Drought is one of the most significant abiotic stresses that limits the growth and productivity of crop plants. We investigated the physiological and molecular responses of tomato plants treated with Megafol® (Valagro S.p.A), under specific drought conditions. The goal was to evaluate the impact of Megafol®, a biostimulant composed of a complex of vitamins, aminoacids, proteins and betaines, in attenuating the negative physiological responses of drought. Tomato plants were grown in a greenhouse, and physiological parameters were collected using Scanalyzer 3D (LemnaTec, GmbH), a plant phenomics platform. Using this technology it is possible to dynamically study the effects of biostimulants, such as Megafol®, on plant development in terms of early detection of physiological plant stress responses. The results showed that drought-stressed plants treated with Megafol® were healthier in terms of the biomass produced and chlorophyll fluorescence, thus highlighting the higher tolerance to stress of the treated plants. The effects of Megafol® were also studied at a molecular level by analysing the induction of genes typically involved in drought stress responses. Our results demonstrate the efficacy of Megafol® to reduce drought-stress related damage in tomato plants.

Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach

SANTANIELLO, Antonietta;PAPARELLI, ELEONORA;PERATA, Pierdomenico;
2014-01-01

Abstract

Drought is one of the most significant abiotic stresses that limits the growth and productivity of crop plants. We investigated the physiological and molecular responses of tomato plants treated with Megafol® (Valagro S.p.A), under specific drought conditions. The goal was to evaluate the impact of Megafol®, a biostimulant composed of a complex of vitamins, aminoacids, proteins and betaines, in attenuating the negative physiological responses of drought. Tomato plants were grown in a greenhouse, and physiological parameters were collected using Scanalyzer 3D (LemnaTec, GmbH), a plant phenomics platform. Using this technology it is possible to dynamically study the effects of biostimulants, such as Megafol®, on plant development in terms of early detection of physiological plant stress responses. The results showed that drought-stressed plants treated with Megafol® were healthier in terms of the biomass produced and chlorophyll fluorescence, thus highlighting the higher tolerance to stress of the treated plants. The effects of Megafol® were also studied at a molecular level by analysing the induction of genes typically involved in drought stress responses. Our results demonstrate the efficacy of Megafol® to reduce drought-stress related damage in tomato plants.
2014
File in questo prodotto:
File Dimensione Formato  
2014 Sci Hort.pdf

non disponibili

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2014 Sci Hort.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/443775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 111
social impact