In this paper we present the design and characterization of a novel Passive Variable Stiffness Joint (pVSJ). pVSJ is the proof of concept of a passive revolute joint with controllable variable stiffness. The current design is intended to be a bench-test for future development towards applications in haptic teleoperation purposed exoskeletons. The main feature of the pVSJ is its capability of varying the stiffness with infinite range based on a simple mechanical system. Moreover, the joint can rotate freely at the zero stiffness case without any limitation. The stiffness varying mechanism consists of two torsional springs, mounted with an offset from the pVSJ rotation center and coupled with the joint shaft by an idle roller. The position of the roller between the pVSJ rotation center and the spring's center is controlled by a linear sliding actuator fitted on the chassis of the joint. The variation of the output stiffness is obtained by changing the distance from the roller-springs contact point to the joint rotation center (effective arm). If this effective arm is null, the stiffness of the joint will be zero. The stiffness increases to reach high stiffness values when the effective arm approaches its maximum value, bringing the roller close to the torsional springs' center. The experimental results matched with the physical-based modeling of the pVSJ in terms of stiffness variation curve, stiffness dependency upon the springs' elasticity, joint deflection and the spring's deflection.

Modeling, design & characterization of a novel Passive Variable Stiffness Joint (pVSJ)

CEMPINI, Marco;CORTESE, Mario;VITIELLO, Nicola;DARIO, Paolo;
2016-01-01

Abstract

In this paper we present the design and characterization of a novel Passive Variable Stiffness Joint (pVSJ). pVSJ is the proof of concept of a passive revolute joint with controllable variable stiffness. The current design is intended to be a bench-test for future development towards applications in haptic teleoperation purposed exoskeletons. The main feature of the pVSJ is its capability of varying the stiffness with infinite range based on a simple mechanical system. Moreover, the joint can rotate freely at the zero stiffness case without any limitation. The stiffness varying mechanism consists of two torsional springs, mounted with an offset from the pVSJ rotation center and coupled with the joint shaft by an idle roller. The position of the roller between the pVSJ rotation center and the spring's center is controlled by a linear sliding actuator fitted on the chassis of the joint. The variation of the output stiffness is obtained by changing the distance from the roller-springs contact point to the joint rotation center (effective arm). If this effective arm is null, the stiffness of the joint will be zero. The stiffness increases to reach high stiffness values when the effective arm approaches its maximum value, bringing the roller close to the torsional springs' center. The experimental results matched with the physical-based modeling of the pVSJ in terms of stiffness variation curve, stiffness dependency upon the springs' elasticity, joint deflection and the spring's deflection.
2016
9781509037629
9781509037629
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/511945
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
social impact