
ReTiF: A Declarative Real-Time Scheduling Framework

for POSIX Systems

Gabriele Serraa,∗, Gabriele Araa, Pietro Faraa, Tommaso Cucinottaa

aScuola Superiore Sant’Anna, Via Moruzzi, 1, 56124 Pisa, Italy

Abstract

This paper proposes a novel framework providing a declarative interface to
access real-time process scheduling services available in an operating system
kernel. The main idea is to let applications declare their temporal require-
ments or characteristics without knowing exactly which underlying scheduling
algorithms are offered by the system. The proposed framework can adequately
handle such a set of heterogeneous requirements configuring the platform and
partitioning the requests among the available multitude of cores, so to exploit
the various scheduling disciplines that are available in the kernel, matching ap-
plication requirements in the best possible way. The framework is realized with
a modular architecture in which different plugins handle independently certain
real-time scheduling features. The architecture is designed to make its behavior
customization easier and enhance the support for other operating systems by
introducing and configuring additional plugins.

Keywords: Real-Time Systems, Scheduling, Programming Model, Linux

1. Introduction

In the past decade, the global interest running real-time applications in dis-
tributed or embedded systems rose considerably. Real-time applications how-
ever are not limited to specialized systems anymore: multimedia applications
like audio/video processing and streaming, gaming, etc. are notable examples of
applications with soft or firm real-time constraints that run on General Purpose
Operating Systems (GPOSes). To support these applications, modern GPOSes
evolved to provide a set of features that allow the coexistence of both real-time
and non real-time applications on the same host.

Among these GPOSes, Linux is a common choice for applications that have
real-time requirements, thanks to its rich support for multimedia peripherals,

∗Corresponding author.
Email addresses: gabriele.serra@santannapisa.it (Gabriele Serra),

gabriele.ara@santannapisa.it (Gabriele Ara), pietro.fara@santannapisa.it
(Pietro Fara), tommaso.cucinotta@santannapisa.it (Tommaso Cucinotta)

Preprint submitted to Journal of Systems Architecture (JSA) September 30, 2020

the plethora of libraries and tools readily available for media processing, and the
active support of a vast community of open-source developers. In addition, the
Android operating system (OS), based on Linux, has become a popular choice
for a number of embedded systems for multimedia services, from smartphones
and tablets to infotainment systems deployed in modern cars. However, Linux is
not the only choice when it comes to systems that provide support for real-time
applications; another notable example is FreeBSD, which is also the base for
some OSes running on many modern game consoles nowadays.

Similarly to any other GPOS, the Linux kernel development focused on min-
imizing average OS overheads and optimizing in-kernel operations to maximize
the performance of user-space applications, while keeping a good responsiveness
for interactive workloads, notably user interactions and multimedia applications.
However, Linux has also been consistently improving its support for real-time
workloads over the past decade, providing a growing set of features targeting
real-time applications [1, 2]: the inclusion of POSIX real-time extensions [3]
and the support for real-time mutexes; high-resolution timers with nano-second
precision; the removal of the Big Kernel Lock (BKL)1; enhancements to the ker-
nel preemptibility options; the introduction of NO_HZ for reducing overheads of
the periodic bookkeeping timer; the PREEMPT_RT [2, 4, 5] variant that reduces
worst-case scheduling latencies by running device drivers as kernel threads that
can be scheduled and turning most of the spinlocks into mutexes; and the ad-
dition of the SCHED_DEADLINE process scheduler [6], implementing a global
Earliest Deadline First (EDF) algorithm (that can also be configured as parti-
tioned or clustered EDF) that uses a multi-processor variant of the Constant
Bandwidth Server (CBS) [7] algorithm to provide temporal isolation among
tasks. In addition, a number of frameworks and middlewares have been devel-
oped to further enhance the capabilities of Linux as a powerful development
platform for real-time applications. These features increased the relevance of
Linux as a suitable platform to develop soft real-time applications, even with
respect to other modern GPOSes.

In general, GPOSes may be required to host a plethora of different appli-
cations, each characterized by their own temporal characteristics and real-time
requirements; these may range from interactive applications, to multimedia, to
gaming and virtual-reality tools, to real-time control applications for factory
automation. These applications may activate periodically or sporadically, they
may require access to real-time scheduling priorities, or sometimes their timing
requirements are unknown a priori and they should be inferred by comparing
their periodicity to other co-located applications. Finally, these systems may
need to host simultaneously both real-time and non real-time applications. In
a true component-based approach for realizing complex real-time systems, it is
all but trivial to understand how to let all of these applications coexist on the
same system, exploiting the different schedulers that are available, and how to
configure them for an optimal use of an underlying multi-core platform.

1For more info see https://kernelnewbies.org/BigKernelLock

2

1.1. Contributions

In this work, we provide an overview of the Real-Time Framework (ReTiF)2,
aimed at providing controlled access to real-time CPU scheduling features to un-
privileged applications on POSIX-compliant GPOSes. The goal of this frame-
work is to improve the usability of existing real-time capabilities of various OSes
by providing a unified and portable API; this new middleware can be used to
declare temporal characteristics of real-time applications, independently of the
particular scheduling policy that will be selected to satisfy the declared re-
quirements. This new declarative approach allows applications characterized by
heterogeneous requirements to coexist on the same host and use the same API
independently of the underlying OS, improving their portability across POSIX-
compliant GPOSes.

To achieve this goal, Real-Time Framework (ReTiF) adopts a modular ap-
proach to scheduling, in which a set of plugins are used to translate from the
generic attributes declared by each application to the proper configurations of
the real-time features exposed by the underlying kernel. To avoid unwanted con-
sequences of unrestricted access to real-time scheduling features of the operating
system, we present here for the first time the access control model that we im-
plemented for the framework, providing system administrators a comprehensive
mechanism to manage access to real-time resources on target machines. With
this new tool, every aspect of the framework can be configured and each re-
quest is checked against the policies defined by the system administrator, which
maintains total control on the behavior of the managed system. With ReTiF,
real-time applications can be associated with one of multiple scheduling policies
active at the same time on multi-core platforms with ease.

This modularity is the key to offer support to a plethora of scheduling
paradigms on the same OS (e.g., rate monotonic is used on some CPUs, while
SCHED_DEADLINE reservations is used on others), but also to provide porta-
bility of real-time applications across multiple OSes, by developing platform-
specific implementations of certain plugins.

This work constitutes an extended version of the paper already appeared
in [8], where: 1) we provide a more comprehensive description of ReTiF in Sec-
tion 3, including its internals and the interactions among its main components;
2) we present for the first time the security model that we recently added to
ReTiF in Section 4, which is of utmost importance when running unprivileged
real-time applications on shared systems; 3) we present a more detailed and
comprehensive discussion of the related research in Section 2; 4) we discuss cur-
rent limitations of the proposed framework and how we plan to address them
in future revisions in Section 7; and 5) we show a novel extensive evaluation of
the overheads introduced by the framework with respect to directly accessing
real-time features of the operating system in Section 6.

2The software is freely available on GitHub, under a GPLv3 license, at: https://github.
com/gabriserra/retif.

3

1.2. Paper organization

This paper is organized as follows. After discussing related research in Sec-
tion 2, an overview of ReTiF is presented in Section 3, focusing on the main de-
cisions driving its design, followed by the description of its access control model
in Section 4. Some implementation details are provided in Section 5, while
experimental data highlighting its performance and overheads are presented in
Section 6. Finally, limitations of this approach are thoroughly addressed in Sec-
tion 7 and conclusions are discussed in Section 8, along with possible directions
for future research on the topic.

2. Related Work

This section briefly reviews related works appeared in the scientific literature
about mechanisms and middleware layers supporting real-time applications on
GPOSes, with a particular focus on operative systems based on the Linux kernel
and its extensions.

Support for real-time applications in a GPOS like Linux was first introduced
by running the system on top of a micro-kernel layer placed between the hard-
ware and the kernel itself, acting like a hypervisor. In this approach, real-time
and “normal” tasks were treated very differently, with the former being handled
by the real-time micro-kernel layer and the latter scheduled at lower priority
by the Linux scheduler. The most important implementations of this paradigm
have been RT-Linux, proposed by Yodaiken et al. [9], and RTAI, proposed by
Mantegazza et al. [10]. The latter has also been later forked by Gerum et al.
into another project called Xenomai [11]. Both solutions require applications to
use custom APIs and heavy modifications to the Linux kernel. Therefore, these
solutions are not suitable for certain applications that should run in user-space
context as unprivileged processes, as in the case of audio/video processing ap-
plications with soft real-time requirements. The ARINC-653 specification [12]
uses a similar approach, implementing a kernel-level partitioning mechanism for
Linux. As required by the avionic specifications, this implementation provides
a high level of isolation among applications, but it cannot be easily adapted for
other application fields.

Many real-time kernel extensions and middleware solutions have been pro-
posed to support at the same time hard and soft real-time applications on Linux
or other GPOSes by directly extending or patching the system scheduler. How-
ever, most implementations limit their support to fixed priority (FP) scheduling
without providing any temporal isolation among real-time tasks and creating a
potential disruption of the guarantees offered to tasks executing at lower pri-
orities. These approaches are suitable for hard real-time tasks with strict re-
quirements, but find little application in the multimedia field. A representative
example of these approaches is KURT Linux [13], which consists in a significant
modification of the Linux internal scheduling mechanisms. KURT introduces 3
distinct operational modes: in normal mode the system behaves like a GPOS;
in real-time mode only real-time processes can run while normal processes are

4

blocked; finally, in mixed mode both real-time and non real-time applications
can be executed concurrently. In particular, in mixed mode normal processes
can run only in the slack time left after scheduling all real-time applications;
this guarantees that real-time applications have higher priority with respect to
normal processes.

A similar concept was pursued by the OCERA EU project3, where RT-Linux
was integrated with custom modifications to the Linux kernel, so to achieve the
coexistence of hard and soft real-time applications [14]. Hard real-time processes
could rely on a POSIX API adapter to the RT-Linux functionality. Soft real-
time processes could use a custom API to interact with a set of dynamically
loadable modules realizing a variant [15] of the CBS algorithm to provide a
reservation-based scheduler exploiting a minimally invasive patch to the Linux
kernel.

In [16] authors present QRAM, an analytical model that uses quality of
service (QoS) to allocate multiple resources to real-time applications, with the
main goal of maximizing an overall QoS cost function for the entire system.
This approach was also later extended [17] with an adaptive on-line optimization
policy. Other works based on similar techniques are [18], in which a QoS mid-
dleware mediates application access to physical resources to support dynamic
workloads, and Linux-SRT [19], which enhances Linux to provide predictable
scheduling and QoS management tools. Another similar approach, called Firm-
RT, was presented by Srinivasan et al. [20] to support firm real-time applications
in which both soft real-time and time-sharing applications can run concurrently
on the same system. This last approach consists in a set of modifications to
the Linux kernel that provide support for the stringent timing requirements of
these applications.

In more recent years, many Linux-specific libraries have been developed to
enhance the capability of the Linux kernel to support real-time applications,
especially without super-user privileges. A notable example is the RealtimeKit
(RTKit) library4, included as a dependency of the PulseAudio sound infrastruc-
ture for POSIX OSes5. RTKit is a D-Bus system service that can change the
scheduling policy of user processes or threads on request. However, the RTKit
daemon is only intended to be used to let user processes access the SCHED_RR
scheduling policy. A similar mechanism is provided in the nowadays Linux ker-
nel by the prlimit() system call and the related limits.conf configuration file.

LITMUSRT [21] is a framework composed of a kernel patch and a related
user-space interface that allows applications to schedule real-time tasks using a
wide variety of schedulers. LITMUSRT can be extended with a plugin mecha-
nism that lets system designers write their own plugins, in which they can im-
plement new scheduling algorithms. The main goal of LITMUSRT is to provide
the research community with a test-bench for real-time scheduling algorithms

3More information at: http://www.ocera.net.
4For more info see https://github.com/heftig/rtkit
5For more info see https://www.freedesktop.org/wiki/Software/PulseAudio/

5

on a real Linux-based platform. While in this sense LITMUSRT can be success-
fully used to investigate the behavior of novel scheduling algorithms, it does not
support multiple real-time scheduling algorithms at the same time.

Conversely, due to its nature, a GPOS should be capable of hosting a variety
of applications with heterogeneous temporal characteristics, offering a schedul-
ing layer that exposes a common interface for expressing application require-
ments. An effective way of providing both temporal requirements declaration
and isolation in a GPOS is the combination of QoS contracts and resource reser-
vation techniques. Several algorithms and implementations have been proposed
in the literature along this direction. Aldea et al. proposed the Flexible Inte-
grated Real-time Scheduling Technologies (FIRST) architecture [22], which is an
OS-independent specification that organizes a number of scheduling algorithms
to work in cooperation, including both FP and dynamic priority (DP) scheduling
algorithms, in a hierarchical scheduling architecture. The resulting architecture
allows system designers to build complex real-time systems by simply specify-
ing the real-time requirements of the desired applications. FIRST also relies
on reservation techniques to provide temporal isolation among real-time tasks:
real-time applications can leverage this framework to establish QoS contracts
with the system, which will then provide them a set of guarantees. In addition,
FIRST organizes multiple scheduling algorithms, including both FP and EDF,
to work in cooperation by assigning each scheduler a server with its own tem-
poral budgets. In principle, any system can implement the FIRST Scheduling
Framework (FSF) to provide multi-scheduler support with the guarantees in-
cluded in the FIRST specification. FSF has been implemented in SHARK [23]
and MaRTE [24], but not in other GPOSes like Linux.

FRSH/FORB [25] is another middleware based on CORBA that provides
reservation scheduling across several physical resources, such as CPUs, disks and
network interfaces, to real-time applications. This mechanism is made available
through kernel-level extensions to the Linux OS, one of them provided by the
AQuoSA architecture [26] supporting adaptive CPU reservations, and real-time
extensions [27] for wireless communications compatible with the IEEE 802.11
standard series. FRSH/FORB has also been extended [28] with a transactional
API for handling multi-resource reservations in a distributed system.

The ExSched project [29] tries to support different OSes with a plugin-based
scheduler design. This framework is made of a kernel module and a set of plugins
that can be chosen by the system administrator. The ExSched framework aims
to provide a unified scheduler interface that can be leveraged to implement
different schedulers without patching the underlying OS. However, this feature
comes with a considerable cost in terms of performance: for example, the EDF
scheduler plugin implementation introduces a huge overhead (about 180% in the
worst case) on the system compared to SCHED_DEADLINE implementation on
Linux [29]. Also, applications must be aware of their exact timing parameters
like task period, worst case execution time, etc. to be effectively used with
ExSched. Similar considerations apply for a noteworthy attempt [30] of realizing
a reservation-based scheduler in the MINIX3 micro-kernel [31] as an external
module that can be loaded at run-time.

6

Another solution proposed by Parmer and West [32] called Hijack is com-
posed of a kernel module and an interposed execution environment between the
process address spaces and the kernel. Hijack introduces some mechanisms to
intercept system calls and interrupts via a kernel module, which in turn forwards
control of the request to a user-level daemon. The daemon will elaborate the
request and the response is finally provided to the original application traversing
this stack in the opposite direction of the request.

Other frameworks target commercial operating systems. For example, Ben-
ham et al. presented HSF-VxWorks [33], which introduces support for Rate
Monotonic (RM) and EDF hierarchical scheduling to VxWorks OS without
modifying its kernel. Another example is HSF-FreeRTOS, proposed by Inam et
al. [34], which implements a hierarchical scheduling framework for FreeRTOS,
providing support to temporal isolation among applications running on a single
processor.

In 2016, Wei et al. [35] proposed RT-ROS, a real-time ROS architecture that
provides an integrated task execution environment that is able to run real-time
and non-real-time tasks in the same system. The real-time tasks run on top of
a real-time OS while non-real-time ones run on Linux. The real-time OS and
Linux run on different processor cores, albeit with limited separation in terms
of security.

Another work based on ROS was introduced in 2018 by Saito et al. [36]:
they presented a real-time scheduling framework, called ROSCH, that added
real-time features to ROS such as fail-safe functionality, fixed-priority based
directed acyclic graph (DAG), and a synchronization system.

A solution for integrating real-time and non-real-time environments for cloud
computing was presented in [37]. Here the authors designed RT-Open Stack,
a cloud CPU resource management system for deploying real-time and non-
real-time virtual machines. Based on a real-time hypervisor (RT-Xen) and on
the Open Stack cloud infrastructure, it allows to execute both real-time and
non-real-time virtual machines in the same host.

The same authors of this paper presented a framework [8] that supports
heterogeneous sets of applications with different real-time characteristics by al-
lowing applications to declare timing requirements, in an agnostic fashion with
respect to the underlying available scheduling policies. This is in clear contrast
with the other solutions described above, which support either FP or EDF/CBS
scheduling or that require real-time applications to know which scheduling poli-
cies are provided by the underlying system and the relative parameters. In addi-
tion, this novel framework is entirely implemented in user space and requires no
modification to the underlying OS: it is composed by a simple daemon running
with root privileges and an application library that is used by real-time appli-
cations to interact with the daemon itself. The architecture of that framework
is inspired from a prior preliminary workshop paper [38] which, to the best of
our knowledge, was never actually implemented before.

This paper constitutes an extension of our prior work [8] just described
above. In this paper, we highlight the features of that framework that char-
acterize its portability across POSIX-compatible OSes and we introduce a new

7

Table 1: Comparison among real-time frameworks available for Linux.

Framework Multi-core Kernel Modification Portability Sched. Alg.

RT-Linux No Patch Linux FP
RTAI Yes Patch Linux FP-FIFO, RR, EDF
Xenomai Yes Patch Linux FP, RR
KURT Linux Yes Patch Linux FP (SRMS)
HSF-VxWorks No - VxWorks FP, EDF
HSF-FreeRTOS No - FreeRTOS FP
AQuoSA No Patch + Kernel module Linux CBS-EDF
Firm-RT No Patch Linux FP (SRMS)
LITMUSRT Yes Patch + Kernel module Linux Module dependent
Linux-SRT Yes Patch + Kernel module Linux FP
OCERA No Patch Linux CBS-EDF
FSF No - MaRTE, SHARK Plugin dependent
Hijack No Kernel module Linux FP-RR
ExSched Yes Kernel module Linux FP, EDF
ReTiF Yes Noa POSIXb Plugin dependent

a. For more details, refer to Section 3.4.

b. For more details, refer to Section 7.

access control mechanism that provides an additional level of security when
accessing the real-time features provided by this framework. With this new
extension, system administrators can now specify a set of constraints that can
be used to ensure certain properties for the system, especially when multiple
unprivileged users share the same machine.

Table 1 shows a recap of the main characteristics of each real-time frame-
work described in this section with respect to the proposed one, which is listed
as the last entry. In the table, the column “Requires System Modification” indi-
cates whether each framework requires the target system to be either patched
or to load custom kernel models, the “Multi-core” column indicates whether
each framework supports scheduling of tasks across multiple cores, while the
“Portability” column indicates whether each framework can be ported to other
operating systems with little to no modifications. The last column, “Scheduling
Algorithm”, shows the supported scheduling algorithms by the corresponding
work. For the sake of clarity, the algorithm names were abbreviated as follows:
FP for Fixed Priority, FP-FIFO for Fixed Priority with First-In-First-Out policy
for tasks with the same priority, FP-RR for Fixed Priority with Round-Robin
policy for tasks with the same priority, EDF for Earliest Deadline First, CBS-
EDF for Constant Bandwidth Server in conjunction with Earliest Deadline First,
and SRMS for Statistical Rate Monotonic Scheduling. Some of the listed works
can be extended with modules or plugins implementing additional scheduling
algorithms.

3. Real-Time Framework (ReTiF)

In this section we present Real-Time Framework (ReTiF), a software frame-
work that we realized to ease access to real-time scheduling policies on Linux in

8

a declarative fashion. The main focus of this project is to provide an abstraction
level to real-time applications that enables them to declare a set of real-time
task and their scheduling parameters. From these parameters, the framework
takes care of selecting the most proper scheduling technique and configuring the
actual scheduling parameters of the actual process/thread associated to each
task specification, by interacting with the underlying OS.

This tool aims to meet at user-space level the requirements posed by com-
plex real-time and multimedia applications by exposing a simple yet expressive
interface. ReTiF allows system administrators to let unprivileged users the ca-
pability to run applications with real-time constraints, without worrying about
the underlying features exposed by the OS; most of its implementation is entirely
OS-agnostic, relying solely on POSIX-compliant features. All non-standard in-
teractions between ReTiF and the underlying OS is limited to a set of plugins,
which can be chosen at deployment time. For this reason, the framework itself
does not require any modification of the underlying OS kernel, unless one of the
selected plugins explicitly requires certain features.

To accomplish these goals, ReTiF architecture is organized in two main com-
ponents: a shared library that applications can use to declare their requirements
and a daemon running with superuser privileges. In this design, the daemon
is the central authority that is in charge of managing all real-time applications
in the system; unprivileged processes will declare their real-time requirements
using the API exposed by the shared library and the daemon will set all their
scheduling parameters accordingly. To avoid unwanted consequences of unregu-
lated access to real-time features of the system from unprivileged users, ReTiF
also implements a flexible access control model that system administrators can
use to manage the amount of resources accessible to applications. More details
on this model are provided in Section 4.

The API exposed by the shared library is purposely designed to be inde-
pendent from the scheduling algorithms or policies that are used to meet the
demands of each application. The set of parameters that can be declared by
each application represents a set of typical parameters that characterizes simple
independent real-time applications. It will then be the role of the daemon to
select the proper scheduling policy to use to satisfy such requirements. ReTiF
defines an API that should be implemented by scheduling services, in the form
of plugins that will be loaded into the daemon application at deployment time.
System administrators can choose which set of plugins should be loaded and
what policies should be used to grant certain user/groups access to the individ-
ual plugins. Researchers and other developers can easily extend the functionality
of the framework, developing their own plugins, each exposing a different algo-
rithm or policy, all accessible with the generic user-space API. This approach
is particularly useful to maintain the portability of the framework, limiting all
special interactions with the underlying OS to each plugin.

Independently from the plugins loaded with the daemon at any time, appli-
cations can use the shared library to declare the parameters of real-time tasks
that they would like to run. For each request, the daemon will then respond
indicating whether or not it can be accepted by one of the plugins in the current

9

condition of the system. On acceptance, a single execution flow—i.e. a POSIX
process or thread—can be dynamically attached to the accepted specifications,
which only represents a set of accepted real-time parameters. After this op-
eration, the daemon instructs the selected plugin to set the actual scheduling
parameters of the attached execution flow accordingly; for example, the EDF
plugin (which relies on Linux SCHED_DEADLINE scheduler) will set up a CPU
reservation when a process is attached to one of its accepted specifications. A
rejected request can be re-submitted later after relaxing some of the real-time
parameters or after releasing some resources in the system, by terminating other
real-time applications.

Any process/thread managed by the framework can be dynamically de-
tached from the accepted scheduling parameters; after this operation another
process/thread can be attached to them or they can be released.

The real-time parameters that can be declared for each task are the following
ones:

1. a period T , expressed in microseconds, which usually corresponds to the
minimum inter-arrival period between consecutive task instances;

2. a runtime Q, in microseconds, which usually is equal to the worst-case
execution time of each task instance;

3. a relative deadline D, that defaults to the same value as the period T , if
specified;

4. a static priority P , in the range of standard real-time POSIX priorities.

The design principle that differentiates this framework from others shown
in Section 2 is the declarative approach to real-time parameters specification.
The way this framework is designed, applications can be implemented in a ag-
nostic fashion with respect to the scheduling algorithms (each implemented by
a different plugin) that may be available at runtime. For this reason, applica-
tions may declare from none to all of the real-time parameters described above
for each task. The framework will then automatically match each scheduling
request with the plugin that is the most suitable to handle the declared specifi-
cations. To achieve this goal, the daemon presents each request to each plugin
in an ordered fashion and expects them to respond whether they can handle
the request or some other plugin should. Each plugin uses a well-defined API
to inspect the parameters included in each request and chooses independently
from other plugins to either accept or reject the given request. For this reason,
different plugins may have different requirements—e.g. some parameters may be
mandatory, while others may be ignored—and they may even perform complex
admission control tests before choosing whether or not accepting the new task.
If at least one plugin accepts a request, the daemon chooses the most suitable
among the accepting plugins and the task is added to the list of tasks in the
current active task set. The requesting application can then bind the accepted
scheduling parameters to its process or one of its threads.

In general, plugins can admit or reject a task based on the list of parameters
included in each request. Since the admission policy may change from one plugin
to another, the daemon delegates this operation to each plugin, interrogating

10

each of them in a predetermined order to find the best plugin for each request.
The admission request can simply be based on the presence/absence of certain
parameters (e.g. period, static priority, etc.) or it may rely on more complex
tests that take into account the current condition of the system, as represented
by the tasks already accepted in the task set. In the latter situation, plugins
should check for necessary conditions only—i.e. whether accepting the new task
will inevitably lead the system into an unschedulable state. Tasks may specify
whether they want to bypass this admission control test upon task declaration,
accepting all the risks that may follow.

Accepted tasks can later change their parameters, if the change does not re-
sult in the disruption of any other accepted request. This operation is atomic—
i.e. multiple parameters can be changed atomically—and there is no guarantee
about which plugin will be used to schedule a task following a successful change
operation—meaning that on success a different plugin may be selected to sched-
ule the task. When a change request fails, the task will maintain the same
scheduling parameters and plugin that were previously assigned by the frame-
work. This operation can be used to dynamically request more computational
resources to the system or to release them when not needed anymore.

Finally, tasks may also declare optionally two different values as their worst
case execution time: in this case, Q is considered as the minimum runtime
requested by the task, while the second value, Qd will be a desired runtime
(higher than Q). In this situation, each plugin is free to accept the request
using any runtime in the range [Q,Qd], which will be called accepted runtime
Qa. Any task can query the user API to retrieve its own accepted runtime and it
can use the returned value to enable/disable optional paths in the execution flow
accordingly. To change the accepted runtime, a task can use another explicit
request, which will follow the rules described above for changing other scheduling
parameters.

3.1. Architecture Overview

ReTiF is composed by three main components that interact through well-
defined APIs: the ReTiF Daemon, the ReTiF Library, and the set of plugins
dynamically loaded on system initialization. Figure 1 shows the relationships
among these components. The most important is of course the central decision
authority of the system, represented by the ReTiF Daemon: this component
is in charge of coordinating all interactions among applications and scheduling
plugins loaded by the daemon itself. The ReTiF Library controls how each appli-
cation can send requests to the daemon using the API described in Section 3.2;
each request will then be forwarded to the daemon via a POSIX-compliant Inter
Process Communication (IPC) mechanism, namely a UNIX socket connection.
Figure 2 depicts the typical sequence of interactions between the user-process
and the various components of the ReTiF, in response to a rtf_spec_create

request.
Each dynamically loaded plugin represents one or more scheduling policies,

allowing the framework itself to be completely agnostic with respect to both

11

Directly schedules

RT application

ReTiF Daemon (privileged)

Real-Time Application (unprivileged)

Application Code

ReTiF Shared Library

ReTiF Daemon Interface

Scheduling

Plugin

Sends request via

Unix socket

OS Kernel

Scheduler
Scheduler

Scheduling

Plugin

…

…

Sets RT application

parameters

Chooses best plugin

Figure 1: Architectural overview of the framework and interaction scheme among main frame-
work components.

the scheduling model associated with each algorithm and the underlying im-
plementation of the algorithm. In general, each plugin is supposed to analyze
the current task set and check whether accepting the incoming request (which
can ask to either include a new task or change the scheduling parameters of an
already accepted request). Plugins are free to implement any admission crite-
rion: acceptance can depend only on the presence/absence of certain scheduling
parameters or on complete schedulability analysis of the resulting system condi-
tion. If at least one plugin accepts the incoming change, the request is successful
and the priority which best fits the request criteria will be assigned in charge
for the task. This choice is made taking into account a priority list that can be
configured by system administrators that defines a total ordering among loaded
plugins.

3.2. ReTiF Library API

The ReTiF Library implements a well-defined API that applications can use
to leverage the real-time capabilities of the underlying OS through the ReTiF
framework. A description of the main functions exposed by the library is in-
cluded in Table 2. In addition to those functions, the library provides a set of

12

loop

[for each scheduling plugin OR

until at least one plugin

replied OK]

create

accept

alt

[accept test failure]

[partial success]

[accept succeeds]

FAIL

PARTIAL

save plugin PARTIAL reply

OK

save plugin OK reply

alt

[no plugin replied

either OK OR PARTIAL]

[else] schedule

OK/ERR

OK/ERR

SCHEDULE_FAIL

: ReTiF Daemon

(privileged)

: Process with

ReTiF Shared Library

(unprivileged)

: Scheduling

Plugin

Figure 2: Sequence diagram of a typical rtf_spec_create request from a user process. For
simplicity, the scheme does not depict failing requests due to communication errors (timeout)
between the application library and the daemon and omits checks performed to test compliance
with the configured access control model.

13

Table 2: API exposed to real-time applications by the ReTiF Library.

Function Description

rtf_connect Establishes a connection to the ReTiF Daemon using
Unix domain sockets.

rtf_spec_create Creates a new task specification, specifying its parame-
ters and requesting the ReTiF Daemon for its acceptance
into the active task set.

rtf_spec_change Requests a new task admission test using new param-
eters for an existing task; in case of failure, the task
maintains its old parameters.

rtf_spec_release Releases a task specification, freeing its resources and
detaching the attached process/thread, if any.

rtf_spec_attach Attaches a POSIX process/thread id to an accepted task
specification.

rtf_spec_detach Detaches the POSIX process/thread assigned to a task
specification; from this point onward, the specified pro-
cess/thread no longer runs with real-time priority and
the same task specification can be re-assigned to another
process/thread.

functions useful to interrogate the daemon and to implement a periodic task in
C.

Each application must connect to the daemon using the rtf_connect function
exposed by the ReTiF Library before submitting the first request. Then the
connection is kept open for further requests.

The library provides an opaque data type called rtf_params that applica-
tions will fill with the scheduling parameters that they want to include in a
new request using the functions described in Table 3. Once done filling the
rtf_params object with the declared parameters, a new task admission request
can be submitted to the ReTiF Daemon by executing

rtf_result_t result = rtf_spec_create(spec_ptr, params_ptr);

where spec_ptr is a pointer to a rtf_spec object, which is an opaque type that
represents a real-time task specification, and params_ptr points to the just-filled
parameters object.

The result of this function can be either RTF_OK on success, RTF_SCHEDULER_FAIL
if is not possible to guarantee provided parameters or RTF_ACL_FAIL if the given
request cannot be authorized. If a desired runtime Qd was supplied with the
parameters in the request, the application can query the daemon by calling

acc_runtime = rtf_spec_get_accepted_runtime(spec_ptr);

In case of failure, the request can be repeated after changing some of the parame-
ters or waiting for the system to get into a different working condition. Accepted

14

Table 3: Parameters that can be declared in each task specification. Getters and setters are
used to operate on rtf_params opaque data structures.

Parameter Symbol Unit Getter/Setter

Period T µs
rtf_params_get_period

rtf_params_set_period

Runtime Q µs
rtf_params_get_runtime

rtf_params_set_runtime

Desired Runtime Qd µs
rtf_params_get_des_runtime

rtf_params_set_des_runtime

Relative Deadline D µs
rtf_params_get_deadline

rtf_params_set_deadline

Priority P –
rtf_params_get_priority

rtf_params_set_priority

Desired Scheduling Plugin –
rtf_params_set_scheduler

rtf_params_get_scheduler

Ignore Admission Test – rtf_params_ignore_admission

specifications can later change their parameters using the rtf_spec_change func-
tion, which responds in the same way as the rtf_spec_create does.

The list of mandatory/optional parameters is entirely dependent on the list
of plugins loaded at runtime by the daemon and to the policy that applies to
the current user of the application (see Section 4). Usually, the choice of the
best plugin that will be selected to handle a task is made inspecting the list of
supplied parameters and the limitations in the access control policy. However,
applications can indicate when a specific plugin shall be used to schedule a
specific task. In that case, only the requested plugin will be interrogated for
task admission.

Each accepted task specification can be associated with an execution flow
using the rtf_spec_attach call. On successful completion of this call, the user
application is ensured that the process or thread identified by the supplied
ID will be scheduled according to the accepted scheduling parameters, hence
running as a real-time task. To accomplish this goal, the daemon will forward
the attached request to the previously selected plugin for that task, which will
interact with the underlying OS and set the scheduling policy of the given
process/thread accordingly.

Listing 1 shows the body of a sample process that uses the ReTiF Library
API to set its own scheduling parameters and run as a periodic task. The
code shows also how some utility functions provided by the library to ease the
implementation of periodic tasks on POSIX systems, when a period parameter
is declared by the application. In particular, the rtf_task_start call marks
the beginning of the first period of execution for the real-time task, while the
rtf_task_wait_period call can be repeatedly invoked to suspend task execution
waiting for the next activation point.

15

Listing 1: Body of a real-time process that uses the framework.

1 /* Task representation */

2 struct rtf_spec s = RTF_SPEC_INIT;

3

4 /* Task parameters */

5 struct rtf_params p = RTF_PARAM_INIT;

6

7 /* Connect to the daemon via a UNIX socket */

8 if (rtf_connect() == RTF_CONNECTION_ERR)

9 return; /* Unable to connect to the daemon. */

10

11 /* Set task parameters */

12 rtf_param_set_period(&p, T_PERIOD);

13 rtf_param_set_runtime(&p, T_RUNTIME);

14 rtf_param_set_des_runtime(&p, T_DES_RUNTIME);

15 rtf_param_set_deadline(&p, T_DEADLINE);

16

17 /* Test for admission */

18 int res = rtf_spec_create(&s, &p);

19

20 if (res == RTF_SCHEDULE_FAIL)

21 return; /* Admission failed, we can retry with different parameters */

22 else if (res == RTF_ACL_FAIL)

23 return; /* ACL check failed, not authorized */

24 else if (res == RTF_CONNECTION_ERR)

25 return; /* Communication failed */

26

27 /* res = RTF_OK */

28

29 /* On success we attach an execution flow to the task specification */

30 rtf_spec_attach(&s, getpid());

31

32 /* Signals that a task begins its execution */

33 rtf_task_start(&s);

34

35 while(!computation_ended()) {

36 /* Task runs mandatory actions */

37 mandatory_computation();

38

39 /* Enabling optional computation depending on the accepted runtime */

40 if (rtf_spec_get_accepted_runtime(&s) > T_RUNTIME)

41 optional_computation();

42

43 /* Suspend execution waiting for the next period */

44 rtf_task_wait_period(&s);

45 }

46

47 /* Cleanup */

48 rtf_spec_release(&s);

16

3.3. ReTiF Daemon

The ReTiF Daemon is the central component in charge of managing all
user requests and forwarding them in an orderly fashion to each plugin. It
also implements the security mechanisms described in Section 4 by inspecting
each request and taking the required actions in order to meet the access control
specification provided by the system administrator. Notice that the ReTiF
Daemon is OS agnostic and as such it does not interact with the underlying OS,
except for the POSIX-compliant mechanisms used for communication with the
ReTiF Library and security checks.

It is instead the role of each plugin to implement a scheduling policy on top
of the features exposed by the underlying OS. For this reason, some plugins may
be compatible with multiple systems, while others may require a specific OS or
even a certain OS module to be loaded on the target machine.

The list of all the plugins that shall be loaded by the daemon during its
initialization is provided by the system administrator via a simple configuration
file: the file lists all the names of the .so files to be loaded, each associated
with a custom name, a range of POSIX priorities that can be used by the
plugin and the CPU cores managed by the plugin (see Section 3.5). The custom
name associated with each line is used to load each plugin under different logical
names, each with a different access control policy associated. More details about
this mechanism are provied in Section 4.

Each plugin must implement the API illustrated in Section 3.4. Those func-
tions are called by the daemon to interrogate each plugin upon receiving a new
request from the library, for example when a new task specification is declared.
Each plugin analyzes the parameters associated with each request and responds
whether it is capable to satisfy those parameters entirely (RTF_OK), it can satisfy
the request even if some recommended parameters are missing (RTF_PARTIAL),
or it cannot satisfy the request at all (RTF_NO), either because some mandatory
parameters are missing or because some necessary admission test resulted in a
failure.

For each request, the daemon collects the responses of each plugin and selects
the one with the highest POSIX priority (specified by the system administration
via the configuration file, see Section 3.5) that replied RTF_OK; if no plugin is
found using this criterion, the daemon will proceed selecting the one with the
highest priority that replied RTF_PARTIAL. If all plugins replied RTF_NO, the
request is denied and no changes to current system configuration is applied.
Finally, a response is sent back to the requesting application.

3.4. ReTiF Plugins API

Each plugin implements a single real-time scheduling policy (which may cor-
respond to a specific real-time scheduling algorithm or multiple ones, depending
on the plugin implementation), which will leverage the real-time functionality
exposed by the underlying OS to schedule real-time tasks. To do so, each plugin
must implement the functions described in Table 4, which regulate the interac-
tions between the daemon and the plugin itself.

17

Table 4: Main functions belonging to the ReTiF Plugins API. Each of these functions is
invoked by the ReTiF Daemon to interact with each scheduling plugin.

Function Description

rtf_plg_accept The plugin is inquired to perform the admission test for a
new task using supplied parameters. Plugins may refuse
to schedule tasks if an admission test fails or if the given
specification misses key parameters to generate a feasible
schedule.

rtf_plg_change A new admission test for an already accepted task is
performed using a new set of parameters.

rtf_plg_schedule A task previously accepted (fully or partially) by the cur-
rent plugin is assigned to it. From this point onward, the
plugin is the manager of the task scheduling parameters.

rtf_plg_release The specified task is no longer assigned to the current
plugin. It may have left the task set or it may have been
moved to another plugin after a change request.

rtf_plg_attach Instructs the plugin to set the scheduling parameters
of the given process/thread to match the corresponding
task specification (which must be managed by the same
plugin).

rtf_plg_detach Instructs the plugin to demote the given process/thread
to non real-time scheduling and cancel the association
between the process/thread and its task specification.

In particular, each plugin should implement the admission test for each re-
quest in the two functions rtf_plg_accept and rtf_plg_change. This test, if
present, should either be based on the simple check of the supplied parameters
(e.g. checking that all mandatory parameters are present) or it can perform a
necessary schedulability test that takes into account the current condition of
the system.

If a plugin is selected to schedule a task after a successful request, the dae-
mon will signal the selected plugin using the rtf_plg_schedule function. At
that point, if the specification is already associated with an existing execution
flow, the plugin proceeds to assign the actual real-time scheduling parameters
to it. If no thread is associated with the assigned task specification, this oper-
ation is delayed until the daemon invokes rtf_plg_attach with the same task
specification. The selected parameters will be in effect until either the request
is assigned to another plugin after a successful change of its parameters or it is
removed from the task set by the client.

Each plugin is implemented as a dynamic-link library that implements at
least the set of functions shown in Table 4 and it is distributed as a .so file
that will be loaded by the ReTiF Daemon during system initialization phase.
While each plugin operates at user-space level, some of them may require cer-

18

Listing 2: Example of an ReTiF Daemon configuration file.

1 # Name Plugin Priority Cores

2 EDF EDF.so 100-100 0

3 RM1 RM.so 50-99 1,2

4 RR RR.so 1-50 1,2

5 RM2 RM.so 1-99 3,4

6 FP FP.so 1-99 5-7

tain features provided only by certain OSes or by specific kernel modules. This
design choice allows us to disentangle the ReTiF Daemon from the underlying
OS kernel implementation as much as possible, relegating all OS-specific code to
dynamically loaded plugins. For example, among the plugins described in Sec-
tion 5, the EDF plugin is Linux specific—it relies on SCHED_DEADLINE—while
the others use standard POSIX schedulers (like SCHED_FIFO or SCHED_RR)
and real-time priorities. In case a specific kernel module is needed, the plugin
can load it during its initialization phase. If some plugin detects that some
mandatory features of the underlying kernel are missing, it can abort the whole
initialization of the system and an error is returned to the user; the system ad-
ministrator shall then either change the daemon configuration file or check that
the requirements of each selected plugin can be met before starting it again.

3.5. ReTiF Daemon Configuration

The daemon reads a configuration file on startup to determine the list of
plugins that shall be loaded during startup. The format of this file is similar
to the one shown in Listing 2: each line specifies a name for the plugin to be
loaded, the .so file containing the plugin implementation, a range of POSIX
real-time priorities associated with the plugin, and the list of CPUs that the
plugin can use to schedule tasks assigned to it6. Each plugin file may be loaded
multiple times under different name and parameters: this is particularly useful
to specify different access control policies for different instances of the same
plugin, as described in Section 4.

When dispatching client requests to the plugins, the ReTiF Daemon will
assign each plugin a priority based on the order in which they are specified in
the configuration file.

4. Access Control Model

On embedded or dedicated real-time systems, typical applications run under
strict timing requirements, and, often, their timing behavior is entirely under

6It must be noted however that task allocation to CPUs depends on the implementation
of each plugin.

19

control of the system designer. Therefore, it is commonplace to run these appli-
cations with a high privilege level on the OS. On the other hand, this is not the
case for general-purpose systems. Indeed, on GPOSes users may have the abil-
ity to install custom applications or libraries and run them at will, albeit with
limited privileges. Using an expressive access control model, system designers
can regain control of the available resources on general purpose environments.

In this section, we present a novel access-control model developed for ReTiF.
The purpose of this model is to provide system designers with proper tools
to regulate access to the real-time features available through the framework,
which is especially useful when the host is shared by multiple applications or
even multiple users. The interactions with the framework are regulated, at first,
through the normal users/groups assignment in the OS, and the permissions
associated to access the daemon IPC entry point. However, without a proper
access-control mechanism, unprivileged users might leverage the framework to
take control of more resources than they should, sending a simple request to the
ReTiF Daemon.

4.1. Security Requirements for the Framework

The access control model that we identified for ReTiF should satisfy at least
the following requirements:

1. Explicit consent: The framework shall expose access for unprivileged
users to the kernel real-time scheduling features after an explicit grant from
the system administrator. Access to these resources should be regulated
by identifying the individual users or groups that can access these features
altogether on daemon start-up time.

2. Parameter bounds: System administrators shall be able to specify ap-
propriate user-specific bounds for each parameter that may be included
in a request for the framework; this feature can be used to ensure that
no user may over-allocate resources and consequently prevent others to
access those resources.

3. Ownership control: Requests sent by a specific process should not tar-
get a task that does not belong to the same user (except for requests
made by the system administrator who can change scheduling parame-
ters without restrictions); this applies in particular to requests for attach-
ing/detaching threads and for changing or releasing accepted scheduling
parameters.

4. Rules administration: Administration of the access-control configura-
tion should be allowed only to the system administrator.

In the following, we illustrate the security model that we devised and show
how this model can effectively protect against unintended or malicious uses of
the proposed framework.

4.2. Access Control Specification and Model

Here we identify the set of rules that characterize our access control model, in
order to satisfy the aforementioned requirements. System designers can enforce

20

certain policies by specifying a subset of these rules in a configuration file (see
Section 4.4), which is parsed and interpreted by the ReTiF Daemon during
system initialization.

Each rule in our model may target the entirety of the system, a single user, a
group of users, or any entity that may use a specific plugin. In what follows, we
will refer to a domain ∆ to identify the owner of the application that originates
a scheduling request to the framework. In general, a domain can correspond to
the global domain, which includes any application on the system, a user, or a
group. To identify each instance of a plugin loaded in the system Φ, for which
multiple instances may be loaded at the same time, the name supplied as first
parameter in the ReTiF Daemon configuration file will be used (see Section 3.5).

Given a rule Ri, we identify the subject σi of that rule with the pair (∆i,Φi),
where ∆i is a domain and Φi is an instance of a scheduling plugin. If the latter
is omitted, then the rule applies to any request originated from the domain. We
also identify the target of each rule ti as a pair (Li, Vi), where Li is an access
control property and Vi is the corresponding value.

Each access control property may impose a limit to the possible values that
can be supplied for a parameter in the scheduling request or it may refer to
aggregate values kept by the ReTiF Daemon as more resources are allocated
for each real-time task. Each aggregate value is kept with respect to the corre-
sponding subject σi. The access control properties defined to enable access to
the features exposed by the framework are the following:

i. Maximum aggregate utilization Umax
i limits the maximum total uti-

lization that may be requested for all tasks matching a given subject σi (i.e.,
a pair of domain and plugin). If not limited, any subject could potentially
seize all available resources, leaving other subjects on the same system un-
able to run their own applications. For the definition of the utilization of
each task, see Section 5.1.

ii. Maximum runtime Qmax
i limits the maximum runtime that can be as-

signed to each task. This rule prevents any subject from running high-
priority applications that introduce long starvation periods on the system,
preempting low-priority applications from running for extended periods of
time.

iii. Maximum period Tmax
i limits the maximum period that can be specified

for each task. Long periods enable applications to access longer runtimes
even while maintaining low system utilization. Hence this rule, combined
with the limit on the maximum runtime, is essential to avoid long starvation
periods in the system.

iv. Minimum period Tmin
i limits the minimum period that can be speci-

fied for each task. Running tasks with very small activation periods would
introduce a lot of overhead on the system, which has to deal with many
task activations. Some plugins for soft real-time systems may also con-
sider scheduling and other system overheads negligible; introducing lots of
overhead would break this assumption.

21

v. Minimum deadline Dmin
i limits the minimum deadline that can be speci-

fied for each task. Specifying very small relative deadlines is typically equiv-
alent to indicating that a task has a very high priority (for deadline-based
scheduling algorithms, like EDF). Tasks like this prevent tasks declaring
longer deadlines from being accepted into the system if not kept in check.

vi. Maximum deadline Dmax
i limits the maximum deadline that can be spec-

ified for each task. This limit has been added for completeness.
vii. Maximum priority Pmax

i limits the maximum POSIX priority that can
be specified for each task. This can be used to separate the set of priorities
accessible by different subjects, de facto limiting the degree of privilege each
subject may have access to.

viii. Minimum priority Pmin
i limits the minimum POSIX priority that can be

specified for each task. This is to be used in combination with the previous
rule.

ix. Ignore admission test Ii is a boolean flag that indicates whether tasks
from a subject can use the namesake parameter upon task creation/param-
eters change request to skip any admission test. This permission can be
used to grant specific subjects a better degree of freedom, and it is intended
to be used in special cases in which certain tasks may be okay with missing
some deadlines from time to time. However, this rule should be handled
with care, as it grants subjects the capability to introduce in an otherwise
schedulable task set tasks that may bring the system in a non-schedulable
condition.

4.3. Enforcing Security Policies

The framework enforces the model’s application described above throughout
all the different types of requests that might arrive at the daemon. For each
type of request, different actions may take place.

In general, the framework applies a default deny all rule, which automatically
rejects any request if no matching rules are found. By specifying rules using
the mechanism in Section 4.4, system administrators can specify which actions
are allowed (within the given limits). Note that it is not directly possible to
specify an allow-all rule, albeit using multiple rules virtually any behavior can
be enabled.

Upon receiving a new request from a specific user application, the daemon
will identify the rules that may apply to that request by inspecting the do-
main corresponding to the application that generated the request: rules that
target the global domain will be applied to any request; any rule that specifies
as domain the effective user or the effective group associated with the origi-
nating application will also apply. In the implementation of the access control
mechanism, the effective user and effective group are identified by retrieving the
effective user ID (EUID) and the effective group ID (EGID) respectively from
the process ID (PID) of the requesting application.

Rules that do not specify any plugin (i.e. that apply for any plugin) are
checked immediately, while the others are checked only if the corresponding

22

plugin should be interrogated to handle the current request. Notice that when
multiple rules may apply, all rules should be satisfied for a request to pass, i.e.
the resulting policy is obtained by intersection between active rules. For the sake
of clarity, consider a situation in which there are two rules: the first one specifies
that user u1 cannot declare task specifications with a total utilization greater
than 0.5 (for any plugin), while the second one specifies that the maximum
cumulative utilization available for the plugin p1 plugin should not be greater
than 0.3 (for any user/group); in that case, tasks of user u1 assigned to plugin
p1 cannot exceed 0.3 utilization.

To achieve requirement 3, requests originated from a certain application will
be rejected if they target tasks having a different EUID. With this mechanism
in place, applications cannot attach scheduling rules to processes or threads
associated to other users, which would result in a vulnerability of the system.

Rules are enforced both upon receiving requests to create new tasks or when
a request to change the parameters of an already accepted task specification
is issued. In the latter case, the limits imposed on the parameters follow the
same rules applied in the creation phase and the modification is accepted if the
resulting condition of the system after the change satisfies all the active rules
for that request.

4.4. Configuring Access Control Policies

To specify the set of rules that shall be enforced by the daemon at runtime,
the system administrator can edit an access control configuration file, which is
parsed by the ReTiF Daemon upon initialization, right after its general config-
uration file.

Listing 3 shows an example of this access control configuration file. Its
structure resembles a whitelist, with each rule specified on a separate line, with
a syntax inspired to the limits.conf system-wide configuration file on Linux.
The syntax of each rule is composed of four columns, where the first two columns
are used to identify the subject of the rule σ and the last two columns specify
the target t.

The Domain field accepts as valid value either a username, a group name
(distinguished from a username using a @ character at the beginning), or the
wildcard value '-', to identify the global domain. The Plugin-name field is either
a plugin name, which must correspond to the name of one of the plugins included
in the ReTiF Daemon general configuration file, or the wildcard value '-', to
specify that the rule applies to any plugin. Finally, Table 5 shows the accepted
keys for the Property field, alongside the unit or range that is used to specify
the corresponding Value field.

5. Implementation and Plugins Suite

ReTiF implementation reflects the overall architecture described in Sec-
tion 3.1. Currently, the implementation of the ReTiF Daemon partially supports

23

Table 5: List of access control properties L and respective keys used in the access control
configuration file.

Property L Symbol
Unit or
Range

Key

Maximum Aggregate Utilization Umax > 0.0 † max_utilization

Maximum Runtime Qmax µs max_runtime

Minimum Period Tmin µs min_period

Maximum Period Tmax µs max_period

Minimum Deadline Dmin µs min_deadline

Maximum Deadline Dmax µs max_deadline

Minimum Priority Pmin [1 .. 100]* min_priority

Maximum Priority Pmax [1 .. 100]* max_priority

Ignore Admission Test I true/false ignore_adm_test

† Uses floating precision, accepts any value greater than zero, where each unit corresponds
to a fully utilized core (e.g. 1.0 is one fully utilized core, 2.0 two full cores, etc.).
* Actual range depends on the number of priorities supported by the target platform, as
advertised by sched_get_priority_min/max POSIX functions.

Listing 3: Example of access control configuration file.

1 # Domain Plugin-name Property Value

2 # Limit the aggregate utilization of user1 on EDF to 70%

3 user1 EDF max_utilization 0.7

4 # Limit the CDROM group task period using any plugin to 9 ms

5 @cdrom - max_period 9000

the access control mechanism described in Section 4. The software is freely avail-
able on GitHub, under a GPLv3 license, at: https://github.com/gabriserra/

retif.
This section summarizes the characteristics of a suite of plugins that we pro-

vide alongside the framework to both test the functionality of our implementa-
tion and to provide access to common real-time features. Table 6 summarizes
the task parameters supported by each plugin included in the suite.

5.1. EDF Plugin

This Linux-specific plugin provides an implementation of the Earliest Dead-
line First (EDF) scheduling algorithm, which is well known to be optimum for
single processor systems [39], on top of the SCHED_DEADLINE scheduling class.

In particular, this implementation provides a fully partitioned version of
EDF that employes a worst-fit task allocation strategy among the CPU cores
specified via the ReTiF Daemon configuration file. SCHED_DEADLINE is an
implementation of EDF that is offered by the Linux mainline kernel since ver-
sion 3.14 [40] based on CPU reservations implemented through a variant of the

24

Constant Bandwidth Server (CBS) [7]; each task (represented by a single exe-
cution flow) is assigned its own reservation to be run into, based on its runtime
Q and period T . The scheduler then uses the optional deadline parameter D to
apply the CBS/EDF scheduling strategy among the reservations related to this
scheduling class.

The plugin performs a simple task specification admission test based on the
total utilization registered for each CPU. The utilization of each task τi is defined
by the following ratio

Ui =
Qi

min{Ti, Di}
(1)

Since each task can only be assigned to one core, each new scheduling request
is allocated to the least loaded core. Given a core k and the set of all tasks
assigned to that core Γk, the load of the core is identified by the sum of the
tasks’ utilizations belonging to Γk

Uk =
∑

τi∈Γk

Ui =
∑

τi∈Γk

Qi

min{Ti, Di}
(2)

Once the CPU is selected, a new task is accepted if the admission of the new
task into the current task set does not lead the system to an overload condition,
that is if the load of the selected core after the inclusion of the new task is still
less than or equal to a threshold U thr ≤ 1. This test is a sufficient schedulability
test for partitioned EDF [39]; hence, given the least loaded core k, this plugin
accepts a new task τj to be scheduled if the following condition holds true:

Uk +
Qj

min{Tj , Dj}
≤ U thr (3)

If this condition is satisfied, the request is accepted and assigned to the least
loaded core k̄, otherwise it is rejected.

Notice that U thr can be customized and also notice that admission for tasks
that declare runtime and period is subject to other checks to ensure that all
access control policies are always met. For these reasons, the current imple-
mentation of this plugin disables the in-kernel necessary test performed by
SCHED_DEADLINE for Global EDF7. On task specification admission, the plu-
gin sets all scheduling parameters and CPU affinity of the associated process
modifying the CPU affinity mask using the sched_setaffinity system call.

If a desired runtime Qd
j is also specified for the task, then the task is assigned

an accepted runtime Qa
j ∈ [Qj , Q

d
j] that is the highest value possible given the

current load of the system that does not break the acceptance condition:

Qa
j = min(max(Qj , Q

d
j), (U

thr − Uk̄) ·min{Tj , Dj}) (4)

Users may also request this plugin to ignore task admission check on failure:
in this condition, tasks accepted in spite of a failing test receive an accepted
runtime always equal to their minimum runtime Qj .

7Writing −1 to /proc/sys/kernel/sched_rt_runtime_us.

25

Table 6: List of plugins provided with the framework and relative parameters.

Parameter
Plugins

EDF RM RR FP

Period T X X – –
Runtime Q X † – –
Desired Runtime Qd ◦ – – –
Relative Deadline D ◦ ◦ – –
Priority P – – X X

X Mandatory
† Recommended, but not mandatory
◦ Optional, default value is used if not supplied
– Unused

5.2. RM Plugin

This plugin implements the Rate Monotonic (RM) scheduling algorithm,
which is well known to be optimum for single processor systems among fixed
priority (FP) scheduling strategies [39]. This particular implementation provides
a fully partitioned version of RM that uses a worst-fit task allocation strategy
on top of the POSIX SCHED_FIFO scheduling policy.

As shown in Table 6, the only parameter that is mandatory for this plugin is
the task period T . Since tasks may not declare their expected runtime Q and still
be admitted by this plugin, a proper admission test based on the schedulability
of the system cannot be provided for all tasks. The strategy that we adopted
is to apply a necessary-only single-CPU FP utilization test for all tasks that
declare both their runtime and period parameters. In the future, this plugin
might have an option to enable a sufficient test for RM.

Upon receiving a new request that includes both parameters, the least loaded
core k is selected as the potential core to schedule the new task, using a worst-fit
allocation strategy. Given the set of tasks assigned to that core Γk, this plugin
assigns each task a priority that is inversely proportional to their period:

Pi ∝ 1/Ti ∀ i ∈ Γk (5)

The calculated priority for each task Pi, which is within the range of POSIX
priorities assigned to this plugin via the ReTiF Daemon configuration file, is
then used to schedule tasks using SCHED_FIFO.

5.3. RR and FP Plugins

The Round Robin (RR) and fixed priority (FP) plugins serve as wrappers,
exposing underlying POSIX functionality to applications that rely on ReTiF to
access real-time features. They respectively provide access to SCHED_RR and
SCHED_FIFO scheduling policies and as such their only required parameter is
the desired priority P .

26

Since no proper schedulability analysis can be perfomed with only that pa-
rameter, neither plugin performs any check upon receiving a new request, check-
ing only the presence/absence of the priority parameter. Both plugins apply a
worst-fit task allocation strategy, in this case resulting in each new task to be
assigned to the CPU core with the minimum number of assigned tasks.

The priority requested via the ReTiF Library API may differ from the one
actually used by either of these plugins to schedule a task; this happens when
the range of priorities that each plugin may select (specified via the ReTiF
Daemon configuration file) differs from the normal range of POSIX priorities.
In this situation, each plugin attempts to maintain the ordering of the distinct
priorities that have been requested for each real-time task when assigning actual
POSIX priorities.

Given a core k and the set of all distinct priorities requested for that core
Πk, the resulting ordering among tasks once actual POSIX priorities have been
selected reflects the one specified in input (i.e. total ordering among tasks is
mantained) if

| Πk | ≤ Rk (6)

where Rk is the number of distinct priorities available on CPU k for that plugin.
When this condition is not satisfied (i.e. if the destination range is smaller

than the number of distinct priorities requested on that core), some tasks may
receive the same priority even if they originally requested two distinct ones. In
future versions of this plugin, we might introduce an option that forces reject
of the request in such a case.

6. Performance Evaluation

This section presents results of our experiments involving ReTiF, with the
goal of measuring the overheads that it introduces on real-time applications.

Overheads introduced by ReTiF typically depend on two factors that sum
up for each operation requested by the application. The first one is the commu-
nication cost between the real-time application and the ReTiF Daemon through
the IPC mechanism used (Unix sockets); this cost is the same for all kinds of
requests and is independent from the plugin selected to serve it. The second
cost depends on the kind of request performed and on the implementation of
each plugin loaded by the ReTiF Daemon.

Note that applications have to pay these overheads only when directly send-
ing requests to the ReTiF Daemon, to declare new tasks or to request changes
to the accepted ones. The cost of scheduling these real-time applications once
accepted is no different than the one of running them directly with the underly-
ing OS, because that is what each plugin does: configure the system scheduler to
manage each application. Hence, no overheads are to be expected in the critical
loops of real-time applications with respect to implementations not leveraging
ReTiF.

27

Table 7: Characteristics of the two reference platforms used in experiments.

Reference Machine Intel ARM

Server Model Dell PowerEdge R630 Gigabyte R150-T62
CPUs Two Intel® Xeon E5-2640 v4 Two Marvell® ThunderX® CN8890

Total Number of Cores 20 96
RAM 64GB 64GB

Distribution Ubuntu 18.04.5 LTS Ubuntu 20.04.2 LTS
Kernel Version 4.15.0 5.8.0

6.1. Experiments Setup

We performed experiments on two reference server platforms, an Intel and
an ARM-based one, varying different parameters and requests to check how
these changes affect the cost of each request in ReTiF’s user API. Table 7
summarizes the characteristics of each reference platform. During experiments,
hyperthreading, CPU frequency scaling, and Turbo Boost were disabled to max-
imize reproducibility of the results, fixing CPU clock speed of both reference
platforms to 2GHz. For these tests, we did not provide any ACL rule to the
framework, de facto disabling access control mechanisms in the ReTiF Daemon.

The application used during these benchmark is a single-threaded process
that performs multiple requests to the ReTiF Daemon, each request adding
one new task to the active taskset. The application and the ReTiF Daemon are
configured to run with highest POSIX real-time priority (99) pinned on separate
cores, to avoid interferences from other applications. Finally, on both platforms
we used the Time Stamp Counter (TSC) register to measure time differences to
maximize the precision of our measurements.

Tests were executed by configuring the ReTiF Daemon to load only one
plugin at a time, using either EDF, RM, or RR/FP plugins (the last two share
the same underlying implementation). As shown in Figure 2, the ReTiF Daemon
iterates through all the plugins configured when handling rtf_spec_create or
rtf_spec_change requests; in scenarios in which multiple instances of plugins
are configured, expected overheads should be higher. For each plugin, we varied
the number of CPU cores managed by the plugin from 1 to 20 and the number
of tasks already present in the taskset before starting a new request from 0 to
1024. Tasksets are randomly generated (including task parameters) and for each
possible configuration 500 different experiment runs were performed, to ensure
reproducibility of obtained results.

Notice that in more realistic use case scenarios there would be multiple ap-
plications performing requests concurrently to the ReTiF Daemon, which is
implemented for simplicity as a single process. This means that some appli-
cations may experience higher overheads depending on the size of the requests
queue of the ReTiF Daemon (which in our reference scenario is always empty
whenever a new request arrives). All operations handled by the ReTiF Daemon
are typically performed outside critical loops (since no scheduling decision is
taken by the ReTiF Daemon itself or any of its plugins), and most of them are

28

performed only during initialization (to declare task specifications and attach
POSIX threads/processes to them) or cleanup phases (to release allocated re-
sources). Only one request (rtf_spec_change) does not fit in any of these two
categories. Real-time tasks that plan to request repeatedly changes to their
scheduling parameters should be prepared to handle the overhead of this oper-
ation if included in their critical loops.

6.2. Declaring New Tasks

We first performed a number of experiments involving the rtf_spec_create

or rtf_spec_change requests, which declares a new task specification. The main
goal of this test is to measure how much time it takes from an application
point of view to perform the task admission test, depending on the system
configuration and plugin selected. To do so, we measure the time needed to
perform a rtf_spec_create request when varying the system configuration and
number of tasks in the active taskset as described above. The benchmarking
application performs only task specification declarations, without attaching any
actual POSIX process/thread to accepted requests. For rtf_spec_change, the
cost is very similar and as such we did not include its corresponding results.

Experimental results for both reference platforms are shown in Figures 3
and 4, which show the time needed to perform each request depending on system
configuration. Results vary depending on the plugin implementation.

For the EDF plugin, the time needed to perform each request does not vary
with respect to the number of CPUs or the number of tasks already accepted,
because the admission test is a simple test based on the total utilization ac-
counted on each CPU, which is maintained across requests. The cost of this
call is barely higher than the communication overhead between the benchmark-
ing application and the ReTiF Daemon process via the Unix socket, which we
measured to be on average around 12 and 50 µs on the Intel and ARM reference
platform respectively in our testing configuration.

For the other plugins, results show that the time needed to respond each
request increases linearly with the number of tasks present in the taskset and
with the inverse of the number of CPUs available for the plugin to select from.
The linear dependency with the number of tasks in the taskset is easily ex-
plained: both plugins try to maintain a partial ordering among tasks based on
their priority, and in our implementations this is done by inserting tasks in an
ordered linked list. While the implementations of RM and RR/FP plugins are
very similar, the latter leverages more often an optimization that reduces the
time needed to assign a priority to a task when it requests the same priority of
another task already present in the taskset; this optimization is triggered more
often for the latter plugin, reducing the average time needed to resolve these
requests. The linear relationship with the inverse of the CPUs is also easily
explained: when there are more CPUs to choose from, the size of each linked
list maintained by the plugins is shorter, because tasks are distributed to the
various CPUs using a worst-fit allocation strategy.

29

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

RR Plugin

(a) EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

RR Plugin

(b) RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

15

20

25

30

35

40

RR Plugin

(c) RR/FP Plugin

Figure 3: rtf_spec_create latency de-
pending on system configuration on the
Intel reference platform at 2GHz.

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

RR Plugin

(a) EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

RR Plugin

(b) RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

EDF Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

RM Plugin

Number of Tasks 0
200

400
600

800
1000

Number of CPUs

0
5

10
15

20

La
te

nc
y

[
s]

60
80
100
120
140
160

180

RR Plugin

(c) RR/FP Plugin

Figure 4: rtf_spec_create latency de-
pending on system configuration on the
ARM reference platform at 2GHz.

30

rtf_spec_attach sched_setscheduler

5

10

15

20

25

30

La
te

nc
y

[
s]

(a) Intel

rtf_spec_attach sched_setscheduler

20

40

60

80

100

La
te

nc
y

[
s]

(b) ARM

Figure 5: Comparison between the latencies of rtf_spec_attach and sched_setscheduler on
the two reference platforms at 2GHz.

6.3. Configuring Scheduling Parameters

In this experiment, we compare the cost of performing a rtf_spec_attach

request with respect to calling directly sched_setscheduler from the real-time
application. The two calls are very similar, since in both cases the result is that
the POSIX thread/process given as argument will change its scheduling policy
to the selected one with the specified priority. In fact, all plugins described in
Section 5 use internally the POSIX sched_setscheduler to accomplish this goal.

Using ReTiF, there is the additional cost due to communication overhead
and some checks performed by the ReTiF Daemon and the plugin that has
been selected to manage the requesting task. Figure 5 shows the overheads
measured on our two reference platforms for both functions. Implementation of
the rtf_spec_attach does not depend on the number of tasks included in the
system nor on the number of CPUs managed by each plugin, hence for simplicity
we show only the distribution of measured values. All plugins in Section 5 imple-
ment this operation in a similar fashion and thus there is virtually no difference
in cost depending on which plugin is managing the request. As expected, calling
rtf_spec_attach takes considerably more time than performing the direct sys-
tem call; we deem this an acceptable cost to exploit the functions provided by
ReTiF, like unprivileged and controlled access to real-time scheduling features
of the underlying platform.

7. Known Limitations

ReTiF effectively provides safe access to real-time scheduling features for
unprivileged tasks on a set of OSes and platforms. It is not perfect though and
some aspects of its architectural design and implementation lead to some limita-
tions when it comes to cross-platform compatibility. This section illustrates all

31

known limitations of the framework, how we plan to overcome them and what
kind of impact they have on the applications that rely on ReTiF.

7.1. POSIX Compliance

We emphasized multiple times that the presented framework is intended to
be used on generic (mostly) POSIX-compliant OSes. This includes not only
Linux, but other OSes such as macOS-X, FreeBSD8, Solaris, or others. That
said, some aspects of the POSIX specification for real-time features of compliant
OSes impose some limits on the effectiveness of ReTiF.

As discussed in Section 3.4, the core design principle of the framework distin-
guishes between its core components (represented by the ReTiF Daemon and its
corresponding shared library), and the scheduling plugins. Core components are
implemented using only portable POSIX features, while plugins encompass all
OS-specific and non-portable features of the system, interacting directly with
the user-space API of available schedulers. Among the plugins presented in
Section 5, most of them are portable components, since they provide access to
POSIX-defined schedulers such as SCHED_FIFO and SCHED_RR; in this sense,
only the EDF plugin is Linux-specific, since it leverages SCHED_DEADLINE.

That said, there is one key element of the POSIX specification that crit-
ically changes the behavior of each of the plugins when running on different
OSes. Each plugin implementation leverages the sched_setscheduler system
call, which is used to assign scheduler and scheduling parameters of real-time
tasks once an execution flow is attached to a task specification. Per original
POSIX specification, this call accepts a PID and as such it can be used only to
change the parameters of a whole process9. On the other hand, Linux is not en-
tirely compliant with this specification and it accepts a thread ID (TID) as first
parameter10, easily obtainable using the gettid system call11. Leveraging this
feature, ReTiF plugins can set the scheduling properties of individual threads,
rather than processes, of unprivileged applications on Linux (and in general in
systems which provide a similar behavior).

Strictly POSIX systems however do not have this capability. Even systems
which implement POSIX threads using a 1:1 threading model like Linux (i.e.
each thread corresponds to a single task_struct from the kernel point of view)
may not expose TIDs to user-space and may not accept them as parameters
for sched_setscheduler, since neither of these features are part of the POSIX
specification. To set the scheduling properties of a single thread, POSIX pro-

8For more info see https://people.freebsd.org/~schweikh/posix-utilities.
html

9For more info see https://pubs.opengroup.org/onlinepubs/9699919799/
functions/sched_setscheduler.html

10For more info see https://man7.org/linux/man-pages/man2/sched_
setscheduler.2.html

11In the case a PID is used, on Linux only the parameters of the main application thread
are changed, and not the parameters of the whole process, since PID and TID of the main
thread coincide.

32

vides the pthread_setschedparam function as the only option, which can only be
called from the context of the process which the thread belongs to12.

Per ReTiF design, an external privileged process (the daemon) is the only
one capable of interacting with OS schedulers. In this condition, if an individual
POSIX thread must be scheduled, there must be a way for an external process
to access its thread ID and to use it to change its scheduling parameters. If
that is not the case, then for that particular OS only scheduling properties for
entire processes can be managed by ReTiF, while real-time threads cannot be
used. For example, FreeBSD, which provides TIDs (albeit with a different API
call), does not allow them as argument of sched_setscheduler, and as such only
real-time process scheduling can be achieved with ReTiF on FreeBSD13.

We understand that this represents a major limitation to the portability of
applications relying on ReTiF to access real-time features, which should stick
with multi-processes rather than multi-threading if cross-OS portability is de-
sired, and we plan to investigate in the future other techniques to enable un-
privileged multi-threaded real-time scheduling in the future, perhaps with the
help of other non-standard OS schedulers.

7.2. Plugins Coexistence

The most straightforward way of configuring a system using ReTiF is to
assign a separate set of CPUs to each plugin that are managed independently
from the others. This way, each plugin can maintain a separate accounting of
the resources already in use in the system without the need for caring about
what other plugins may have already assigned. This imposes a limitation on
the flexibility of the managed systems; while there is no rule in place to prevent
allocating the same CPU cores (or even partially overlapping subsets of the
CPUs on the system) to multiple plugins, the resulting behavior may not provide
the desired level of guarantees with respect to hard partitioning of CPUs to
plugins. For example, the RR/FP plugins do not implement any check on the
tasks they manage and as such the coexistence of these plugins with others that
do implement some checks may compromise the guarantees provided to user
applications if not configured wisely.

We plan to investigate these situations in the future to devise some mecha-
nism that will either prevent these situations or mitigate their effects to some
degree. For now, while we do not explicitly forbid the overlap of CPU sets for
different plugins, we strongly advise against it. Indeed, the daemon issues a
warning if it detects partially overlapping CPU sets of the configured plugins
on start.

12For more info see https://pubs.opengroup.org/onlinepubs/9699919799/
functions/pthread_setschedparam.html

13For more info see https://www.freebsd.org/cgi/man.cgi?query=sched_
setscheduler&sektion=2&manpath=FreeBSD+13.0-current

33

7.3. Partitioned Scheduling Only

As of now, ReTiF supports partitioned scheduling algorithms only via the
implementations of the plugins described in Section 5. Support for other task al-
location strategies like global, clustered, or even semi-partitioned scheduling may
be introduced in the future with additional plugins. If each plugin is assigned
a non-overlapping set of CPUs, multiple scheduling domains may leverage not
only different scheduling algorithms, but also different task allocation strate-
gies to CPUs, provided that the underlying OS implements these allocation
strategies in one of its real-time schedulers in the first place. For example,
the Linux SCHED_DEADLINE scheduler (leveraged by our EDF plugin) imple-
ments global scheduling and it can also be configured via cgroups to operate on
non-overlapping scheduling domains independently14. A future implementation
of another EDF-based plugin may leverage these features to implement global
scheduling on a subset of the CPUs on the system.

7.4. Support for More Complex Scheduling Algorithms and Task Models

As it is now, ReTiF supports a simplified task model that does not take
into account valuable aspects that characterize complex real-time systems, e.g.,
blocking times, task offsets, possible task dependencies, and others. We plan
to introduce support to a broader set of (optional) declarative parameters in
future revisions of the framework, providing plugin developers additional tools
to perform more thorough evaluations of taskset schedulability on task arrival.

In addition, we plan to develop new plugins that may leverage other frame-
works mentioned in Section 2 that operate at a lower level to provide access to
a broader set of schedulers and policies, for example by supporting LITMUSRT.
This way, user-space applications may leverage our simple and unified API to
test their behavior under different schedulers, even those that are not part of
the mainline version of the operating system kernel.

7.5. Handling Transients

ReTiF supports dynamic tasksets in which tasks can dynamically enter/leave
the current taskset at any time. These operations can cause transients in the
system that might lead to some missed deadlines if not properly addressed. For
now, no mechanism to prevent these kinds of transient is implemented yet. In
the future, some support for change protocols should be added to the various
plugins for a proper handling of these transients.

7.6. Virtualization and Hierarchical Scheduling

Usability of ReTiF in virtualized contexts is very limited. As it is now,
ReTiF assumes that it is running in an OS that has complete ownership of visible
resources (active CPUs, etc.). If the OS hosting ReTiF runs as a guest under a
virtual machine monitor (VMM) or hypervisor, this assumption is correct only

14For more info see https://lwn.net/Articles/747088/

34

if the VMM performs hardware partitioning, so that virtual CPUs in the guest
are mapped exclusively to dedicated physical CPUs on the host. Otherwise,
the ReTiF is not able to provide the expected guarantees to user applications.
These problems are well known in the field of hierarchical scheduling and in
future releases we may enrich the framework with knowledge of how vCPUs
are scheduled within the host OS (e.g., knowing its supply-bound function),
and apply accordingly an approriate hierarchical analysis when admitting new
tasks.

8. Conclusions and Future Work

This work describes the architecture of ReTiF, a newfangled framework de-
signed to improve the accessibility to real-time capabilities of POSIX compliant
OSes. We described the ReTiF design and implementation, focusing on the as-
pects that improve accessibility to real-time features offered by modern GPOSes
from user space. Thanks to its declarative approach, ReTiF greatly simplifies
the interface between user applications and the underlying OS, providing appli-
cations a simple and portable API. We also described how the security mech-
anisms embedded in ReTiF give complete control to system designers over the
resources managed by the framework itself. Finally, we showed the overheads
introduced by this framework.

8.1. Future work

We are actively working to continue the development of ReTiF, to include
further aspects that will improve the usability and robustness of the frame-
work, especially with respect to the timing behavior of the managed real-time
tasks. The current implementation can be improved in a number of aspects;
we showed the most notable of these in Section 7, where we also mention some
directions of future development of the framework, including tasks allocation
strategies different than partitioned scheduling, the usage of the framework in
virtualized environments, and others. To handle transients due to tasks dynam-
ically entering or leaving the system, we plan to introduce some mode-change
protocol [41–44] between the ReTiF Daemon and the loaded plugins to address
this potential issue. Besides transients, the use of TID to identify each real-time
task could lead plugins to mistakenly change the scheduling parameters of un-
related threads if the system reuses the TIDs of terminated real-time threads
over time. In future extensions, we will consider the possibility to use pidfds15,
which have been added recently in the Linux kernel for cases like this, although
the portability of this feature to other POSIX systems may be problematic.

Furthermore, we plan to include support to a broader set of features that
improve the usability of the framework in certain scenarios. Energy efficiency
is a topic of paramount importance for mobile and embedded systems. On

15For more info see https://lwn.net/Articles/794707

35

architectures that support power management techniques like Dynamic Voltage
and Frequency Scaling (DVFS), the computation time may vary depending on
the frequency of the CPUs or even the type of the CPU core selected to run tasks
in heterogeneous computing platgforms (e.g. on ARM big.LITTLE or DynamIQ
architectures). We plan to add support for energy awareness to the framework
introducing an optional module that will let applications specify their runtime
using a frequency-independent measurement unit.

Finally, further extensions might enrich the proposed API to accept ad-
ditional parameters from user applications–like preferred or mandatory CPU
affinity constraints, blocking times or task offsets–or to let implement other
plugins that make use of more advanced task admission tests.

References

[1] J. Kiszka, Towards Linux as a real-time hypervisor, in: Proceedings of the
11th Real-Time Linux Workshop, Citeseer, 2009, pp. 215–224.

[2] D. B. de Oliveira, D. Casini, R. S. de Oliveira, T. Cucinotta, Demystifying
the Real-Time Linux Scheduling Latency, in: 32nd Euromicro Conference
on Real-Time Systems (ECRTS 2020), Vol. 165, Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2020, pp. 9:1–9:23.

[3] K. M. Obenland, The use of POSIX in real-time systems, assessing its
effectiveness and performance, The MITRE Corporation (2000).

[4] S. Rostedt, D. V. Hart, Internals of the RT patch, in: Proceedings of the
Linux symposium, Vol. 2, Citeseer, 2007, pp. 161–172.

[5] F. Reghenzani, G. Massari, W. Fornaciari, The real-time Linux kernel:
A survey on PREEMPT_RT, ACM Computing Surveys (CSUR) 52 (1)
(2019) 1–36.

[6] J. Lelli, C. Scordino, L. Abeni, D. Faggioli, Deadline scheduling in the
Linux kernel, Software: Practice and Experience 46 (6) (2016) 821–839.

[7] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard real-
time systems, in: Proceedings 19th IEEE Real-Time Systems Symposium
(Cat. No. 98CB36279), IEEE, 1998, pp. 4–13.

[8] G. Serra, G. Ara, P. Fara, T. Cucinotta, An architecture for declarative
real-time scheduling on Linux, in: 23rd International Symposium on Real-
Time Distributed Computing (ISORC), IEEE, 2020, pp. 20–28.

[9] Ayers, B. V. Yodaiken, Introducing real-time Linux, Linux Journal
1997 (34) (1997).

[10] L. Dozio, P. Mantegazza, Real time distributed control systems using rtai,
in: Sixth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, IEEE, 2003, pp. 11–18.

36

[11] P. Gerum, Xenomai–Implementing a RTOS emulation framework on
GNU/Linux, White Paper, Xenomai (2004) 1–12.

[12] S. Han, H.-W. Jin, Kernel-level ARINC 653 partitioning for Linux, in:
Proceedings of the 27th Annual ACM Symposium on Applied Computing
- SAC '12, ACM Press, 2012, pp. 1632–1637.

[13] A. Atlas, A. Bestavros, Design and implementation of statistical rate mono-
tonic scheduling in KURT Linux, in: Proceedings 20th IEEE Real-Time
Systems Symposium (Cat. No. 99CB37054), IEEE, 1999, pp. 272–276.

[14] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, L. Abeni, Adaptive reser-
vations in a linux environment, in: Proceedings. RTAS 2004. 10th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2004.,
2004, pp. 238–245.

[15] L. Marzario, G. Lipari, P. Balbastre, A. Crespo, Iris: a new reclaiming algo-
rithm for server-based real-time systems, in: Proceedings. RTAS 2004. 10th
IEEE Real-Time and Embedded Technology and Applications Symposium,
2004., 2004, pp. 211–218.

[16] R. Rajkumar, C. Lee, J. Lehoczky, D. Siewiorek, A resource allocation
model for qos management, in: Proceedings Real-Time Systems Sympo-
sium, 1997, pp. 298–307.

[17] S. Ghosh, J. Hansen, R. Rajkumar, J. Lehoczky, Integrated resource man-
agement and scheduling with multi-resource constraints, in: 25th IEEE
International Real-Time Systems Symposium, 2004, pp. 12–22.

[18] S. Brandt, G. Nutt, T. Berk, J. Mankovich, A dynamic quality of service
middleware agent for mediating application resource usage, in: Proceedings
19th IEEE Real-Time Systems Symposium, 1998, pp. 307–317.

[19] S. Childs, D. Ingram, The Linux-SRT integrated multimedia operating sys-
tem: Bringing QoS to the desktop, in: Proceedings Seventh IEEE Real-
Time Technology and Applications Symposium, IEEE, 2001, pp. 135–140.

[20] B. Srinivasan, S. Pather, R. Hill, F. Ansari, D. Niehaus, A firm real-time
system implementation using commercial off-the-shelf hardware and free
software, in: Proceedings. Fourth IEEE Real-Time Technology and Appli-
cations Symposium, IEEE, 1998, pp. 112–119.

[21] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, J. H. Anderson,
LITMUSRT: A testbed for empirically comparing real-time multiprocessor
schedulers, in: 27th IEEE International Real-Time Systems Symposium
(RTSS’06), 2006, pp. 111–126.

[22] M. Aldea, G. Bernat, I. Broster, A. Burns, R. Dobrin, J. M. Drake,
G. Fohler, P. Gai, M. G. Harbour, G. Guidi, J. J. Gutierrez, T. Lennvall,
G. Lipari, J. M. Martinez, J. L. Medina, J. C. Palencia, M. Trimarchi, FSF:

37

A real-time scheduling architecture framework, in: 12th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’06), 2006,
pp. 113–124.

[23] P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, A new kernel approach for mod-
ular real-time systems development, in: Proceedings 13th Euromicro Con-
ference on Real-Time Systems, 2001, pp. 199–206.

[24] M. Aldea-Rivas, M. Harbour, MaRTE OS: An Ada kernel for real-time
embedded applications, Lecture Notes in Computer Science 2043 (2001)
305–316.

[25] M. Sojka, P. Píša, D. Faggioli, T. Cucinotta, F. Checconi, Z. Hanzálek,
G. Lipari, Modular software architecture for flexible reservation mecha-
nisms on heterogeneous resources, Journal of Systems Architecture 57 (4)
(2011) 366 – 382.

[26] L. Palopoli, T. Cucinotta, L. Marzario, G. Lipari, AQuoSA–Adaptive qual-
ity of service architecture, Software: Practice and Experience 39 (1) (2009)
1–31.

[27] M. Sojka, M. Molnar, Z. Hanzalek, Experiments for real-time communica-
tion contracts in IEEE 802.11e EDCA networks, in: 2008 IEEE Interna-
tional Workshop on Factory Communication Systems, 2008, pp. 89–92.

[28] D. Sangorrín, M. González Harbour, H. Pérez, J. J. Gutiérrez, Managing
transactions in flexible distributed real-time systems, in: Reliable Software
Technologiey – Ada-Europe 2010, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2010, pp. 251–264.

[29] M. Åsberg, T. Nolte, S. Kato, R. Rajkumar, ExSched: An external CPU
scheduler framework for real-time systems, in: 2012 IEEE International
Conference on Embedded and Real-Time Computing Systems and Appli-
cations, 2012, pp. 240–249.

[30] A. Mancina, Operating Systems And Resource Reservations – Ph.D. thesis
(2009).

[31] J. N. Herder, H. Bos, B. Gras, P. Homburg, A. S. Tanenbaum, Minix 3: A
highly reliable, self-repairing operating system, SIGOPS Oper. Syst. Rev.
40 (3) (2006) 80–89. doi:10.1145/1151374.1151391.
URL https://doi.org/10.1145/1151374.1151391

[32] G. Parmer, R. West, Hijack: Taking control of COTS systems for real-time
user-level services, in: 13th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS’07), IEEE, 2007, pp. 133–146.

[33] M. Behnam, T. Nolte, I. Shin, M. Åsberg, R. Bril, Towards hierarchical
scheduling in VxWorks, in: OSPERT 2008, Fourth International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications,
2008, pp. 63–72.

38

[34] R. Inam, J. Mäki-Turja, M. Sjödin, S. M. Ashjaei, S. Afshar, Support for
hierarchical scheduling in FreeRTOS, in: ETFA 2011, IEEE, 2011, pp. 1–
10.

[35] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan, Z. Shao, Rt-ros:
A real-time ros architecture on multi-core processors, Future Generation
Computer Systems 56 (2016) 171–178.

[36] Y. Saito, F. Sato, T. Azumi, S. Kato, N. Nishio, Rosch: Real-time schedul-
ing framework for ros, in: 2018 IEEE 24th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA),
IEEE, 2018, pp. 52–58.

[37] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan, I. Lee, O. Sokolsky,
Rt-open stack: Cpu resource management for real-time cloud computing,
in: 2015 IEEE 8th International Conference on Cloud Computing, IEEE,
2015, pp. 179–186.

[38] T. Cucinotta, D. Giani, D. Faggioli, F. Checconi, Effective real-time com-
puting on Linux, in: 12th Real-Time Linux Workshop, 2010, pp. 1–11.

[39] G. Buttazzo, Hard real-time computing systems: predictable scheduling
algorithms and applications, Vol. 24, Springer Science & Business Media,
2011.

[40] D. Faggioli, F. Checconi, M. Trimarchi, C. Scordino, An EDF scheduling
class for the Linux kernel, in: 11th Real-Time Linux Workshop, 2009, pp.
1–8.

[41] K. W. Tindell, A. Burns, A. J. Wellings, Mode changes in priority pre-
emptively scheduled systems, in: [1992] Proceedings Real-Time Systems
Symposium, 1992, pp. 100–109.

[42] L. Sha, R. Rajkumar, J. Lehoczky, K. Ramamritham, Mode change pro-
tocols for priority-driven preemptive scheduling, Real-Time Systems 1 (10
1996). doi:10.1007/BF00365439.

[43] P. Pedro, A. Burns, Schedulability analysis for mode changes in flexible
real-time systems, in: Proceeding. 10th EUROMICRO Workshop on Real-
Time Systems (Cat. No.98EX168), 1998, pp. 172–179.

[44] D. Casini, A. Biondi, G. Buttazzo, Handling transients of dynamic real-
time workload under EDF scheduling, IEEE Transactions on Computers
68 (6) (2018) 820–835.

39

