Mobile microscale devices and microrobots can be powered by catalytic reactions (chemical micromotors) or by external fields. This report is focused on the role of light as a versatile means for wirelessly powering and controlling such microdevices. Recent advances in the development of autonomous micromotors are discussed, where light permits their actuation with unprecedented control and thereby enables advances in the field of active matter. In addition, structuring the light field is a new means to drive soft microrobots that are based on (photo-) responsive polymers. The behavior of the two main classes of thermo- and photoresponsive polymers adopted in microrobotics (poly(N-isopropylacrylamide) and liquid-crystal elastomers) is analyzed, and recent applications are reported. The advantages and limitations of controlling micromotors and microrobots by light are reviewed, and some of the remaining challenges in the development of novel photo-active materials for micromotors and microrobots are discussed.

Light-Controlled Micromotors and Soft Microrobots

Palagi S.
;
2019-01-01

Abstract

Mobile microscale devices and microrobots can be powered by catalytic reactions (chemical micromotors) or by external fields. This report is focused on the role of light as a versatile means for wirelessly powering and controlling such microdevices. Recent advances in the development of autonomous micromotors are discussed, where light permits their actuation with unprecedented control and thereby enables advances in the field of active matter. In addition, structuring the light field is a new means to drive soft microrobots that are based on (photo-) responsive polymers. The behavior of the two main classes of thermo- and photoresponsive polymers adopted in microrobotics (poly(N-isopropylacrylamide) and liquid-crystal elastomers) is analyzed, and recent applications are reported. The advantages and limitations of controlling micromotors and microrobots by light are reviewed, and some of the remaining challenges in the development of novel photo-active materials for micromotors and microrobots are discussed.
2019
File in questo prodotto:
File Dimensione Formato  
SPalagi_2019_AdvOptMater_AAM.pdf

Open Access dal 20/08/2020

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Copyright dell'editore
Dimensione 957.79 kB
Formato Adobe PDF
957.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/536519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
social impact