Constant Bandwidth Servers with Constrained Deadlines*

Daniel Casini
Scuola Superiore S. Anna
Pisa, Italy
daniel.casini@santannapisa.it

Luca Abeni
Scuola Superiore S. Anna
Pisa, Italy
luca.abeni@santannapisa.it

Alessandro Biondi
Scuola Superiore S. Anna
Pisa, Italy
alessandro.biondi@santannapisa.it

Tommaso Cucinotta
Scuola Superiore S. Anna
Pisa, Italy
tommaso.cucinotta@santannapisa.it

Giorgio Buttazzo
Scuola Superiore S. Anna
Pisa, Italy
giorgio.buttazzo@santannapisa.it

ABSTRACT
The Hard Constant Bandwidth Server (H-CBS) is a reservation-based scheduling algorithm often used to mix hard and soft real-time tasks on the same system. A number of variants of the H-CBS algorithm have been proposed in the last years, but all of them have been conceived for implicit server deadlines (i.e., equal to the server period). However, recent promising results on semi-partitioned scheduling together with the demand for new functionality claimed by the Linux community, urge the need for a reservation algorithm that is able to work with constrained deadlines. This paper presents three novel H-CBS algorithms that support constrained deadlines. The three algorithms are formally analyzed, and their performance are compared through an extensive set of simulations.

CCS CONCEPTS
• Computer systems organization → Real-time operating systems; Embedded software;

KEYWORDS
Real-time scheduling, resource reservations, temporal isolation

ACM Reference format:
https://doi.org/10.475/123_4

1 INTRODUCTION
Several real-time systems are characterized by multiple computational activities (tasks) that require to be temporally isolated among themselves, meaning that the temporal behavior of a task is not affected by the misbehavior of some other task, for instance due to execution overruns. This is the case of open environments [24], where independently developed software components need to be

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

RTNS’17, October 2017, Grenoble, France
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06... $15.00
https://doi.org/10.475/123_4

*This work has been partially supported by the RETINA Eurostars Project E1071.

Permission to use this material is granted subject to the terms and conditions under which it was provided. For more information, contact the owner/author(s).

Permission to use this material is granted subject to the terms and conditions under which it was provided. For more information, contact the owner/author(s).

Permission to use this material is granted subject to the terms and conditions under which it was provided. For more information, contact the owner/author(s).

Permission to use this material is granted subject to the terms and conditions under which it was provided. For more information, contact the owner/author(s).

Permission to use this material is granted subject to the terms and conditions under which it was provided. For more information, contact the owner/author(s).
probabilistic metrics, thus being more suitable for soft real-time systems. The presented approaches are compared both in terms of analytical properties and empirical performance by simulation.

Paper Structure. The paper is organized as follows. Section 2 introduces the system model, the adopted notation, and reviews the needed background. Section 3 presents a general formulation to describe different variants of the H-CBS algorithm. Section 4 highlights shortcomings of existing state-of-the-art reservation algorithms when dealing with constrained deadlines. Section 5 presents the novel reservation algorithms extending the H-CBS to work with constrained deadlines. Section 6 presents some simulation results for validating the proposed approach. Finally, Section 7 draws the conclusions and illustrates possible future work on the topic.

2 SYSTEM MODEL AND BACKGROUND

This paper considers an arbitrary number of virtual processors running into a partitioned multiprocessor system. Each virtual processor is implemented by a reservation server $r_i = (Q_i, D_i, P_i)$ characterized by a budget Q_i, a relative deadline D_i, and a period P_i. Each reservation server has a bandwidth $a_i = \frac{Q_i}{P_i}$ and a constrained deadline less than or equal to its periodic $D_i \leq P_i$. If R_k is the set of reservations running on the k-th physical processor, its total utilization is $U_k = \sum_{i \in R_k} a_i$.

The workload running into a reservation r_i consists of a set Γ_i of sporadic tasks scheduled according to a local scheduling policy, where each task τ_j is characterized by a worst-case execution time C_j, a relative deadline D_j, and a period P_j. For the sake of simplicity, the superscript in task parameters denoting the reservation will be omitted when referring to a generic reservation or it is clear from the context. The server index is also removed whenever a single reservation server is considered. Reservation servers are assumed to be scheduled according to preemptive EDF and tasks are assumed to exchange data through asynchronous (i.e., non-blocking) communication mechanisms.

In this paper, the proposed formulations for handling servers with constrained deadline are based on the H-CBS algorithm.

2.1 Background

A reservation server, although guaranteeing a desired bandwidth a_i, may introduce variable execution delays on the served tasks due to the fact that, once the budget is exhausted, the server’s tasks will not be scheduled until the next replenishment time. The *worst-case service delay* Δ_i depends on the server parameters and the used budget management policy. Having a bounded worst-case service delay is a fundamental property for guaranteeing the schedulability of the workload executing inside the server [22]. In this work, a server is said to implement a hard reservation if it is able to guarantee both a bandwidth a_i and a worst-case (bounded) service delay Δ_i.

2.1.1 Server Schedulability.

The schedulability of a constrained-deadline reservation server can be verified through the Processor Demand Criterion (PDC) [3]. The PDC builds on the concept of

Figure 1: Approximate demand bound function of a sporadic task

The demand bound function (dbf), which in this case represents the worst-case computational demand of a reservation in any interval $[0, t]$. When the demand of a server does not exceed the one of a sporadic task with the same parameters, its dbf becomes:

$$dbf_i(t) = \left\{ \begin{array}{ll} \frac{t + P_i - D_i}{P_i} Q_i, & \text{if } t \geq D_i, \\ 0, & \text{otherwise.} \end{array} \right. \tag{1}$$

The processor demand criterion is recalled in Theorem 2.1.

Theorem 2.1 (Processor Demand Criterion (From [3])). A set R of constrained-deadline reservations, whose demand does not exceed the one of a sporadic task with the same parameters, is EDF-schedulable iff

$$\forall t \in D, \sum_{r_j \in R} dbf_j(t) \leq t$$

with $D = \bigcup_{r_i \in R} \{t = D_i + fT_i : t \leq L^* \land f \in N_{\geq 0}\}$, where L^* is the maximum analysis interval (see [3, 25] for more details about L^*).

The PDC has a pseudo-polynomial computational complexity if $U < 1$ (exponential if $U = 1$). Sufficient polynomial-time schedulability tests for constrained-deadline reservations can be derived by exploiting approximate demand bound functions as defined by Fisher et al. [18]. Such approximate demand bound functions with a single discontinuity (see Figure 1) are defined as follows:

$$dbf_i(t) = \left\{ \begin{array}{ll} Q_i + \alpha_i(t - D_i), & \text{if } t \geq D_i, \\ 0, & \text{otherwise.} \end{array} \right. \tag{2}$$

A sufficient test exploiting the definition of $dbf_i(t)$ is reported below.

Theorem 2.2. A reservation set R_k of periodic constrained-deadline reservations with $U \leq 1$ is EDF-schedulable if

$$\forall r_i \in R_k, \alpha_i^* + \sum_{r_j \in R_k : j \neq i \land D_j \leq D_i} \alpha_j \leq 1 \tag{3}$$

with $\alpha_i^* = \frac{Q_i}{D_i}$, and

$$Q_i^* = Q_i + \sum_{r_j \in R_k : j \neq i \land D_j \leq D_i} \alpha_j(P_j - D_j)$

Proof. From Theorem 2.1, if $\forall t \geq 0 \sum_{r_i \in R_k} dbf_i(t) \leq t$ holds, then the system is schedulable. By definition, $dbf_i(t) \geq dbf_1(t)$. Hence, if $\forall t \geq 0 \sum_{r_i \in R_k} dbf_i(t) \leq t$ holds, then the system is schedulable. The function $dbf_i(t)$ is characterized by a discontinuity at $t = D_i$ and by a linear part with slope α_i for $t > D_i$. Then, the function $dbf(t) = \sum_{r_i \in R_k} dbf_i(t)$ is constituted by a sequence of $n = |R|$ discontinuities. Let $\delta_1, \ldots, \delta_n$ be the ordered sequence of discontinuities. Since in any interval $[\delta_i, \delta_{i+1}]$ the function $dbf(t)$ is either constant or linear (with a slope less or equal
than U, with $U \leq 1$ by assumption) in both cases it is sufficient to check the condition $dbf(\delta_i) \leq \delta_i$. Hence, the following test can be considered:

$$\forall r_i \in R_k, \sum_{r_j \in R_k : D_j \leq D_i} Q_j (D_i - D_j) \leq D_i.$$

Then, substituting the first branch of Equation 2 the test becomes:

$$\forall r_i \in R_k, \sum_{r_j \in R_k : D_j \leq D_i} Q_j (D_i - D_j) \leq D_i.$$

Finally, applying some algebraic transformations the condition can be rewritten as:

$$\forall r_i \in R_k, \alpha_i + \sum_{r_j \in R_k : D_j \leq D_i} \alpha_j \leq 1.$$

The theorem follows.

2.1.2 Local schedulability. Guaranteeing the schedulability of the workload running inside a server requires the definition of the supply bound function (sbf). The sbf shown in Figure 2 models the minimum amount of time available in a reservation r_i in every time interval of length t and can be derived by identifying the minimum time allocated to r_i in the worst-case scenario. The interested reader can refer to [24] for further details.

3 HARD CONSTANT BANDWIDTH SERVERS

Across the last two decades of literature on reservation algorithms, various incarnations of the H-CBS algorithm have been proposed by different authors. To shed the light on the existing proposals and provide a common basis for presenting the results of this work, this section presents a generalized formulation of the H-CBS. The formulation is based on a set of static rules and another set of meta rules. Such meta rules, which allow differentiating between the various versions, are then discussed to instantiate the existing variants of the H-CBS, as well as the novel ones proposed in Section 5 to cope with constrained deadlines.

A served workload is said to be pending from the time it is released (i.e., entering an empty service queue) to the time at which it completes its execution (i.e., leaving the service queue empty). Furthermore, the workload is said to be ready when it is pending and can make progress, that is, it is not suspended waiting for some event. The server is assumed to keep track of the state of the workload (pending or ready). As long as it has ready workload to execute, the server is agnostic with respect to the execution requests of the workload, which are managed according to an internal (server-independent) policy, such as first-in-first-out (FIFO) or EDF.

A generalized formulation for the H-CBS. A H-CBS server is described by three parameters (Q, D, P), where Q is the maximum server budget, D is the server relative deadline, and P is the server period (also known as the reservation period). The server works by tracking two dynamic state variables: the current budget q (also known as runtime) and the scheduling deadline d (also known as server absolute deadline). At any point in time, the server can be in one of the following states: IDLE, READY, and THROTTLED. The H-CBS algorithm relies on EDF scheduling and is subject to the following rules:

R1 Initially the server is in the IDLE state, where the budget and the scheduling deadline are initialized to $(q, d) = (0, 0)$.

R2 When the server starts having ready workload to execute at time t:

- If the server is in the IDLE state, a new budget and scheduling deadline are generated as $(q, d) = generate(q, d)$. Then, the server will transit to the READY state at time $t_w = wake up(q, d, t)$.

R3 At any point in time, the server in the READY state has the earliest scheduling deadline d is selected for execution.

R4 Whenever the server executes the workload for δ time units, its budget is decreased as $q = q - \delta$. Furthermore, the server notifies the consumed budget to the system by means of the function account(δ, d).

R5 When the budget exhausts (i.e., $q = 0$), the server transits to the THROTTLED state.

R6 While a server is in the THROTTLED state, at time $p = d + P$ (end of the current reservation period) the server budget is recharged to $q = Q$ and a new scheduling deadline is assigned as $d = d + P$. Still at time p, if the server has ready workload to execute, then it transits to the READY state. Otherwise, the server transits to the IDLE state.

R7 Whenever the server is in the READY state and stops having ready workload to execute, it transits to the IDLE state.

3.1 The classic H-CBS

Among all the proposals, the most common variant of the H-CBS was first proposed by Marzario et al. [20] in 2004, and later reformulated by Abeni et al. [2]. Such an algorithm was designed for implicit deadlines only and can be expressed by defining $generate(q, d, t)$ as follows:

$$generate(q, d, t) = \begin{cases} (q, d) & \text{if } d < q - \frac{q_d}{\alpha} \\ (Q, t + P) & \text{otherwise} \end{cases}.$$

(4)

Also, $wake up(q, d, t) = t$ and account(δ, d) has no effect.

In 2014, Biondi et al. [7] showed that this formulation is affected by a schedulability issue whenever the H-CBS is adopted in conjunction to other scheduling mechanisms that can introduce blocking times (e.g., non-preemptive sections, locking protocols, etc.), thus perturbing the standard EDF scheduling of the servers. The authors also proposed a solution to the identified issue, which can be expressed by defining $wake up(q, d, t) = min(t, d - q/\alpha)$ and

$$generate(q, d, t) = \begin{cases} (Q, d - \frac{q}{\alpha} + P) & \text{if } t < d - \frac{q}{\alpha} \\ (Q, t + P) & \text{otherwise} \end{cases}.$$

(5)

As it can be noted by looking at the differences between (4) and (5), the latter formulation always recharges the budget at the maximum value Q. The difference in the $wake up(q, d, t)$ function was provided to guarantee a bounded service delay of $2(P - Q)$.

Figure 1: Transient ... Di αi αi+Di

Figure 2: Supply bound function of a generic periodic reservation server
3.2 The revised H-CBS
While the traditional H-CBS algorithm tries to re-use the current budget (and generates a new scheduling deadline when the current budget is not usable), the “revised” H-CBS [1] (again, defined for $D = P$), instead, tries to re-use the current scheduling deadline as much as possible (at the cost of decreasing the budget) and is based on the following definition of the generate() function:

$$\text{generate}(q, d, t) = (\max(q, \frac{Q}{P}(d - t)), d) \quad (6)$$

Moreover, $\text{wakeup}(q, d, t) = t$ and $\text{account}(\delta, d)$ has no effect.

3.3 The H-CBS-SO algorithm
The self-suspending task model [14] has been introduced to capture possible self-suspensions of the execution (waiting for some event) that are explicitly caused by the task behavior, i.e., not imposed by the scheduler or other scheduling mechanisms. Representative applications of such a model are in the context of semaphore-based locking protocols or in the use of hardware accelerators. Notably, self-suspending tasks received a lot of attention in the last years, being the corresponding schedulability analysis challenging and affected by several flaws in the literature [15]. A simple approach to analyze self-suspending tasks is the suspension-oblivious analysis, where suspension times are pessimistically accounted as execution times for the purpose of checking the system schedulability.

In 2015, Biondi et al. [4] showed that the suspension-oblivious analysis is not compatible with the standard H-CBS algorithm. To reconcile the H-CBS algorithm with a simple analysis for self-suspending tasks, the same authors proposed a variant of the H-CBS denoted as H-CBS-SO (H-CBS for suspension-oblivious analysis).

The H-CBS-SO maintains a logical queue, denoted as SS-QUEUE, that keeps track of the servers that have pending but not ready workload. The SS-QUEUE follows the EDF ordering. The key difference with respect to the standard H-CBS (both the formulations presented in Section 3.1 are compatible) lies in the $\text{account}(\delta, d)$ function, which in the H-CBS-SO is defined as:

$$\text{account}(\delta, d) = \begin{cases} q_{SS} = q_{SS} - \delta & \text{if } d_{SS} \leq d, \\ 0 & \text{otherwise} \end{cases}$$

(7)

where q_{SS} and d_{SS} denote the budget and the deadline of the server at the head of the SS-QUEUE, respectively. The servers into the SS-QUEUE are subject to rules R5 and R6 described in Section 3, with the only difference that in rule R6 the server does not transit to the READY state (note that, according to rule R7, a server is in the IDLE state as long as it is into the SS-QUEUE). Furthermore, whenever a server leaves the SS-QUEUE, rule R1 is not triggered.

4 PROBLEM DEFINITION
The main objective of this work is the development of a reservation server with the following features: (i) providing the budget to the server load within a relative deadline less than or equal to the server period; (ii) guaranteeing at least a budget Q every period P; (iii) guaranteeing a bounded worst-case service delay Δ; and (iv) guaranteeing the schedulability of a set of such servers. Note that such features cannot be achieved by using the traditional formulations of the Hard Constant Bandwidth Server, because their meta rules (e.g., see Equation 4) leverage utilization-based EDF schedulability theory, which is valid only for implicit deadlines.

The instantiation of such meta-rules is obtained manipulating the condition $U < 1$ which is necessary and sufficient to guarantee schedulability when dealing with implicit deadlines. For this reason, if any server simply executes according to its bandwidth the system is implicitly schedulable. A naive solution that avoids leveraging any specific schedulability test could consider to deplete the whole budget whenever a reservation server remains without ready workload. According to this approach, $\text{wakeup}(q, d, t) = t$ and $\text{account}(\delta, d)$ has no effect. Also, $\text{generate}(q, d, t)$ is defined as:

$$\text{generate}(q, d, t) = \begin{cases} (0, d) & \text{if } t < d - D + P, \\ (Q, t + D) & \text{otherwise}. \end{cases}$$

(8)

In doing so, however, the worst-case service delay would be much higher than the one that would be experienced with a traditional H-CBS (shown in Figure 3, inset (a)). Inset (b) of Figure 3 illustrates the worst-case service delay of such a naive solution. The desirable worst-case service delay of a constrained-deadline server is shown in Figure 3, inset (c). A second naive solution could consist in setting the period of a classical H-CBS equal to the relative deadline D thus leveraging the so-called density-based schedulability test. For instance, Equation 4 could be reused considering D in place of P and the ratio $\frac{Q}{Q}$ in place of α. Unfortunately, the condition $\sum_{\forall i \in \mathbb{R}} \frac{Q}{Q} \leq 1$ is only sufficient to guarantee servers schedulability and highly pessimistic. In particular, when using a constrained-deadline server in the context of C-D Semi-Partitioned scheduling, a single zero-laxity reservation would occupy a whole processor!

The next section proposes new solutions for reservation servers that can be used in this context.
5 PROPOSED SOLUTIONS

This section presents three solutions for realizing a H-CBS server with constrained deadlines. The first one is based on the H-CBS-SO algorithm presented in Section 3.3, and ensures the server schedulability with any safe schedulability test for EDF with constrained deadlines. The second one explicitly builds upon the sufficient EDF schedulability test of Theorem 2.2 and its objective is to improve the server performance with respect to the first solution, in terms of probabilistic performance metrics (such as deadline-miss ratio of soft real-time workload, response time percentiles, etc.) and average-case performance (such as average throughput). Finally, an improved variant of the second solution is also presented, which adopts the same rationale of the revised H-CBS presented in Section 3.2. Finally, differences among the proposed solutions are discussed.

5.1 A solution based on H-CBS-SO

As illustrated in Section 4, the key issue with the existing H-CBS formulations concerns the case in which a server is suspended due to the lack of ready workload to execute. A simple insight can be leveraged to overcome such an issue: since the H-CBS-SO was conceived to deal with self-suspending tasks running upon the server, a safe behavior can be achieved by treating any server suspension in the same manner.

The resulting algorithm is named as H-CBS\(^D\)-W and is defined as follows. First, a logical EDF-ordered queue, named S-QUEUE, is provided. Whenever a server transits to the IDLE state, then it is inserted into the S-QUEUE. The same definition of the account function reported in Equation (7) is adopted, where in this case \(q_{SS}\) and \(d_{SS}\) are respectively the budget and the deadline of the server at the head of the S-QUEUE. Analogously to the H-CBS-SO, the servers into the S-QUEUE are subject to rule R5. Also, when rule R5 applies to a server, the latter is removed from the S-QUEUE.

Finally, the following definitions are adopted to instantiate the meta-rules introduced in Section 3 for a server \(r_i\):

\[
\text{wakeup}(q, d, t) = t
\]

(9)

and

\[
\text{generate}(q, d, t) = \begin{cases} (q, d) & \text{if } r_i \text{ is into the S-QUEUE,} \\ (Q_i, t + D_i) & \text{otherwise.} \end{cases}
\]

(10)

The following lemma shows that this approach makes the H-CBS\(^D\)-W compatible with any EDF schedulability test for constrained-deadline sporadic tasks.

Lemma 5.1. If the H-CBS\(^D\)-W is adopted, the processor demand of a reservation \(r_i \in R_k\) never exceeds the one of a constrained-deadline sporadic task with worst-case execution time \(Q_i\), minimum inter-arrival time \(P_i\) and relative deadline \(D_i\).\n
Proof. As long as a reservation has ready workload, rules R5 and R6 guarantee that a server \(r_i\) (i) does not execute for more than \(Q_i\) time units every period \(P_i\), and (ii) will always have a relative deadline equal to \(D_i\). Whenever a server stops having ready workload, according to the definition of the H-CBS\(^D\)-W, the server is inserted into the S-QUEUE, where it is still subject to rule R5, so preventing \(r_i\) to consume more than \(Q_i\) budget units within its current period. Such rules take effect because the budget of \(r_i\) is decremented by the account function whenever a sporadic task with the same parameters of \(r_i\) would have executed according to EDF (i.e., when \(r_i\) is at the head to the S-QUEUE and its deadline is shorter than all the ones of the servers that are in the READY state). By the definition of the generate function, the server parameters do not change if \(r_i\) restarts having ready workload when it is into the S-QUEUE. Finally, consider the case in which \(r_i\) is not into the S-QUEUE and restarts having ready workload at time \(t\). Let \(p\) be the end of the \(r_i\)'s reservation period in which \(r_i\) stopped having ready workload (entering the S-QUEUE). If \(t \geq p\), then according to Equation (10) the server restarts executing with budget \(Q_i\) and deadline \(t + D_i\); note that this behavior is compatible with a sporadic arrival of a task configured with the same parameters of \(r_i\). Otherwise, if \(t < p\), then \(r_i\) must be in the THROTTLED state and hence cannot execute until time \(p\), as a corresponding sporadic task would do. □

The following lemma bounds the maximum service delay of a H-CBS\(^D\)-W server.

Lemma 5.2. Consider a set \(R_k\) of H-CBS\(^D\)-W reservations that are EDF-schedulable. The service delay of each server \(r_i \in R_k\) is no larger than \(\Delta_i = P_i + D_i - 2Q_i\).

Proof. Consider workload released at time \(t\) to be executed upon a server \(r_i\). The service delay is maximized in the scenarios where (i) \(r_i\) has no available budget at time \(t\); and (ii) the following periodic instance of the server, beginning at time \(p\), starts providing service to the workload as late as possible without violating the server schedulability, i.e., at time \(p + D_i - Q_i\). Among such scenarios, the worst-case service delay occurs when the distance between times \(t\) and \(p + D_i - Q_i\) is maximal, which happens when (i) the first instance (beginning at time \(p + P_i\)) depletes all its budget as soon as possible and (ii) time \(t\) coincides with the earliest time in which such a budget is depleted. Following the definition of the H-CBS\(^D\)-W, the budget is consumed only when the server provides service or by means of the account function (see Equation (7)). In both the cases, the event discussed in (ii) cannot happen before time \(t = p + P_i + Q_i\). The corresponding delay results equal to \((p + D_i - Q_i) - (p + P_i + Q_i) = D_i + P_i - 2Q_i\) and is illustrated in Figure 3-c. □

The above two lemmas imply that the H-CBS\(^D\)-W algorithm (i) guarantees the highest worst-case schedulability performance, as the server behaves no worse than a sporadic task, and (ii) provides the shortest possible worst-case service delay, as identified in Section 4. However, these features come at the cost of consuming the server budget even when the server is not actually executing (note that rule R4 may perform a double budget accounting by means of the account function). This drawback leaves room for improvement in terms of average-case performance and other metrics that are not related to the worst-case server behavior.

A pragmatic improvement. A possible way to get rid of the double budget accounting introduced by the H-CBS\(^D\)-W algorithm may consist in adopting a mechanism similar to the one proposed in the CASH [12] algorithm. CASH was designed for reclaiming unused budget at run-time and relies on an EDF-ordered queue of
servers with spare budget. For instance, the CASH mechanisms can be integrated with the H-CBSD-W by considering the servers into the S-QUEUE as servers with spare budget, and contextually (and carefully) revising the budget accounting rules of the server without affecting the worst-case performance of the server. Due to lack of space, this alternative is left as a conjecture to be investigated in future work.

5.2 An analysis-based solution

The key idea of the algorithm proposed in this section is to leverage a schedulability test for constrained-deadlines servers to solve the problem identified in Section 4. This new algorithm is denoted as H-CBSD. As discussed in Section 2.1.1, the exact schedulability test under EDF with constrained deadlines (Theorem 2.1) has a pseudo-polynomial complexity. Therefore, if such a test is used as a theoretical foundation to develop some algorithmic rules of the H-CBSD, then the resulting algorithm would in turn require a pseudo-polynomial complexity, thus potentially leading to a high run-time overhead.

To keep the algorithm overhead low, hence favoring polynomial complexity, thus potentially leading to a high run-time overhead, we exploit Theorem 2.2 to design a new generate function for the generalized H-CBS formulation in Section 3. The wakeup(q, d, t) = t and account(δ, d) functions have no effect, meaning that (i) the budget is always immediately available as soon as it is recharged and that, (ii) the budget is not decreased when the server is IDLE.

Deriving the generate function. Given a set of reservation servers Rk, at any point in time t each reservation ri ∈ Rk is characterized by a pair of dynamic state-variables: the absolute deadline di and the current budget qj. When such parameters are used for a different time instant, say t′, they are referred to as qj′ and d′i. The goal of the following paragraphs is to derive a proper definition for the generate function by exploiting such dynamic parameters.

First, Lemma 5.3 is provided to bound the demand generated by a H-CBSD server within a time interval in which the generate function is not invoked. Then, such a bound is used to derive a schedulability test (Lemma 5.4) for the system within the same interval of interest. Finally, Lemma 5.4 is used to derive a definition for the generate function that guarantees to always assign a schedulable pair (q, d).

Lemma 5.3 (Run-time demand function). Let t′ be an arbitrary point in time after a call to generate(). Let t'' > t' the first time after t' in which rule R2 triggers a call to the generate function for reservation rj. Then, ∀t ≤ t < t'', the processor demand of rj is bounded by its run-time demand function, defined as:

\[rd_f(t, q_j', d_j') = \begin{cases} q_j' + \alpha_j(t - d_j') & \text{if } t \geq d_j' \\ 0 & \text{otherwise} \end{cases} \] (11)

where q_j' and d_j' are the current budget and the current absolute deadline at time t', respectively.

Proof. Similarly as argued in the proof of Lemma 5.1, as long as the server has ready workload, rules R5 and R6 guarantee that the server behaves as a sporadic task with the same parameters of the server. As a consequence, for t ∈ [t', t''), the generated demand is zero, as the first instance of the server within [t', t'') has deadline at time d_j'. Since the interval of interest started at time t', where the budget of rj is q_j', the demand generated in [t', d_j'] is q_j' ≤ Qj. By exploiting the linear demand approximation introduced in Equation (2), from time d_j' on, the demand of rj can be bounded by q_j' + α_j(t - d_j'). At any point in time t ≥ t', if the server stops having pending workload, it either transits to the READY state, which however involves a call to generate() (see rule R2). By hypothesis, this cannot happen in [t', t''). Similarly, if the server is in the THROTTLED state, by rule R6 it will transit to the IDLE state as soon as its budget is replenished: therefore, the same argument used above applies. The lemma follows.

Lemma 5.4. Consider a reservation set Rk that is schedulable according to Theorem 2.2. Let t' be an arbitrary point in time after a call to generate(). Let t'' > t' the first time after t' in which any of the servers in Rk triggers a call to the generate function. The reservation set does not experience deadline misses ∀t ≤ t < t'' if:

\[\forall t \in \mathcal{D}^*, \quad rd_f(t, q_j', d_j') + \sum_{r_i \in \mathcal{R}_k(t', (r_j))} rd_f(t, q_j', d_j') + \sum_{r_i \in \mathcal{R}_k^d(t')} \sum_{r_j \in \{R_k \setminus \mathcal{R}_k^d(t')\} \cup \mathcal{R}_k^w(t')} \left(\sum_{r_i \in \mathcal{R}_k^w(t')} \right) \leq t - t'' \] (12)

where t'' > t' is the next time in which a reservation r_i ∈ R_k triggers a call to generate(), t''_w = d'_i - D_i + P_i,

\[\mathcal{D}^* = \bigcup_{r_i \in \mathcal{R}_k^w(t')} \{d'_i\} \cup \bigcup_{r_i \in \mathcal{R}_k^w(t')} \{d'_i + P_i\}, \]

and ∀r_i ∈ R_k, q_j' and d_j' are their current budget and absolute deadline at time t'.

Proof. The lemma follows from the processor demand criterion recalled in Theorem 2.1 provided that all the terms in Equation (12) are valid demand bounds. Under the hypothesis on times t' and t'', by Lemma 5.3 the first two terms are valid demand bounds for the reservation servers in the READY state (set \(\mathcal{R}_k^w(t') \)). A reservation server r_i in the THROTTLED state with absolute deadline d'_i will experience a full budget replenishment at t''_w = d'_i - D_i + P_i, and cannot generate demand until the latter time. From time t''_w, since...
the generate function is not called within \([t', t'']\), its maximum demand is the same of the one generated by a sporadic task with the same parameters of the server, hence is bounded by \(\Delta db f_j(t - t''')\). If a reservation server \(r_j\) is in the IDLE state, it must call the generate function before starting generating workload. Hence, its demand in the interval of interest is always zero, and consequently the fourth term is a valid bound. The set \(D^+\) includes all the discontinuities of the adopted demand bounds. The lemma follows.

Lemma 5.4 guarantees the system schedulability until the next call to generate function occurs. The idea of the following results is to use Lemma 5.4 within the definition of the generate function to ensure the same schedulability condition also when generate is called. Let \(q^*\) and \(d'\) to be the vector of budgets and deadlines for reservations \(r_j \in \{R^*_k \setminus \{r_j\}\}\) at time \(t'\), respectively.

Based on Lemma 5.4, it is possible to define a function to determine whether a pair \((q_j, d_j)\) can be used by a reservation server \(r_j\) without affecting the system schedulability:

\[
\text{check}(q', d', q_j, d_j) = \begin{cases}
\text{true} & \text{if Lemma 5.4 is satisfied} \\
\text{false} & \text{otherwise}
\end{cases}
\]

Then, the generate function is defined as follows (for a sake of simplicity and homogeneity with respect to previous formulations we omit the dependency from some parameters):

\[
\text{generate}(q_j, d_j, t) = \begin{cases}
(q_j, d_j) & \text{if check}(q', d', q_j, d_j) \land t < d_j \\
(Q_j, t + D_j) & \text{if } -\text{check}(q', d', q_j, d_j) \land \text{check}(q', d', Q_j, t_j^D, t) \land t < d_j \\
\text{if} \quad \text{otherwise}
\end{cases}
\]

(13)

where \(t_j^D = t + D_j\), and \(Q_j = Q_j - (t - (d_j - D_j))\). The rationale behind this function is that:

1. The check function can be used to verify whether the current budget \(q_j\) can be safely re-used maintaining the current absolute deadline \(d_j\).
2. Otherwise, check is used to verify whether is safe to perform a full budget replenishment \(q_j = Q_j\) at the current time \(t\), with deadline \(t + D_j\).
3. Finally, if the first two items fail, the deadline remains unchanged and the current budget is set to the value that it would have reached if it always executed in \([d_j - D_j, \text{min}(d_j - D_j + Q_j, t)]\).

With the algorithm definition in place, Lemma 5.5 guarantees the schedulability of \(H\text{-CBS}^D\).

Lemma 5.5 (Safety in the worst case behavior). The budget and absolute deadline pairs assigned by generate as defined for the \(H\text{-CBS}^D\) does not violate schedulability.

Proof. Since Lemma 5.4 guarantees schedulability until the next call to generate occurs and the generate function uses Lemma 5.4, the safety of the first two cases of Equation (13) is automatically guaranteed. Considering the third branch of Equation (13), the reservation server \(r_j\) which is calling the generate function maintains the same deadline \(d_i\) and a budget \(q_i^*\) obtained considering that it executed while it was actually IDLE. It is worth noting that \(r_i\) is guaranteed with a budget \(q_i \geq q_i^*\) (by means of a previous call to generate which exploited Lemma 5.4, if any, or by the admission test), regardless of the state of \(r_i\). Then, the system remains schedulable if \(r_i\) requires less demand. The lemma follows.

Lemma 5.6 shows that the \(H\text{-CBS}^D\) algorithm guarantees to each reservation \(r_i\) a full budget replenishment and an absolute deadline \(t + D_i\) to each server \(r_i\) which wakes-up after at least \(P_i\) after the last replenishment.

Lemma 5.6. Whenever \(H\text{-CBS}^D\) is adopted, at any point in time \(t\) such that \(t \geq d_i - D_i + P_i\), the algorithm guarantees a pair \((q_i^*, d_i^*)\) = \((Q_i, t + D_i)\) for each reservation \(r_i\).

Proof. At the system startup, a pair \((q_i^*, d_i^*)\) is implicitly guaranteed by the admission test (Lemma 2.2). When the first two branches of the generate function are considered, the reservation-set is guaranteed exploiting Lemma 5.4. It can be observed that the proof of Lemma 5.4 would follow also without adding the term:

\[
\sum_{r_i \in \{R^*_k \cup R^{* \text{in}}\}} \Delta db f_j(t - t'),
\]

because each reservation \(r_i\) that \((\{R^*_k \cup R^{* \text{in}}\}\) does not consume budget at time \(t'\). Then, in this case the presence of that term is sufficient to reserve a pair \((q_i^*, d_i^*)\) to each server passing from IDLE to READY at least after \(P_i\) since the last replenishment. Conversely, when considering the third branch of generate the demand required by a reservation \(r_i\) is always lower or equal than the one that it would required if it would be READY (the budget is consumed even if the reservation is not actually executing). Hence, a pair \((q_i^*, d_i^*)\) is implicitly guaranteed by the previous call (if any) to generate which did not use the third branch, or by the admission test. The lemma follows.

As a consequence of Lemma 5.6, the third branch of the generate function is never taken whenever it is called after at least \(P_i\) after the last replenishment (at least the condition for choosing second branch always succeeds). Lemma 5.7 bounds the maximum service-delay of \(H\text{-CBS}^D\).

Lemma 5.7 (Bounded-delay). Consider a reservation set \(R^*_k\) of \(H\text{-CBS}^D\) reservations that are EDF-schedulable. The service delay of each server \(r_i \in R^*_k\) is no larger than \(\Delta_i = P_i + D_i - 2Q_i\).

Proof. According to the general \(H\text{-CBS}\) formulation presented in Section 3, whenever new workload arrives at time \(t^*\), while the server is \(I\text{DLE}\), generate is called. Let us analyze separately the worst-case delay of the algorithm when the three different branches of the generate function are taken.

First branch. The budget \(q_i\) is available to be used within the absolute deadline \(d_i\). The worst-case scenario occurs when the period instance of the server starts executing as late as possible, i.e., at time \(t' = d_i - q_i\). Hence, the worst-case delay is equal to \(t' - t^*\). Since \(d_i - t^* \leq D_i\), then \(t' - t^* \leq \Delta' = D_i\).

Second branch. A budget \(Q_i\) is available to be used within \(t^* + D_i\). In the worst-case the server starts executing at \(t'' = t^* + D_i - Q_i\), leading to a delay \(\Delta'' = t'' - t' = D_i - Q_i\).

Third branch. The budget \(q_i^*\) is available to be executed within the current absolute deadline \(d_i\). By definition, \(q_i^*\) is the budget that the
Improving the available budget. Alternatively, the first branch of \(g \) could be defined to follow a principle similar to the one adopted in the revised CBS [1]: maintain the current scheduling deadline and use the maximum budget \(q_j \) allowed by Lemma 5.4. Such a budget can be derived as described in Lemma 5.8.

Lemma 5.8. Consider a reservation set \(R_k \) that is schedulable according to Theorem 2.2. Given an absolute time \(t' \) in which a reservation \(r_j \) transited from IDLE to READY with an absolute deadline \(d_j \), the maximum safe budget \(q_j \) which preserves the algorithm properties is:

\[
q_j^* = \min_{t \in D^*} \Delta^* \geq q_j(t),
\]

where \(D^* \) is defined in Lemma 5.4, and

\[
q_j(t) = -a_j (t - d_j) - K + t - t'
\]

with \(K = \sum_{r_i \in (R_k^1 \cup R_k^2)} r df_i(t, q_i, d_i) + \sum_{r_i \in (R_k^1 \cup R_k^2)} dbf_i(t - t_i^w') + \sum_{r_i \in (R_k^1 \cup R_k^2)} dbf_i(t - t_i') \).

Proof: The lemma follows directly as a consequence of Lemma 5.4, writing \(rdf_i(t, q_i, d_i) \) in its extended form (by means of Equation 12, substituting the first branch of its definition, and then considering only absolute-deadlines greater or equal than \(d_j \)) and solving with respect to \(q_j \).

In this case the \(g \) function is defined as follows:

\[
g(q_j, d_j, t) = \begin{cases}
\min(Q_i, \max(0, q_j^*)) & \text{if } t < d_j \land q_j^* > 0 \\
(Q_j, t + D_j) & \text{if } t < d_j \land q_j^* \leq 0 \land \\
(\max(0, q_j^*), d_j) & \text{otherwise}
\end{cases}
\]

where \(t_j^D = t + D_j \). The algorithm obtained by leveraging Lemma 5.8 is named H-CBS\(^D\)-R. It is worth noting that using H-CBS\(^D\)-R each call to \(g \) can cause the calling reservation to request a demand higher than the one of a sporadic task with parameters \((Q_j, D_j, P_j)\) (but still guaranteeing schedulability), thus implementing a sort of budget-reclaiming mechanism.

5.3 Discussion

The proposed solutions provide the same worst-case guarantees, namely both of them are able to provide the same worst-case delay and to maintain schedulability among servers. However, they differ in many points:

Applicability. The H-CBS\(^D\)-W is independent of the schedulability test used for admitting reservations. This implies that it can be used both under global, partitioned and semi-partitioned scheduling. Conversely, the H-CBS\(^D\) and H-CBS\(^D\)-R algorithms leverage the approximated scheduling analysis presented in Lemma 5.4, which is a processor-demand based analysis suitable only for partitioned or semi-partitioned EDF-based scheduling. Moreover, the schedulability test used for admitting reservation is constrained to be the same as the one presented in Theorem 2.2.

Average-case performance. H-CBS\(^D\) and H-CBS\(^D\)-R leverage the schedulability analysis to improve the average-case performance and probabilistic metrics (typically used for soft real-time workload) with respect to H-CBS\(^D\)-W. In particular H-CBS\(^D\)-R potentially reclaims some spare budget whenever the \(g \) function is called.

Implementation and Complexity. Algorithm H-CBS\(^D\)-W can implement all the meta-rules in constant-time. On the other hand, it may require the implementation of an additional server queue, the S-QUEUE. Differently, H-CBS\(^D\) and H-CBS\(^D\)-R do not require additional data structures. Also, \(\text{wakeup}(q,d,t) \) can still be implemented in constant-time and \(\text{account}(q,d,t) \) does not require any implementation. As a drawback, the \(g \) function has linear complexity.

6 SIMULATION RESULTS

As previously shown (see Lemmas 5.2 and 5.7), all the algorithms presented in this paper have the same worst-case performance. Whenever each reservation server is used to schedule a single task with worst-case execution time smaller than or equal to the maximum budget, minimum inter-arrival time larger than or equal to the reservation period, and the same relative deadline of the server, then all its deadlines are guaranteed to be respected (this is sometimes referred as hard schedulability property of the CBS).

Otherwise, some deadlines can be missed: in this case, the probability to respect or miss a deadline depends on the used algorithm. To test the performance of the three scheduling algorithms when serving this kind of real-time tasks, an extensive simulation study has been carried out and is presented in this section.

The algorithms have been tested in a widely variable set of situations, by randomly generating a workload composed by real-time tasks with random execution and inter-arrival times. The workload running into each reservation server consists of a single sporadic task \(\tau_i \). The workload (i.e., the computation time and the inter-arrival time of each job) is controlled by the following parameters:

1. The ratio \(\beta \) between the average computation time \(\tau_i \) of a task \(\tau_i \) and the maximum runtime \(Q_i \) of the server used to schedule it: \(\tau_i = \beta Q_i \).
2. The ratio \(\alpha \) between the average utilization of a task \(\tau_i \) and the utilization of the server used to schedule it: \(\alpha = \frac{\tau_i}{\tau_i} \), where \(\tau_i \) is the average inter-arrival time of \(\tau_i \).
3. The variance of the execution and inter-arrival times.

The sets of servers and tasks used in the simulations have been generated as follows. Given \(n = 5 \) reservations and a target total utilization \(U = \sum_i Q_i \), budgets and periods have been generated using the Randfixedsum algorithm [17]. The periods \(P_i \) of the reservations are distributed between 5000 and 500000. Then, the relative

\(^3\)Simulations with a different number of reservation servers have been performed, showing that the number of reservations does not affect the results. Hence, only results for \(n = 5 \) are reported.
deadlines of each reservation server have been generated with uniform distribution in the interval \([Q_i + \beta(P_i - Q_i), P_i]\), with \(\beta = 0.4\). Reservation sets that are not schedulable according to Theorem 2.2 have been discarded.

All the sets generated using this approach with \(U \leq 0.7\) resulted to be schedulable according to Theorem 2.2. For \(U = 0.75\), about 2% of the generated reservation sets are not schedulable according to Theorem 2.2, whereas they are all schedulable performing an exact schedulability test; the situation becomes more interesting for \(U = 0.9\), when 49% of the generated server sets are not schedulable according to Theorem 2.2 but only 16% of the server sets are really not schedulable using an exact test. This fact has an impact on the usability of the proposed algorithms, since (as previously discussed) H-CBS\(^D\)-W can be used with any schedulability test while the other two algorithms require to use Theorem 2.2 to check the servers’ schedulability\(^4\).

After generating the reservation-sets, the task \(r_i\) served by each server has been generated considering variables execution times, distributed according to a uniform random variable with average \(\overline{c_i} = C_i Q_i\). Similarly, the inter-arrival times have been considered to be variable and distributed according to a uniform random variable with average value \(\overline{p_i} = P_i / \overline{c_i}\). The execution times are uniformly distributed in \([\overline{c_i} - \frac{3}{2}Q_i, \overline{c_i} + \frac{3}{2}Q_i]\) and the inter-arrival times are uniformly distributed in \([\overline{p_i} - \frac{Q_i}{2}, \overline{p_i} + \frac{Q_i}{2}]\), where \(c_{0i} = Q_i s_i\), \(p_{0i} = P_i s_i\), and \(s_i\) is a parameter in the task set generation. The relative deadline of each task \(r_i\) is equal to the relative deadline of the server used to schedule it.

The generated sets have been simulated by using event-based simulator. For each set of parameters, \((U, a, C_r, sz)\), 100 different reservation-sets have been generated, and the number of missed deadlines for each task has been counted. The ratio of total missed deadlines has been computed for each run, averaging results over the 100 repetitions (also computing the 90% confidence interval).

The simulator has been validated by testing sets of tasks and servers generated as described above together with servers that have been correctly dimensioned to respect the hard schedulability property of the CBS\(^5\). For those, the simulations correctly reported 0 missed deadlines.

Impact of the Total Utilization \(U\). In a first set of simulations, the impact of the total servers utilization \(U = \sum_i Q_i / \overline{p_i}\) has been evaluated by varying \(U\) in the interval \([0.5, 1]\) with steps of 0.1 while keeping \(C_r\), \(a\) and \(sz\) constant. The simulations showed that \(U\) had no significant impact on the percentage of missed deadlines.

This is consistent with the temporal isolation property provided by the CBS algorithm: the real-time performance of a task depends on the parameters of the task and on the server used to schedule it, but does not depend on the other tasks and servers running in the system. Due to this result, in the following simulations the total utilization has been fixed to \(U = 0.7\).

Impact of the Server Load. More interesting is the case in which the varied parameter is the parameter \(a\) (which is the ratio between the average utilization of the served task and the bandwidth of the reservation: this value can be considered an estimation of the ‘server load’). When \(a\) approaches 1, in the average case the served task tends to use all the execution time provided by the server, with a significant number of instances exceeding the provided budget and completing in subsequent periods, thus missing their deadlines. Decreasing \(a\), the number of respected deadlines increases.

Figure 4 shows the fraction of deadlines that have been respected as a function of \(a\), with \(C_r = 0.6\) and \(sz = 0.8\). For small values of \(a\) all the algorithms are able to respect almost all of the deadlines. When \(a\) increases, H-CBS\(^D\)-R continues to respect a very high percentage of deadlines, because it provides a sort of budget-reclaiming, as discussed in Section 5.3, while the performance of the other two algorithms degrade. Since H-CBS\(^R\)-W decreases the budget of a the server even if the task does not execute, from Figure 4 it results to perform worse.

Impact of the Average Execution Time. Figure 5 shows the fraction of respected deadlines as a function of \(C_r\), with \(a = 0.6\) and \(sz = 0.8\). In this situation, the performance of H-CBS\(^D\) and H-CBS\(^D\)-R are similar, while H-CBS\(^R\)-W performs slightly worse. All the algorithms are strongly penalized by large \(C_r\) values.

Impact of the Execution and Inter-Arrival Times Variance. Figure 6 shows the fraction of respected deadlines as a function of \(sz\), with \(a = 0.6\) and \(C_r = 0.6\). Again, H-CBS\(^R\)-W misses more deadlines than the other two algorithms. The plot also shows that the number of misses deadlines increases with \(sz\), confirming that large variances in the execution and inter-arrival times have a negative impact on performance. The above observations are also confirmed in Figure 7, showing the deadline hit ratio vs both \(C_r\) and \(sz\), in a summarizing 3D plot spanning across a different region of the parameters space, with \(C_r\) from 0.7 to 1.1, \(sz\) from 0.6 to 0.8 and \(a = 0.6\).

\(^4\)These results have been obtained by generating 1000 random task sets according to the explained algorithm, and checking their schedulability according to Theorems 2.2 and 2.1.

\(^5\)\(Q_i\) larger or equal than the worst-case execution time of the served task and \(P_i\) smaller or equal than the minimum inter-arrival time, with the same relative deadline.
The proposed algorithms can be used as building blocks to facilitate implementation in a real operating system kernel (e.g., Linux). Moreover, they can be extended to multiprocessor platforms (e.g., extending the BROE protocol [5]) under constrained-deadline reservations both in uniprocessor and multiprocessor settings. All the three algorithms showed having the same worst-case properties. However, the first one is a generic solution independent of the adopted schedulability test, whereas the others build upon a specific sufficient schedulability test and showed having better performance in terms of probabilistic metrics (i.e., deadline hit ratio).

The literature, many CBS-based reservation algorithms were presented, but none of them is able to deal with constrained deadlines. The proposed algorithms can be used as building blocks to efficiently (e.g., in terms of worst-case delay) implement mechanisms for Semi-Partitioned scheduling in real-time operating systems. Future research directions include the support for shared resources under constrained-deadline reservations both in uniprocessor and multiprocessor platforms (e.g., extending the BROI protocol [5]) and the evaluation of the overhead introduced by means of an implementation in a real operating system kernel (e.g., Linux). Moreover, both H-CBSD and H-CBSD-R could be extended to support global scheduling with bounded tardiness [16].

7 CONCLUSIONS AND FUTURE WORK

This paper proposed three different algorithms which extend the Hard Constant Bandwidth Server to work with constrained deadlines. All the three algorithms showed having the same worst-case properties. However, the first one is a generic solution independent of the adopted schedulability test, whereas the others build upon a specific sufficient schedulability test and showed having better performance in terms of probabilistic metrics (i.e., deadline hit ratio). In the literature, many CBS-based reservation algorithms were presented, but none of them is able to deal with constrained deadlines.

The proposed algorithms can be used as building blocks to efficiently (e.g., in terms of worst-case delay) implement mechanisms for Semi-Partitioned scheduling in real-time operating systems. Future research directions include the support for shared resources under constrained-deadline reservations both in uniprocessor and multiprocessor platforms (e.g., extending the BROI protocol [5]) and the evaluation of the overhead introduced by means of an implementation in a real operating system kernel (e.g., Linux). Moreover, both H-CBSD and H-CBSD-R could be extended to support global scheduling with bounded tardiness [16].

REFERENCES

