The higher capability of optical vortex beams of penetrating turbid media (e.g., biological fluids) with respect to the conventional Gaussian beams is, for the first time to our knowledge, demonstrated in the 1.3 µm wavelength range which is conventionally used for optical coherence tomography procedures in endoscopic intravascular scenarios. The effect has been demonstrated by performing transmittance measurements through suspensions of polystyrene microspheres in water with various particulate concentrations and, in reflection, by using samples of human blood with different thicknesses. The reduced backscattering/increased transmittance into such highly scattering media of Laguerre-Gaussian beams with respect to Gaussian ones, in the near infrared wavelength region, could be potentially exploited in clinical applications, leading to novel biomedical diagnoses and/or procedures.

Penetration capability of near infrared Laguerre-Gaussian beams through highly scattering media

Malik M. N.;Scaffardi M.;Bogoni A.;Celi S.;Ghelfi P.;Malacarne A.
2020-01-01

Abstract

The higher capability of optical vortex beams of penetrating turbid media (e.g., biological fluids) with respect to the conventional Gaussian beams is, for the first time to our knowledge, demonstrated in the 1.3 µm wavelength range which is conventionally used for optical coherence tomography procedures in endoscopic intravascular scenarios. The effect has been demonstrated by performing transmittance measurements through suspensions of polystyrene microspheres in water with various particulate concentrations and, in reflection, by using samples of human blood with different thicknesses. The reduced backscattering/increased transmittance into such highly scattering media of Laguerre-Gaussian beams with respect to Gaussian ones, in the near infrared wavelength region, could be potentially exploited in clinical applications, leading to novel biomedical diagnoses and/or procedures.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/533970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact