Robotic tele-examination is mainstream for solving the nowadays worsening shortage of physicians. However, many solutions are based on custom robotic arms, whereas using COTS arms could reduce costs and make such systems affordable. In this paper, we address the problem of the design of an end-effector for cardiac tele-ultrasonography, assuming the use of a popular and low-cost industrial robot such as the Universal Robot UR5. We use a kinematic optimization based on the manipulability measure taking into account the position of the robot base with respect to the patient, the number of degrees of freedom (DoFs), and the size of the end-effector. The constraints of the problem are the full inclusion of the examination area in the workspace and the possibility to orient the probe correctly. The results of this study show that, although the arm has 6 DoFs, an additive DoF of the end-effector improves the manipulability measure by more than 100%.

Kinematic Optimization for the Design of a UR5 Robot End-Effector for Cardiac Tele-Ultrasonography

Filippeschi A.
;
Avizzano C. A.
2021-01-01

Abstract

Robotic tele-examination is mainstream for solving the nowadays worsening shortage of physicians. However, many solutions are based on custom robotic arms, whereas using COTS arms could reduce costs and make such systems affordable. In this paper, we address the problem of the design of an end-effector for cardiac tele-ultrasonography, assuming the use of a popular and low-cost industrial robot such as the Universal Robot UR5. We use a kinematic optimization based on the manipulability measure taking into account the position of the robot base with respect to the patient, the number of degrees of freedom (DoFs), and the size of the end-effector. The constraints of the problem are the full inclusion of the examination area in the workspace and the possibility to orient the probe correctly. The results of this study show that, although the arm has 6 DoFs, an additive DoF of the end-effector improves the manipulability measure by more than 100%.
2021
978-3-030-55806-2
978-3-030-55807-9
File in questo prodotto:
File Dimensione Formato  
Kinematic_optimization_for_the_design_of_a_UR5_robot_end_effector_for_tele_ultrasonography.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Non pubblico
Dimensione 624.93 kB
Formato Adobe PDF
624.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/535170
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact