The use of pesticides made it possible to increase yields, simplify cropping systems, and forego more complicated crop protection strategies. Over-reliance on chemical control, however, is associated with contamination of ecosystems and undesirable health effects. The future of crop production is now also threatened by emergence of pest resistance and declining availability of active substances. There is therefore a need to design cropping systems less dependent on synthetic pesticides. Consequently, the European Union requires the application of eight principles (P) of Integrated Pest Management that fit within sustainable farm management. Here, we propose to farmers, advisors, and researchers a dynamic and flexible approach that accounts for the diversity of farming situations and the complexities of agroecosystems and that can improve the resilience of cropping systems and our capacity to adapt crop protection to local realities. For each principle (P), we suggest that (P1) the design of inherently robust cropping systems using a combination of agronomic levers is key to prevention. (P2) Local availability of monitoring, warning, and forecasting systems is a reality to contend with. (P3) The decision-making process can integrate cropping system factors to develop longer-term strategies. (P4) The combination of non-chemical methods that may be individually less efficient than pesticides can generate valuable synergies. (P5) Development of new biological agents and products and the use of existing databases offer options for the selection of products minimizing impact on health, the environment, and biological regulation of pests. (P6) Reduced pesticide use can be effectively combined with other tactics. (P7) Addressing the root causes of pesticide resistance is the best way to find sustainable crop protection solutions. And (P8) integration of multi-season effects and trade-offs in evaluation criteria will help develop sustainable solutions.

Eight principles of Integrated Pest Management

BARBERI, Paolo;MOONEN, Anna Camilla;
2015-01-01

Abstract

The use of pesticides made it possible to increase yields, simplify cropping systems, and forego more complicated crop protection strategies. Over-reliance on chemical control, however, is associated with contamination of ecosystems and undesirable health effects. The future of crop production is now also threatened by emergence of pest resistance and declining availability of active substances. There is therefore a need to design cropping systems less dependent on synthetic pesticides. Consequently, the European Union requires the application of eight principles (P) of Integrated Pest Management that fit within sustainable farm management. Here, we propose to farmers, advisors, and researchers a dynamic and flexible approach that accounts for the diversity of farming situations and the complexities of agroecosystems and that can improve the resilience of cropping systems and our capacity to adapt crop protection to local realities. For each principle (P), we suggest that (P1) the design of inherently robust cropping systems using a combination of agronomic levers is key to prevention. (P2) Local availability of monitoring, warning, and forecasting systems is a reality to contend with. (P3) The decision-making process can integrate cropping system factors to develop longer-term strategies. (P4) The combination of non-chemical methods that may be individually less efficient than pesticides can generate valuable synergies. (P5) Development of new biological agents and products and the use of existing databases offer options for the selection of products minimizing impact on health, the environment, and biological regulation of pests. (P6) Reduced pesticide use can be effectively combined with other tactics. (P7) Addressing the root causes of pesticide resistance is the best way to find sustainable crop protection solutions. And (P8) integration of multi-season effects and trade-offs in evaluation criteria will help develop sustainable solutions.
2015
File in questo prodotto:
File Dimensione Formato  
Barzman et al (2015)_ASDE.pdf

accesso aperto

Licenza: Licenza non conosciuta
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/504114
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 505
social impact