al. [6], the overalldemand

bound functionof Tk in an interval of lengtht, is defined
as:

dbfk(t)
def
= max

t0
dfk(t0, t0 + t) (8)

A necessary and sufficient schedulability test for non-
concrete transactions (i.e. periodic transactions with free
initial offset), scheduled by EDF consists in checking that
the demand never exceeds the length of the interval on every
processor

∀k = 1, . . . , p ∀t > 0
∑

T

dbfk(T , t) ≤ t (9)

where the sum is made over all the transactions in the
system, anddbfk(T , t) denotes the demand bound function
of T on nodek. In this case, first thedbf is computed
for each transaction and for each node (applying the max
operator), and then we sum all thedbf together to compute
the overall computational requirement on nodek.

In Figure 2 we illustrate the definitions introduced in
this section by an example. Consider a transaction whose
parameters are: periodT = 5, end-to-end deadlineD = 8,
task deadlinesD1 = 2 and D2 = 6, computation time
C1 = 1 and C2 = 3. Both tasks are assigned to a
single node. In the lower part of Figure 2, we show three
consecutive instances of the transaction on three different
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Figure 2: Example of demand bound function.

lines. In the upper part, we show the values of 3 functions:
the demand in[0, t]; the demand in[2, 2+t]; and the demand
bound function. We represent the points where thedbf has
a step by a thick dot. The steps are tightly related to task
deadlines. For example in the figure, the pointsp1, p2, p3

depend on the deadlines of taskτ1, while the pointsp4, p5

depend on the deadlines ofτ2.
To compute thedbf of a periodic transaction, it is suffi-

cient to consider the value of the demand functions obtained
on the intervals that start with the activation of a task,
as shown in [6]. Also, thedbf has a periodic pattern: its
value for a generic large intervalt can be computed as
dbf(t′)+ jC, whereC =

∑

τi∈Tk
Ci, j ≥ 0 andt′ = t− jT

(see Section 4.1 in [6]).

V. SPORADIC DEMAND BOUND FUNCTION

Unfortunately, for sporadic transactions, the worst case
does not occur with periodic activations. Consider the
following transaction with 3 tasks on 2 processors. The
transaction has periodT = 5 and end-to-end deadline
D = 12. The task parameters are reported in Table I.

Task Ci proc. Di

τ1 1 0 3
τ2 3 1 4
τ3 3 0 5

Table I: Parameters for the example

In Figure 3, we show two possible activation patterns. The
first one corresponds to a periodic activation (Φ1 = T ): in
this case, it is easy to see that the maximum demand on
processor0 in any interval of length5 is at most3 units of
computation.

In the second activation pattern we delay the activation of
the second instance by 2 units of time (Φ1 = T + 2). As a
consequence, the demand in interval[7, 12] becomes4 units
of time, because one extra instance ofτ1 enters the interval.
Thus, delaying an instance can increase the demand.

0

181053 87 12

Cpu 1

Cpu 2

Sporadic

Periodic

5

7

T = 5

Figure 3: Example of sporadic transaction.

Hence, the analysis based on the classic periodic demand
bound function is not applicable if transactions are sporadic.
One of the contributions of this paper is to extend the
demand bound function to sporadic transactions.

A job τ ℓ
i in Tk, runs inside interval[t0, t1] if its absolute

deadlinedℓ
i is not smaller thant1

t1 ≥ dℓ
i = Di + Φℓ (10)

and its activation is not earlier thant0

t0 ≤ aℓ
i = φi + Φℓ (11)

By introducing the function

step(x) =

{

0 if x < 0

1 if x ≥ 0
(12)

we can define the following binary-valued function

jobInℓ
i(t0, t1)

def
= step(t1−Di−Φℓ)·step(φi+Φℓ−t0) (13)

that returns1 if the job τ ℓ
i has both activation and deadline

in [t0, t1], and it returns0 otherwise.
Hence, the demand of all the tasks belonging to the

transactionTk can be expressed as:

dfk(t0, t1)
def
= max

Φ∈Γ

k1∑

ℓ=−k0

∑

τi∈Tk

jobInℓ
i(t0, t1)Ci (14)

wherek0 andk1 are indexes of transaction instances (later
determined in Eq. (18)) that may have an effect on the
demand in[t0, t1].

The sum on all the transaction instancesℓ can be split
in three parts: the first part is the sum over the indexes
corresponding to thepast instances(from −k0 to −1); the
second part is thecurrent instance(with ℓ = 0), and the
third part is the sum over thefuture instances(from 1 to



k1). Hence Equation (14) becomes

dfk(t0, t1)= max
Φ∈Γ

{∑

τi

jobIn0
i (t0, t1)Ci +

−1∑

ℓ=−k0

. . . +

k1∑

ℓ=1

. . .
}

=
∑

τi

. . . + max
(Φ−k0 ,...,Φ−1)∈Γ−

−1∑

ℓ=−k0

∑

τi

. . .

+ max
(Φ1,...,Φk1 )∈Γ+

k1∑

ℓ=1

∑

τi

. . . (15)

where Γ− and Γ+ are the sets of the possible activation
patterns of the past and the future instances respectively.
Although Eq. (15) is apparently more complex than Eq. (14),
it will be more useful for our purposes because it has the
advantage of decoupling the dependecy on past and future
instances (see Sections V-A and V-B).

Finally, as for the periodicdbf, the sporadicdbf is
the maximum among all the sporadic demand functions
computed on intervals with the same length:

dbfk(t)
def
= max

t0
dfk(t0, t0 + t) (16)

Figure 4 shows that, for the same parameters of Table I,
the sporadicdbf computed from Eq. (16) is larger than the
periodicdbf (Eq. (8)).

105 87 1230 1 2 4 6 9 11 13 14 15 16

periodicdbf
sporadicdbf

Φ0 = 0
Φ1

Φ2

Figure 4: An example of sporadicdbf.

Equation (16) is a nice and compact expression of thedbf.
It is however unclear how such adbf should be practically
computed: how many instancesℓ of the transaction should
we consider in the sum of Eq. (15)? How many values of
t0 should we consider in the maximum of Eq. (16)?

We follow a strategy similar to the one used for computing
the dbf of periodic transaction. The strategy consists in the
algorithm reported in Figure 5. First (at line 2), we compute
the list intervalSet of all the significant intervals [t0, t1],
i.e. the intervals such that∀ε > 0 both the demandsdfk(t0+
ε, t1) anddfk(t0, t1−ε) arestrictly less thandfk(t0, t1). In

1: intervalSet← ∅ ⊲ initialize the set of intervals
2: STOREINTERVALS ⊲ store intervals inintervalSet

3: sort intervalSet by increasingt1 − t0
4: lastDBFval← 0
5: for each[t0, t1] ∈ intervalSet do ⊲ loop on all intervals
6: Γ−, Γ+ ← ∅ ⊲ init sets of past and future patterns
7: SPANPATTERNS(t0, t1) ⊲ store all patterns
8: curDBFval← dfk(t1, t0) ⊲ Eq. (15)
9: if curDBFval > lastDBFval then ⊲ Eq. (16)

10: store the point(t1 − t0, curDBFval)
11: else
12: do nothing (dominated by previous point)
13: end if
14: end for

Figure 5: Algorithm for computing thedbf.

Section V-A we describe the procedureSTOREINTERVALS

for performing this step. After sorting the intervals[t0, t1] in
intervalSet by increasingt1−t0 (at line 3), we search for the
activation patternΦ that maximizes the demand in[t0, t1].
In Section V-B we describe the procedureSPANPATTERNS

that computes the setΓ of all possible activation patterns.

A. Enumerating the intervals

The first stage requires to enumerate all the intervals
[t0, t1]. The pseudocode of this stage is reported in Figure 6.
First, we claim thatt0 must coincide with the activation
of some job. In fact, if this does not happen then we
could increaset0 achieving a shorter interval with the same
demand. Hence we sett0 equal to the activation of the job
τ0
i , i.e. t0 spans on{φi : τi ∈ Tk} (see line 4 of the

algorithm). Notice that, without loss of generality, we label
by 0 the transaction instance which this job belongs to.

Regarding the possible values oft1, it is easy to see that it
is sufficient to test only the absolute deadlinesdh

j . In fact if
t1 = dh

j for some taskτj ∈ Tk and some transaction instance
h, then a reduction oft1 by an arbitrary small amountε will
decrease the demanddf by at leastCj . However, the main
difficulty here is that the absolute activations are not fixed,
hence we do not know where the deadlines are until we fix
the sporadic activation patternΦ.

First, we list the values oft1 associated with the ab-
solute deadlines of the instance0 (see lines 5–9). Then
we invoke the recursive proceduresFUTUREDEADLINE and
PASTDEADLINE that list the absolute deadlines of the future
and past instances, respectively.

These two procedures explore the possible activation
patternsΦ such that task activations are aligned witht0. For
each pattern the values of absolute deadlines are recorded
as candidate values fort1.

We conclude the section by showing that, after a transient
that is long at mostD + T , thedbf becomes periodic.



1: procedure STOREINTERVALS

2: intervalSet← ∅ ⊲ initialize
3: for eachτi ∈ Tk do ⊲ loop on t0
4: t0 ← φi

5: for τj ∈ Tk do
6: if Dj > t0 then
7: store[t0, Dj ] in intervalSet

8: end if
9: end for

10: FUTUREDEADLINE(t0, 1, 0)
11: k0 ←

⌈
D−t0

T

⌉
− 1

12: PASTDEADLINE(t0, −k0, −2k0(D + T ))
13: end for
14: end procedure

15: procedure FUTUREDEADLINE(t0, ℓ, Φℓ−1)
16: for all Φℓ ∈ {Φℓ−1 + T } ∪ {t0 − φi : t0 − φi >

Φℓ−1 + T, τi ∈ Tk} do
17: for eachτi ∈ Tk do
18: t1 = Φℓ + Di

19: if t1 > t0 then
20: store[t0, t1] in intervalSet

21: end if
22: end for
23: if ℓ <

⌈
D+2T

T

⌉
then

24: FUTUREDEADLINE(t0, ℓ + 1, Φℓ)
25: end if
26: end for
27: end procedure

28: procedure PASTDEADLINE(t0, ℓ, Φℓ+1)
29: for all Φℓ ∈ {ℓT, Φℓ+1+T }∪{t0−φi : Φℓ+1+T <

t0 − φi < ℓT, τi ∈ Tk} do
30: for eachτi ∈ Tk do
31: t1 = Φℓ + Di

32: if t1 > t0 then
33: store[t0, t1] in intervalSet

34: end if
35: end for
36: if ℓ < −1 then
37: PASTDEADLINE(t0, ℓ + 1, Φℓ)
38: end if
39: end for
40: end procedure

Figure 6: Algorithm for enumerating intervals.

Lemma 1:For large values oft, thedbf(t) has a periodic
pattern. More formally:

∀t > D + T dbfk(t + T ) = dbfk(t) + Ck.

whereCk =
∑

τi∈Tk
Ci.

Proof: Let t0 andΦ be the instant and activation pattern

that give the value ofdbfk(t) in Equations (16) and (15)
respectively, and let us sett1 = t0 + t.

We identify with ℓ the first transaction instance with
activationΦℓ > t0, henceΦℓ−1 ≤ t0. Since we are in the
worst case andΦℓ > t0, then

∀h ≥ ℓ Φh − Φh−1 = T (17)

otherwise, we could anticipate allΦh with h ≥ ℓ without
removing any job from the interval. On the contrary, the
deadline of a job may enter the interval, and the worst-
case activation pattern cannot beΦ anymore, causing a
contradiction.

From (17) and the definition ofℓ, we notice that the
instanceℓ of the transaction ends earlier thant1. Clearly
this is also true for all instances beforeℓ. Formally

Φℓ−1 ≤ t0 ⇒ Φℓ ≤ t0 + T

Φℓ + D ≤ t0 + T + D < t1.

From (17), it follows that any interval of lengthT starting
afterΦℓ+D contains exactly one activation and one deadline
of each task. Hence the demand generated in the interval
[t0, t1 + T ] increases by one job for all tasks inTk, i.e. Ck.

Suppose by absurd thatdbfk(t + T ) > dbfk(t) + Ck.
Then, it exists an interval[t′0, t

′
0 + t+T ] with demand larger

thandbfk(t) + Ck. Let Φ
′

be its activation pattern, and let
us call ℓ′ the first instance withΦℓ′ > t′0. Followong the
same reasoning as above, the demand in[t′0, t

′
0+t] decreases

by Ck. However, this is absurd because we obtain a new
interval with the same lengtht but with demand higher than
in [t0, t0 + t].

Since, thanks to the lemma, the transient part of thedbf

lasts for no longer thanD +T and the periodic part is long
T , it is possible to compute thedbf only for lengths of
intervals less thanD + 2T .

Now we present an algorithm for computing the activation
patterns that determines the maximum demand in a given
interval [t0, t1].

B. Algorithm for enumerating the activation patterns

In this section we explain the procedure
SPANPATTERNS(t0, t1) (see line 7 of the algorithm in
Figure 5) that checks all possible sporadic activation
patterns of past and future instances that may have an
impact on the interval[t0, t1]. Therefore, we are interested
only in transaction instances that may overlap with the
interval [t0, t1]. The indexes of these transactions are from
−k0 to k1, where

k0 =

⌈
D − t0

T

⌉

− 1 k1 =

⌈
t1

T

⌉

− 1. (18)

Hence the sum of transactions instances of Eq. (15) has to
be made forℓ = −k0, . . . , k1.

For the example of Table I (see also Figure 4 for a timeline
representation of the instances), if we sett0 = φ1 = 0 and



t1 = 13, we find k0 = 2 and k1 = 2, meaning that in the
analysis of the demand in the interval[5, 12] we consider the
instances−2(= −k0),−1, 0, 1, 2(= k1) of the transaction.

In the exploration of the activation patterns we distinguish
between future instances (with indexℓ > 0) and past in-
stances (with indexℓ < 0). The guideline for the exploration
of absolute activations of future instances is to align some
task activationaℓ

i = Φℓ + φi with t0. This is possible by
setting

Φℓ = t0 − φi. (19)

However, this is a valid absolute activation only if it respects
the contraints of being a sporadic transaction with minimum
interarrivalT , that is

Φℓ ≥ Φℓ−1 + T. (20)

This condition introduces a recurrent dependency between
all the valuesΦ0, Φ1, Φ2, . . . , Φk1 . The procedureCOM-
PUTEFUTURE for testing future istances is reported in Fig-
ure 6.

The same rationale is applied to past instances (the ones
with index ℓ < 0). In this case however, we aim at finding
the absolute activationΦℓ such that some absolute deadline
is aligned with t1. The full algorithm that explores the
activation patterns is reported in Figure 7.

In the example of Figure 4, if we assumet0 = 0 then
Φ1 should be tested with the values of5(= T ). Instead, if
t0 = φ3 = 7 thenΦ1 is checked both when it is5 and when
it is t0 − φ1 = 7, meaning that we align the activation of
the instance1 with the offsetφ3 = t0 = 7.

C. Complexity analysis

We start by analysing the complexity of procedureSTOR-
EINTERVALS. The outer loop (line 3) is executednk times.
After adding the intervals for instance 0, proceduresFU-
TUREDEADLINE and PASTDEADLINE are invoked.

ProcedureFUTUREDEADLINE explores a number of in-
stances at most equal tok2 =

⌈
D+2T

T

⌉
−1. Of this, the first

⌊
t0
T

⌋
instances may vary their activation time, while for the

successive ones, the worst-case corresponds to interarrival
times equal toT . The number of possible combinations of

activations (line 16) is thenn
⌊ t0

T ⌋
k . For each combination,

nkk2 deadlines are generated.
ProcedurePASTDEADLINE is very similar. The number

of instances isk0 (see Eq. (18)). The maximum number of
elements generated for each combination of past activations
is nkk0. Finally, the maximum number of combinations
(line 29) is (nk + 2)k0 .

Each generated interval must be inserted in a ordered list,
an operation that takes logarithmic time in the size of the
list. The size of the list at the end of the procedure is:

s = k2n
⌊ t0

T ⌋+1

k + nkk0(nk + 2)k0

and the complexity isO(
∑s

i=1 log(i)).

1: procedure SPANPATTERNS(t0, t1)
2: k1 =

⌈
t1
T

⌉
− 1 ⊲ see Eq. (18)

3: COMPUTEFUTURE(1,(0, . . . , 0
︸ ︷︷ ︸

k1

))

4: k0 =
⌈

D−t0
T

⌉
− 1 ⊲ see Eq. (18)

5: COMPUTEPAST(−1,(0, . . . , 0
︸ ︷︷ ︸

k0

))

6: end procedure

7: procedure COMPUTEFUTURE(ℓ, (Φ1, . . . , Φk1))
8: if ℓ > k1 then ⊲ the exit condition
9: store(Φ1, . . . , Φk1) in Γ+ ⊲ Γ+ is global

10: else
11: Φ0 ← 0
12: for all Φℓ ∈ {Φℓ−1 + T } ∪ {t0 − φi : t0 − φi >

Φℓ−1 + T, τi ∈ Tk} do
13: COMPUTEFUTURE(ℓ + 1, (Φ1, . . . , Φk1));
14: end for
15: end if
16: end procedure

17: procedure COMPUTEPAST(ℓ, (Φ−k0 , . . . , Φ−1))
18: if ℓ < −k0 then
19: store(Φ−k0 , . . . , Φ−1) in Γ−

20: else
21: Φ0 ← 0
22: for all Φℓ ∈ {Φℓ+1−T }∪{t1−Di : t1−Di <

Φℓ+1 − T, τi ∈ Tk} do
23: COMPUTEPAST(ℓ− 1, (Φ−k0 , . . . , Φ−1));
24: end for
25: end if
26: end procedure

Figure 7: Algorithm for generatingΓ− andΓ+.

Notice that, while generating the the values oft1, it is
quite common to obtain many times always the same values.
In average, we expect that the final size of the list is much
smaller than its upper bounds.

Regarding procedureSPANPATTERNS, we apply a similar
reasoning. We address separately future and past instances.
ProcedureCOMPUTEFUTURE builds a tree in which at level
1 sets the value ofΦ1, at level 2 sets the value ofΦ2, and
so on. There will bek1 levels. Each node has at mostnk +
1 children. Hence, the number of leafs of such a tree is
(nk + 1)k1 . Each leaf corresponds to a different value of
(Φ1, . . . , Φk1). A similar tree can be built for past instances.
Thus the complexity of enumerating all activation patterns
is

O((nk + 1)k0 + (nk + 1)k1).



Finally, the complexity of computing the wholedbf is

O

(
s∑

i=1

log(i) + snk

(
(nk + 1)k0 + (nk + 1)k1

)

)

.

We are aware that the proposed algorithm is very com-
plex. Most of the complexity lies in the sporadicity of the
transaction that requires to check all possible scenarios.In
this paper, we focused on the exact analysis regardless of
its complexity. We leave to future investigations the devel-
opment of simplified algorithms as well as Fully Polynomial
Time Approximation Schemes (FPTAS).

VI. I MPLICIT DEADLINE SYNCHRONIZATION PROTOCOL

In order to implement a system that uses the transaction
model presented in this paper, the scheduler on each node
must set the activation times and the deadlines of the jobs
so that, if all tasks execute for less than their worst-case
execution timesCi, and the difference between two con-
secutive transaction instances is greater than the minimum
interarrival timeT ,

1) every transaction always respects its end-to-end dead-
line;

2) in every interval, the sporadic demand of every trans-
action is always less than or equal to the sporadic
demand computed off-line.

At first glance, it may seem that we need a strict clock
synchronization protocol to guarantee that the activations
and the deadlines are correctly computed. In fact, in a
distributed system the timing information are obtained on
each node by reading local timer hardware interfaces, and
different timers can have different offsets and different
speeds. Therefore, a global clock synchronization protocol
is often used to synchronize the different timing views to
the one taken as reference.

In this paper, instead, we show that it is possible to remove
the need for a common time reference. However, we still
assume that there is no drift among the timers of different
nodes. We plan to extend our analysis to distributed systems
with clock drifts in a future work.

Our idea is similar to the Release Guard Protocol
(RGP) [10] by Sun and Liu. RGP has been thought for
reducing the start-time jitter and guaranteeing a minimum
separation time between two task activations in a fixed
priority system. RGP works by delaying the activations of a
task so that the distance between two consecutive instances
is never less than the minimum interarrival time.

The algorithm we propose uses a similar idea to impose
a minimum distance between deadlines.

We start by observing that, once we assign the correct
deadline to a job, we can also let it start before its offsetφi.

Lemma 2:Anticipating the activation of a task without
modifying its absolute deadline does not increase the spo-
radic dbf.

Proof: Let φℓ
i = Φℓ +φi be the activation of jobτ ℓ

i , dℓ
i

its absolute deadline and letaℓ
i < φℓ

i be its actual starting
time. Then,dℓ

i − aℓ
i > Di.

Let t > Di, and let t0 be such thatdf(t0, t0 + t) is
maximal. If the interval containsφℓ

i anddℓ
i but notaℓ

i , then
thedbf may decrease. In all other cases, thedbf in t remains
the same.

While for the purpose of the analysis we impose that the
activation of a task is equal to the deadline of the previous
task, thanks to Lemma 2 at run-time we can activate a job at
the completion of the previous job, as long as the deadlines
are correctly set.

The second observation is that thedbfs of different nodes
are not related to each other. If we restrict our attention to
a nodek, as long as the system is schedulable and all tasks
meet their deadlines, we can use the activation of some task
in Tk as a reference time to compute all other parameters.

Before describing the protocol, we need an additional
definition.

Definition 2: We define asprecedence setPℓ
i of job τ ℓ

i

the set of all jobsτh
j of tasksτj ∈ Tk, with h ∈ {ℓ, ℓ−1, ℓ−

2, . . . ℓ−k0}, that have absolute deadline less thandℓ
i under

all possible activation patterns. The numberk0 of instances
to consider is:

k0 =

⌈
D

T

⌉

− 1.

The precedence sets impose a partial order on the set of jobs
belonging to previous instances. In practice, the deadlinedℓ

i

of job τ ℓ
i must necessarily follow all the deadlines of jobs

Pℓ
i under all possible activation patterns.
A stronger property is the following.
Lemma 3:At run time, the distance betweendℓ

i and any
of the jobs inPℓ

i cannot be less than

dℓ
i ≥ dh

j + (ℓ − h)T + Di −Dj (21)

Proof: Follows directly from the definitions.

A. The protocol

We now present theIDSP algorithm to compute the
absolute deadline of a jobτ ℓ

i at the instant of its activation
aℓ

i . The protocol consists of three simple rules.
Rule 1 The separation between activation and deadline of

τ ℓ
i must always be greater than its relative deadline:

dℓ
i ≥ aℓ

i + Di (22)

Rule 2 The second rule mandates a minimum separation
between the deadlines of the jobs of the same task:

dℓ
i ≥ dℓ−1

i + T. (23)

Rule 3 The distance betweendℓ
i and any job inPℓ

i must
not be less than the minimum possible distance as computed
off-line. In formula:

∀τs
j ∈ P

ℓ
i , dℓ

i ≥ ds
j + (ℓ − s)T + Di −Dj (24)



It may happen that a jobτ ℓ
i is activated before a job in its

precedence set, due to the fact that the end-to-end deadline
can be larger than period and previous jobs complete much
earlier than their deadline. In such a case, the job is
suspended and its deadline cannot be computed until we
have computed the deadlines of all the jobs in its precedence
set.

From the previous rules, the job deadlinedℓ
i can simply

be computed as the maximum among the RHS the three
inequalities. Notice that we only use parameters that are
local to each node (aℓ

i , dℓ
i ) or statically known (Di, T , Di,

Pℓ
i , and the intermediate deadlineDj for each jobτh

j ∈ P
ℓ
i ).

B. Computing the precedence set

Set Pℓ
i can be very large. We will now show that it is

possible to only compute a smaller subsetPℓ∗
i that contains

at most one job per past instance. First of all, let us show
how to compute such reduced subset:

• Set Pℓ∗
i contains at most one job per each instance

ℓ, ℓ− 1, . . . ℓ− k0. Initially, Pℓ∗
i is empty.

• Considering instanceh = ℓ, we only need to know
the taskτj ∈ Tk that immediately precedesτi in the
transaction. Then,τ ℓ

j is added toPℓ∗
i . If τi has no

preceding task inTk, we skip this step.
• Then, we enter a cycle in which we compute the job

for instanceh ∈ ℓ − 1, ℓ − 2, . . . , ℓ − k0. Let dm be
the greatest deadline among the jobs already inPℓ∗

i .
Consider the latest jobτh

j that has absolute deadline
in interval (dm, dℓ

i), under the assumption of periodic
distance between all instances fromh to ℓ. If such a
job exists, its deadlinedh

j is added toPℓ∗
i . Else, we

skip to the next instance.
• We iterate until instancek = ℓ− k0.

An example of the procedure is shown in Figure 8.
Consider a transaction having 6 tasks, with periodT = 10
and end-to-end deadlineD = 25. Hence, we need to
consider k0 = 2 instances. The intermediate deadlines
are respectively,3, 6, 10, 14, 21, 25. We assume that tasks
τ1, τ3, τ5, are allocated on processork = 1, while task
τ2, τ4, τ6 are allocated on processork = 2. We want to
compute the precedence set of jobτ ℓ

2 (the second task in the
bottom line of Figure 8). By setting all preceding activations
at distance equal toT , we have the activation pattern shown
in the figure. The precedence set ofτ ℓ

2 contains: 1) no job
of instanceℓ, because there is not task precedingτ2 on
processor 2; 2) jobτ ℓ−1

4 ; 3) job τ ℓ−2
6 .

According to rule 3, we must check thatdℓ
2 ≥ dℓ−1

4 + 2
anddℓ

2 ≥ dℓ−2
6 + 1. Therefore,dℓ

2 can be computed as:

dℓ
2 = max{aℓ

2 + 25, dℓ−1
2 + 10, dℓ−1

4 + 2, dℓ−2
6 + 1}.

In general, the maximum number of elements to maximize
is upper bounded bymin{k0, nk − 1}+ 2, so it depends on
the ratio between end-to-end deadline and period, and in no
case is greater thannk + 1.

C. Proof of correctness

Rule 3 mandates that all the deadlines in the precedence
setPℓ

i must be computed before we can compute deadline
dℓ

i . The following lemma proves that at run-time it is
sufficient to only considerPℓ∗

i .
Lemma 4: If all the jobs in Pℓ∗

i have been assigned a
deadline at run-time, then all the jobs inPℓ

i have been
assigned a deadline.

Proof: By contradiction. Suppose that a jobτh
j ∈ P

ℓ
i −

Piℓ∗ has not been assigned a deadline, and letτ ℓ
i be the first

job for which this happens at run-time.
Sincedh

j < dℓ
i but τh

j does not belong toPiℓ∗, it must
exist a jobτs

z ∈ Piℓ∗ such thath ≤ s ≤ ℓ anddh
j < ds

z < dℓ
i .

Then, τh
j ∈ P

s
z . Sinceτs

z has been assigned a deadline at
run-time, according to rule 3,τh

j must have been assigned
a deadline, against the hypothesis.

The following lemma proves that the absolute deadlines
assigned by algorithmIDSP never exceed the absolute
deadlines assigned by an algorithm that uses global time.

Lemma 5:Let aℓ be the activation of theℓ-th instance
of transactionT . Under the assumption that the transaction
is schedulable, the absolute deadlinedℓ

i of every job τ ℓ
i ,

computed dynamically using Equations (22)–(24), is never
larger thanaℓ + Di.

Proof: The complete proof has been removed for space
constraints. We just report here the intuition behind it. The
proof is by induction. We first show that the lemma is true
for the first job of the first instance. This is evident because
rule 1 is the only one that can be applied. Then, we prove
the induction step: if the lemma is true for all jobs inPℓ

i ,
then it is true forτ ℓ

i . This can be proved by showing how
to computedℓ

i starting from rule 2 and rule 3.
Lemma 5 guarantees that, if the transaction is locally

schedulable on each node, then no task misses the deadlines
that a global algorithm would have assigned on each node.

Now we want to prove that the protocol assigns deadlines
so that the sporadicdbf, as computed in Section V-B and
V-A, is always respected.

Lemma 6:Let τh
j be any job inPℓ

i . Under the assumption
that the transaction is schedulable and all deadlines are
assigned using Equations (22)–(24), the distance between
dh

j anddℓ
i is never smaller than the distance as computed in

Equation (21).
Proof: For τh

j ∈ P
ℓ∗
i , the lemma follows directly from

Rule 3. For the other jobs, it is easy to see that we can
apply a similar reasoning to the one in Lemma 4 to derive
the thesis.

Now the main theorem.
Theorem 1:Under the assumption that all tasks execute

for less than their WCET, and that for any interval the sum
of the sporadicdbfs computed off-line never exceeds the
length of the interval, then thedbf computed on-line by
IDSP is always less or equal to the sporadicdbf.

Proof: The proof has been removed for space con-
straints. We report here only the intuition behind it.
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Figure 8: Example of computation of the precedence set.

The proof is by contradiction. Let[t0, t1] be the first
and smaller interval in which the demand computed on-
line exceeds the sporadicdbf. The, t0 must be coincident
with a task activation andt1 with a deadline, let it bedℓ

i .
According to Lemma 6, the deadlines in[t0, t1] are separated
by no less than their worst-case distance as computed by
Equation (21). Then, we show that by moving deadline and
activations in a conservative way (i.e. without decreasingthe
on-line demand), we reach one of the situations enumerated
by the algorithms in Figures 7 and 6. Hence we obtain a
contradiction, and the thesis is proved.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of analyzing
the schedulability of sporadic transactions on a distributed
system scheduled by EDF, and how to support our method-
ology at run time. We proposed an algorithm to compute
the sporadic dbf offline on each node. We also proposed
the IDSP protocol that assigns appropriate deadlines to jobs
guaranteeing that thedbf computed on-line never exceeds
the dbf computed off-line.

As a future work, we plan to extend the methodology
to task graphs. Also, we would like to study the effect of
combining different scheduling strategies on different nodes,
and the effects of network scheduling.
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