The cerebellum, which is responsible for motor control and learning, has been suggested to act as a Smith predictor for compensation of time-delays by means of internal forward models. However, insights about how forward model predictions are integrated in the Smith predictor have not yet been unveiled. To fill this gap, a novel bio-inspired modular control architecture that merges a recurrent cerebellar-like loop for adaptive control and a Smith predictor controller is proposed. The goal is to provide accurate anticipatory corrections to the generation of the motor commands in spite of sensory delays and to validate the robustness of the proposed control method to input and physical dynamic changes. The outcome of the proposed architecture with other two control schemes that do not include the Smith control strategy or the cerebellar-like corrections are compared. The results obtained on four sets of experiments confirm that the cerebellum-like circuit provides more effective corrections when only the Smith strategy is adopted and that minor tuning in the parameters, fast adaptation and reproducible configuration are enabled. 2020 The Author(s).

A Cerebellum-Inspired Learning Approach for Adaptive and Anticipatory Control

Vannucci L.;Laschi C.;Falotico E.;
2020-01-01

Abstract

The cerebellum, which is responsible for motor control and learning, has been suggested to act as a Smith predictor for compensation of time-delays by means of internal forward models. However, insights about how forward model predictions are integrated in the Smith predictor have not yet been unveiled. To fill this gap, a novel bio-inspired modular control architecture that merges a recurrent cerebellar-like loop for adaptive control and a Smith predictor controller is proposed. The goal is to provide accurate anticipatory corrections to the generation of the motor commands in spite of sensory delays and to validate the robustness of the proposed control method to input and physical dynamic changes. The outcome of the proposed architecture with other two control schemes that do not include the Smith control strategy or the cerebellar-like corrections are compared. The results obtained on four sets of experiments confirm that the cerebellum-like circuit provides more effective corrections when only the Smith strategy is adopted and that minor tuning in the parameters, fast adaptation and reproducible configuration are enabled. 2020 The Author(s).
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/531362
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
social impact