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A B S T R A C T   

Alzheimer’s disease (AD) pathological changes may begin up to decades earlier than the appearance of the first 
symptoms of cognitive decline. Subjective cognitive decline (SCD) could be the first pre-clinical sign of possible 
AD, which might be followed by mild cognitive impairment (MCI), the initial stage of clinical cognitive decline. 
However, the neural correlates of these prodromic stages are not completely clear yet. Recent studies suggest that 
EEG analysis tools characterizing the cortical activity as a whole, such as microstates and cortical regions con-
nectivity, might support a characterization of SCD and MCI conditions. Here we test this approach by performing 
a broad set of analyses to identify the prominent EEG markers differentiating SCD (n = 57), MCI (n = 46) and 
healthy control subjects (HC, n = 19). We found that the salient differences were in the temporal structure of the 
microstates patterns, with MCI being associated with less complex sequences due to the altered transition 
probability, frequency and duration of canonic microstate C. Spectral content of EEG, network connectivity, and 
spatial arrangement of microstates were instead largely similar in the three groups. Interestingly, comparing 
properties of EEG microstates in different cerebrospinal fluid (CSF) biomarkers profiles, we found that canonic 
microstate C displayed significant differences in topography in AD-like profile. These results show that the 
progression of dementia might be associated with a degradation of the cortical organization captured by mi-
crostates analysis, and that this leads to altered transitions between cortical states. Overall, our approach paves 
the way for the use of non-invasive EEG recordings in the identification of possible biomarkers of progression to 
AD from its prodromal states.   

Abbreviations: SCD, Subjective Cognitive Decline; MCI, Mild Cognitive Impairment; AD, Alzheimer’s Disease; HC, Healthy Controls; CSF, Cerebrospinal fluid; LZ, 
Lempel-Ziv; GFP, Global Field Power; GMD, Global Map Dissimilarity; TANOVA, Topographical Analysis of Variance. 
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1. Introduction 

Alzheimer’s Disease (AD) is the end-point of a continuum, in which 
the pathological changes may begin even decades earlier than the 
appearance of the first symptoms (Sperling et al., 2011). Anticipating 
the diagnosis of AD is essential to develop early intervention and coor-
dinated care plans (Dubois et al., 2016). Furthermore, the future advent 
of disease-modifying treatments for dementia (Cummings et al., 2007) 
makes the identification of reliable and easily accessible tools to predict 
AD an urgent priority. The AD continuum has been separated into pre- 
clinical stages, in which no objective cognitive decline is observed, 
and clinical stages in which the neurodegeneration drives a loss in 
cognitive capacity (Sperling et al., 2011). Specifically, mild cognitive 
impairment (MCI) is defined as the state of objective cognitive decline as 
measured by clinical and cognitive scales, without an impact on the 
activities of daily living (Petersen, 2004). In the last decade, increased 
interest has also been focused on the subjective cognitive decline (SCD) 
condition. SCD is the self-concerned experience of reduced cognitive 
function, while maintaining normal scores on standardized cognitive 
tests (Jessen et al., 2014). There is some evidence that SCD may be a 
prelude to AD: while SCD has been described as a heterogenous condi-
tion, with many possible longitudinal outcomes, individuals having SCD 
are more likely to progress to dementia than the rest of the elderly 
population (Jessen et al., 2020). Specifically, the SCD population dis-
plays a higher risk of developing MCI and AD dementia (Perrotin et al., 
2012; Stewart et al., 2011). Hence, SCD might represent a target pop-
ulation for disease-modifying therapies to preserve cognitive function 
and psychological well-being (Bhome et al., 2018). 

Current diagnosis of AD largely relies on the use of biomarkers that 
are either costly to acquire or invasive, such as PET neuroimaging or 
cerebrospinal fluid markers (CSF) (Jack et al., 2018). These biomarkers, 
while being able to properly differentiate AD from other forms of de-
mentia early in the degeneration continuum, are not suitable for the 
screening of large populations. In this sense, EEG may be an excellent 
device to screen the SCD population, as it is a relatively cheap and totally 
non-invasive functional tool and it may even be a complementary tool to 
other dementia biomarkers (Ferreira et al., 2016). Several studies have 
focused on identifying quantitative EEG markers to diagnose AD, 
comparing it to healthy elderly controls (Cassani et al., 2018). Here, we 
will focus mostly on the resting-state EEG paradigm, as it is the most 
widely available EEG tool in the clinical setting. A large number of 
studies investigated quantitative EEG markers of AD, and they can 
mostly be distinguished into the following categories: spectral markers, 
connectivity and network metrics, complexity measures and microstates 
(Maestú et al., 2019). Generally, as regards power spectrum, a slowing of 
the oscillations in the EEG activity is observed, with a decrease of higher 
frequency activity (alpha and beta bands) or increase of low-frequency 
power (delta and theta bands) in AD and MCI groups compared to 
healthy controls (Fonseca et al., 2011; Jelic et al., 1996; Kim et al., 
2012). Complementarily to that, several studies highlighted a reduction 
in complexity of the EEG signal throughout the development of de-
mentia (Kulkarni et al., 2017; Shumbayawonda et al., 2020; Tait et al., 
2020). Another interesting perspective on EEG alterations is provided by 
connectivity studies looking for patterns of covariations in EEG sensors’ 
or sources’ signals. Several metrics can be used for estimating functional 
connectivity among areas, such as coherence, linear lagged connectivity 
and imaginary coherence. The latter is often used, as it is rather simple 
to implement and it reduces the effect of possible spurious connections 
due to volume conduction (Bastos and Schoffelen, 2016; Nolte et al., 
2004). Its use is widely accepted in the analysis of neurological disor-
ders, including AD studies as well (Lam and Shafi, 2022). Connectivity 
studies in AD generally highlight a decrease in the degree of connectivity 
between brain areas, specifically in the higher frequency bands (for 
spectral-related connectivity measures) (Babiloni et al., 2018b; Besthorn 
et al., 1994; Meghdadi et al., 2021; Smailovic et al., 2020). Analyzing 
the functional connectome obtained by EEG with a network theory 

approach leads to single measures capturing global properties of the 
whole network. Some prominent results in this context regard the 
disruption of the small-world property in the AD continuum (Rossini 
et al., 2020; Vecchio et al., 2018). 

Finally, microstates are recurrent scalp topographies in the EEG 
signal, found to be quasi-stable over periods of 60–120 ms (Michel and 
Koenig, 2018). Different clustering techniques, such as k-means and 
hierarchical clustering, can be used to identify the most common to-
pographies in the EEG signal. At rest, four canonical microstates are 
typically identified (named A to D). In this view, the EEG signal can be 
represented as a sequence of these microstates, in which only one of 
them is active at each time-point (winner-takes-all approach). Starting 
from this discrete sequence, several metrics can be extracted (Koenig 
et al., 2014), both related to the dynamics of microstates patterns 
(duration, coverage, frequency of occurrence, transition probabilities) 
and to their topographies. Microstates have been shown to be related to 
different active resting-state networks and to have functional signifi-
cance (Milz et al., 2016). Many studies highlighted how microstates 
patterns vary in pathological conditions (da Cruz et al., 2020; Murphy 
et al., 2020; Nishida et al., 2013; Zappasodi et al., 2017), and demon-
strated their use as markers of the pathology. Microstate analysis have 
also been applied to extract information about AD and dementia (Dierks 
et al., 1997; Grieder et al., 2016; Musaeus et al., 2020; Nishida et al., 
2013; Tait et al., 2020). 

Of note, all the afore-mentioned studies have focused on MCI, AD 
and the transition from the former to the latter. To the best of our 
knowledge only few studies described quantitative EEG changes in SCD 
subjects, mostly focusing on spectral analyses (e.g., (Alexander et al., 
2006; Babiloni et al., 2010; Jeong et al., 2021; Smailovic et al., 2018)) 
and used spectral markers to predict the converters to dementia 
(Engedal et al., 2020). Other studies investigated the connectivity pat-
terns and network metrics in EEG in the SCD condition (Lazarou et al., 
2020, 2019; López-Sanz et al., 2017; Smailovic et al., 2018). Finally, one 
study investigated the differences in the topography of microstates 
among SCD, MCI and AD conditions (Smailovic et al., 2019). 

In the present study, we aimed to assess the efficacy of a broad set of 
the afore-mentioned EEG features in discriminating between SCD and 
MCI data first, and then in discriminating AD CSF biomarker profiles. 

2. Methods 

2.1. Participants 

The “PRedicting the EVolution of SubjectIvE Cognitive Decline to 
Alzheimer’s Disease With machine learning (PREVIEW)” project (Maz-
zeo et al., 2023) is an ongoing prospective cohort study started in 
October 2020 and including consecutive patients with SCD and MCI who 
self-referred to the Regional Reference Center for Alzheimer’s Disease 
and Cognitive Disorders of Careggi Hospital, Florence. All patients un-
derwent a comprehensive family and clinical history, neurological ex-
amination, extensive neuropsychological investigation, estimation of 
premorbid intelligence, and assessment of depression. The following 
inclusion criteria were adopted: complaint of cognitive decline with a 
duration of ≥ 6 months; Mini Mental State Examination (MMSE) score 
>24, corrected for age and education; normal functioning on the Ac-
tivities of Daily Living (ADL) and the Instrumental Activities of Daily 
Living (IADL) scales (Lawton and Brody, 1969); unsatisfied criteria for 
AD diagnosis according to National Institute on Aging-Alzheimer’s As-
sociation (NIA-AA) criteria (McKhann et al., 2011). 

Exclusion criteria were: history of head injury, current neurological 
and/or systemic disease, symptoms of psychosis, major depression, 
alcoholism, or other substance abuse; complete data loss of patients’ 
follow-up; use of any medication with known effects on EEG oscillations, 
such as benzodiazepines or antiepileptic drugs. 

A total of 113 patients were considered. Based on clinical, neuro-
logical, and neuropsychological examination, we excluded four patients 
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as they presented other diseases (one patient had obstructive sleep 
apnea syndrome, one patient had bladder cancer, one patient was 
diagnosed with major depression, one patient died for unknown causes); 
six patients refused to underwent EEG. Therefore, we included 103 pa-
tients. They were classified as 57 SCD, according to Subjective Cognitive 
Decline Initiative (SCD-I) Working Group (Jessen et al., 2014) criteria, 
and 46 MCI based on NIA-AA criteria (Albert et al., 2011). Additionally, 
19 volunteer healthy control subjects (HC), aged 55 to 75 years, were 
recruited to assess resting-state EEG. Each subject underwent a clinical 
and family history, a basic neuropsychological testing through MMSE 
and a general and neurological examination. Exclusion criteria, in 
addition to those used for SCD or MCI subjects, were: concern about 
cognitive decline or memory loss, familiarity for Alzheimer’s disease, 
MMSE score < 27 (corrected for age and education). 

Summary demographics of each group are reported in Table 1. 
Resting-state EEG data was collected from patients meeting inclusion 

criteria at the IRCCS Don Gnocchi (Florence, Italy). EEG was collected 
from patients resting on a chair in a comfortable position, using the 64- 
channels Galileo-NT system (E.B. Neuro S.p.a.). Sensors location fol-
lowed the extended 10/20 system (Oostenveld and Praamstra, 2001). 
Unipolar signals were recorded at a sampling rate of 512 Hz. EEG 
recording began with a 10-minute eyes-closed registration followed by 
an alternance of 3 min eyes-open and 3 min eyes closed, repeated twice, 
as per indications of the International Federation of Clinical Neuro-
physiology (Babiloni et al., 2020). During the eyes-closed condition, the 
subjects were asked to sit in a comfortable position, with eyes-closed and 
to relax in a state of mind-wandering (with no goal-oriented mental 
activity) (Babiloni et al., 2020). The first phase of the recording was 
designed to be longer in order to obtain a reliable resting-state recording 
at eyes closed. During the EEG acquisition, impedance of the electrodes 
was monitored to be lower than 10 kOhm. All electrodes’ impedances 
were balanced to be in the range between 7 and 10 kOhm. Whenever the 
impedance went over the threshold, the electrode was re-adjusted and 
the portion of signal related to that time was removed. Only the eyes- 
closed portions of the signal were used for subsequent analyses. 

A subset (48.5%) of the cohort (n = 50, SCD = 30, MCI = 20) 
additionally underwent lumbar puncture examination to obtain CSF 
biomarkers. The CSF samples collected by lumbar puncture were 
immediately centrifuged and stored at − 80 ◦C until performing the 
analysis. Aβ42, Aβ42/Aβ40 ratio, t-tau, and p-tau have been measured 
using a chemiluminescent enzyme immunoassay (CLEIA) analyzer 
LUMIPULSE G600 (Fujirebio, Tokyo, Japan) (Alcolea et al., 2019). Cut- 
off values for CSF were determined following Fujirebio guidelines 
(Diagnostic sensitivity and specificity using clinical diagnosis and 
follow-up golden standard, November 19th, 2018): Aβ42 > 670 pg/ml, 
Aβ42/Aβ40 ratio > 0.062, t-tau < 400 pg/ml and p-tau < 60 pg/ml. 
Patients were rated according to the A/T(N) system (Jack et al., 2016): 
A+ or A- if Aβ42 or Aβ42/Aβ40 were lower or higher than cut-off values 
respectively; T+ or T– and N+ or N– if CSF p-tau and t-tau concentrations 
were higher or lower than cut-off values. We defined patients as: carriers 
of AD pathology when A + was associated with either T + or N+ (A+/ 
T+/N+, A+/T+/N− or A+/T− /N + ); non-carriers of AD pathology 

when they were classified as A− (regardless of T and N classification) or 
as A+/T− /N− . 

All subjects were recruited in accordance with the Declaration of 
Helsinki and with the ethical standards of the Committee on Human 
Experimentation of Careggi University Hospital (Florence, Italy). The 
study was approved by the local Institutional Review Board (reference 
15691oss). All participants in this study signed an informed consent, 
agreeing to participate and to share the results deriving from their data. 

2.2. EEG preprocessing 

In order to remove electrophysiological and non- 
electrophysiological artifacts from the raw signals, we used a custom 
preprocessing pipeline written in Matlab with the use of the EEGLAB 
toolbox functions (Delorme and Makeig, 2004). The pipeline consisted 
of two main steps: the PREP pipeline (Bigdely-Shamlo et al., 2015), 
followed by ICA removal of artifactual components (Delorme et al., 
2007). 

The first step of preprocessing included the use of the PREP pipeline, 
which performs several routines automatically, allowing to obtain 
robust average re-referenced signals. Initially, PREP high-pass filters 
signals of all channels, by means of a Hamming windowed FIR filter 
(using EEGLAB’s pop_eegfiltnew function) with a 1 Hz cut-off frequency. 
Line noise at 50 Hz and its harmonics were removed by using the 
CleanLine EEGLAB plugin. Noisy channels, i.e., those channels having 
abnormal and/or uncorrelated activity compared to others were 
removed by using PREP noisy channel subroutine, which performs the 
bad channel selection by combining an ensemble of methods: the devi-
ation criterion, the correlation criterion, the noisiness criterion, and the 
predictability criterion. Remaining channels activity was used to esti-
mate a robust average reference, based on robust statistics such as the 
median and interquartile range. Finally, removed channels were inter-
polated, by means of spherical interpolation. The obtained re-referenced 
and filtered signals were then subjected to the second preprocessing 
step. 

Independent components were extracted by using the Infomax ICA 
algorithm (Bell and Sejnowski, 1995), as implemented in binica EEGLAB 
routine. A semi-automated procedure was then used to distinguish be-
tween brain-related components and artifactual ones. We used ICLabel 
(Pion-Tonachini et al., 2019) to classify automatically independent 
components into brain or artifactual components (line noise, muscle, 
eye, channel noise, heart, “other”) based on a neural network trained on 
crowd-sourced data. ICLabel returns the probability of each component 
to belong to one of the above-mentioned classes. We then used DIPFIT to 
perform a single dipole fitting of the independent component map onto a 
template brain (MNI-152 atlas). Given that brain components should be 
dipolar (Delorme et al., 2012), a high residual variance of the fitted 
dipole should indicate a low probability of the component being brain- 
related. Hence, components labeled by ICLabel as “brain” with a con-
fidence higher than a threshold (we used 75%) and having fitted dipole 
residual variance lower than another threshold (we used 20%) were 
retained in the final signals. Noise components with high confidence and 
high dipole residual variance were instead automatically removed from 
the ICs list. All the remaining components were inspected visually and 
flagged either as brain or non-brain depending on their power spectra 
profiles and time-courses. Channel-level signals were finally recon-
structed from the reduced IC space, only including brain-related sources. 
Finally, we performed a visual inspection of the cleaned signals, to 
remove possible remaining artifacts (e.g., temporally localized muscle 
activity not removed by the ICA procedure). 

A summary of the subsequent methodology to extract EEG features is 
displayed in Fig. 1. 

2.3. PSD metrics 

We computed an estimate of the power spectral density (PSD) of the 

Table 1 
Demographics of recruited subjects. Each value is indicated as mean followed, 
when possible, by the standard deviation in parenthesis.   

HC SCD MCI 

Sex 8F 11 M 41F 16 M 29F 17 M 
Age 64.29 (4.77) 67.19 (9.30) 74.26 (8.66) 
Age at onset of symptoms – 54.89 (8.78) 61.67 (9.81) 
MMSE 29.06 (1.13) 28.07 (2.18) 26.82 (2.23) 
TIB – 108.82 (18.44) 107.73 (9.69) 
Years of Education 15.64 (3.62) 12.61 (3.76) 10.02 (3.85) 
History of AD in the family – 38 27 

MMSE: Mini Mental State Examination. 
TIB: Test Intelligenza Breve (Italian Brief Intelligence Test). 
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signal in each of the recorded channels. We applied the Welch’s method 
(averaged periodogram) on 5 s continuous windows of EEG signals, 
using Hanning windows with no overlap. We then divided the spectrum 
in four canonical frequency bands, namely: delta (1–4 Hz), theta (4–8 
Hz), alpha (8–13 Hz) and beta (13–30 Hz). For each band, the absolute 
power was first computed by using the trapezoid integration method 
(Matlab trapz function), and then normalized to the total power in the 
frequency range 1–48 Hz (upper limit set to avoid possible residual line 
noise activity). The average power is finally computed as the mean 
power across all EEG channels. We finally divided the scalp in six regions 
of interest (ROIs) (Fanciullacci et al., 2017): frontal right (Fp2, AF4, 
AF8, F2, F4, F6, F8) frontal left (Fp1, AF3, AF7, F1, F3, F5, F7), central 
right (FC2, FC4, FC6, FT8, C2, C4, C6, T4, CP2, CP4, CP6), central left 
(FC1,FC3, FC5, FT7, C1, C3, C5, T3, CP1, CP3, CP5), occipital right (P2, 
P4, P6, T6, PO8, PO4, O2) and occipital left (P1, P3, P5, T5, PO7, PO3, 
O1). ROI power was computed as the average relative power from 
channels belonging to each ROI. The same analysis was applied to the 
absolute power of the EEG signals in the six ROIs and four frequency 
bands. 

2.4. Connectivity and network metrics 

From the preprocessed sensors’ level data, an estimate of cortical 
sources activity was obtained by means of the eLORETA method 
(Pascual-Marqui, 2007), implemented in the Fieldtrip Matlab toolbox 
(Oostenveld et al., 2011). No subject-specific head models were used in 
the reconstruction process, as structural MRI images were not available 
for all subjects. We instead used a 3D-mesh model, constituted of tet-
rahedrical elements, reconstructed from the ICBM152 template and 
available in Fieldtrip, prepared for Boundary Elements Method (Oos-
tenveld et al., 2003). The template head model is composed of three- 
layer tissues (skin, skull, brain), each with a different value of elec-
trical conductivity. Using a common template head model for all sub-
jects allowed direct comparison of the achieved results. Moreover, it has 
been shown that reconstruction accuracy is comparable between 

template-models and subject-specific models (Douw et al., 2018). The 
source model used for the reconstruction was a canonical cortical sheet 
with 5124 vertices (dipoles), located at the middle cortical sheet of a 
standard MNI brain. This template source model was taken from the 
SPM8 software, as available in the Fieldtrip toolbox. 

eLORETA solves the inverse problem of source reconstruction by 
imposing the solution to be a smooth, low-resolution distribution of 
cortical activations. We used as smoothing factor lambda = 0.03. Since 
the measure of connectivity of choice was based on spectral coherence 
(as described below) we decided to solve the source reconstruction 
problem directly on the Fourier-transformed data obtained during the 
PSD analysis, as to obtain directly the spectral representation of the 
sources. The three-dimensional dipole moments were summarized by 
the activity along the direction of maximum activation by computing the 
SVD decomposition and retaining only the first component. Once source 
activity was reconstructed, dipoles’ locations were parcellated into an 
atlas, by computing the average activation of the dipoles in each region 
of interest (ROI). We used as reference atlas the Automated Anatomical 
Labeling atlas (v3) (Tzourio-Mazoyer et al., 2002), and only considered 
the cortical regions inside the atlas. The resulting included regions are 
reported in Supplementary Table 1. 

Spectra were divided in the same four bands as in the PSD analysis. 
To measure the level of connectivity between pairs of brain regions, 

we used the imaginary part of coherency metric (Nolte et al., 2004). For 
each pair of ROIs, we defined coherency as the normalized cross- 
spectrum: 

Cxy =
Gxy
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
GxxGyy

√

Gxy is the cross-spectral densities of the two signals x(t) and y(t), while 
Gxx and Gyy are the respective spectral densities. The choice of imaginary 
coherence for estimating the connectivity among ROIs brings the benefit 
of avoiding overestimating connections due to the volume conduction 
effects, typical of EEG signals. In the computation of imaginary 

Fig. 1. Methodological approach. (A) The eyes-closed EEG signal is acquired and preprocessed by means of the PREP pipeline (Bigdely-Shamlo et al., 2015) and ICA 
artifact removal techniques. (B) Spectral densities are estimated with Welch Method from the cleaned signals in each subject, and band-wise relative power is 
computed in six regions of interest. (C) Signal is source-reconstructed, and a connectivity measure (imaginary part of coherency) is computed. The cortical dipoles are 
parcellated into anatomical ROIs and the resulting connectivity network is globally evaluated by means of graph-theoretical metrics. (D) EEG signals are clustered 
into four subject-specific topographies and their temporal sequence is computed. Both topographical and temporal features are extracted from microstates activity. 
(E) The computed methods are tested statistically to check for differences among groups. 
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coherence, zero-lag connectivity is neglected as it is entirely contained 
in the real part of the coherency metric (Bastos and Schoffelen, 2016). 

To retain only sparse connections in the adjacency matrices, we 
adopted a pruning algorithm that maintained components connected. To 
achieve that, a percentile threshold was set to only retain connections 
having absolute value above the given percentile. The threshold was 
swept from 0 to 1 in steps of 0.01 and the connectedness of the network 
was checked at every iteration. The highest pruning threshold that 
resulted in no isolated components was selected, as to avoid issues in the 
subsequent computation of metrics (Rubinov and Sporns, 2010). Con-
nectivity values below the threshold were set to zero. At the end of this 
process, for each subject, a symmetric matrix of weighted connections 
was computed. 

From single-subject connectivity matrices in the four frequency 
bands defined above, we extracted several network metrics from the 
weighted undirected adjacency matrices. First, the average strength of 
the connectivity among pairs of ROIs was extracted (starting from the 
sparse adjacency matrix obtained by weight pruning). Average strength 
was simply defined the mean weight of non-zero connections. Then, the 
weighted clustering coefficient (C) and weighted characteristic path 
length (L) were computed as previously described (Vecchio et al., 2018). 

Finally, the small-world coefficient was computed as: 

Ω =
Lr
L
−

C
Cl 

L and C are the previously computed weighted clustering coefficient 
and weighted characteristic path length, whereas Lr is the weighted 
characteristic path length of an equivalent random network and Cl is the 
weighted clustering coefficient of an equivalent lattice network. The 
equivalent networks were computed by randomizing (Maslov and 
Sneppen, 2002) and latticizing (Sporns and Zwi, 2004) weight co-
efficients but preserving the degree distribution of the adjacency matrix. 
The small-world coefficient Ω is 1 for a random network, − 1 for a lattice 
and tends to 0 for networks following the small-world property. All 
network metrics were computed with the use of the Matlab Brain Con-
nectivity Toolbox (Rubinov and Sporns, 2010). 

2.5. Microstate extraction 

Microstates are quasi-stable topographies observable in the EEG 
signals that remain stable over 60–120 ms before switching to another 
topography (Michel and Koenig, 2018). In order to capture which are 
the most recurrent EEG topographies in the signal, clustering techniques 
are used to map topographies to a limited set of primitives. While 
distinct clustering techniques may yield different results, it has been 
shown that these algorithms are information-theoretically invariant, 
hence indicating that extracted metrics are algorithm-independent (von 
Wegner et al., 2018). While several methodological approaches are 
possible, we decided to perform a two-step process in the identification 
of microstate maps, as to minimize possible bias in the results (Murphy 
et al., 2022). First, a set of microstate maps is extracted for each subject 
individually, then the subjects’ microstate maps are averaged in 
grand-average maps. These maps are finally used as template for back-
fitting microstates in the EEG signal. 

In order to extract microstate maps for each subject individually, we 
first investigated which number of microstates was globally optimal. We 
extracted a first set of common microstates from the entirety of subjects 
(independent of conditions), by using the modified k-means algorithm 
(Pascual-Marqui et al., 1995). To reduce the computation time, 1000 
global field power (GFP) peaks were randomly selected as input to-
pographies to the clustering algorithm, as these maps should have the 
highest signal-to-noise ratio. GFP is defined (Murray et al., 2008) as the 
standard deviation of all electrodes’ potentials at a given time: 

GFP(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

K(Vi(t) − Vmean(t) )2

K

√

Vi is the potential at time t for the electrode i, Vmean is the average 
potential at time t, K is the total number of electrodes. 

Topographies having GFP higher than two standard deviations from 
the mean were discarded from the selection process, as to avoid intro-
ducing noisy maps in the clustering algorithm. We ran the modified k- 
means (20 repetitions, 1000 max iterations) for each number of clusters 
from two to fifteen. For each iteration of the process, the found micro-
state maps were back-fitted to the entire preprocessed EEG signal, by 
assigning each topography from each time-point to the one minimizing 
the global map dissimilarity (GMD), namely the GFP of the difference 
between the two maps. The global explained variance was computed for 
each topography set. Finally, we selected the number of microstates for 
which the local improvement in the global explained variance metric 
was<5%. This number was found to be four, in accordance with what is 
reported in literature for resting-state signals, even using different 
criteria (Koenig et al., 2002; Michel and Koenig, 2018). 

Once we determined the globally optimal number of maps, we fixed 
this number for all subsequent analyses, as to allow for easier compar-
ison between groups. Subject-level microstate maps were computed by 
two-steps of processing. First, for each subject individually, a set of four 
maps was determined by applying again the modified k-means clus-
tering algorithm on GFP peaks’ topographies. To speed-up the compu-
tation for each subject a subset of 3*104 GFP peaks were randomly 
selected as input to the clustering algorithm. As the k-means clustering 
may stop in local minima, the algorithm was restarted 50 times, and the 
solution minimizing the intra-cluster distance was selected. After the 
extraction of these maps, we performed another clustering step on the 
found single-subject topographies, to obtain grand-average centroids. 
We imposed that for each topography set, the topography could be 
assigned to only one of the grand-average maps. The grand-average 
topographies were sorted by visual similarity to the canonical set of 
microstates previously reported (Michel and Koenig, 2018). Finally, 
each single-subject topography was matched with the grand-average 
one that minimized the global map dissimilarity of the pair. Group- 
level maps were also computed as the centroids of the maps belonging 
to each group of subjects. 

Grand-average topographies were subsequently fitted back into the 
EEG signals of single subjects, with a winner-takes-all procedure: the 
microstate minimizing the GMD with the map of a given timepoint was 
assigned to that timepoint. The back-fitting was smoothed to avoid 
having small segments of microstate activations. Specifically, we rejec-
ted segments with duration <30 ms, by iteratively assigning the 
microstate label to the second best if the time duration of the segment 
was <30 ms (Poulsen et al., 2018). 

The microstate extraction was performed using the EEGLAB Micro-
state plugin2, while the back-fitting with the Microstate EEGLAB toolbox 
(Poulsen et al., 2018). 

2.6. Microstate features extraction 

For each subject, we both performed an analysis of microstate to-
pographies and extracted a set of features characterizing the dynamics of 
the microstate sequence. As regards topographical differences, we 
assessed whether group-level topographies were statistically different 
between groups. First, we applied multi-group TANOVA (Koenig and 
Melie-García, 2009) to assess with a non-parametric permutation test 
differences in the global topographies. Multi-group TANOVA compares 
a generalized measure of difference between group maps and the grand- 
averages with the generalized measure of difference of a surrogate null 

2 https://www.thomaskoenig.ch/index.php/software/microstates-in-eeglab. 
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distribution generated by randomly shuffling the label of single-subjects 
maps n times (we chose n = 10000). For each similarity-matched set of 
microstates, we compared them using multi-group TANOVA. After 
assessing differences in the three groups, pairwise post-hoc comparison 
were performed using the TANOVA test (Murray et al., 2008). The 
TANOVA test works in the same way as the multi-group version, but 
simply compares pairwise GMD of the given maps. 

Furthermore, on the subset of patients having CSF biomarkers, to 
explore the relation between CSF biomarkers and microstate topogra-
phies, we computed the TANOVA dissimilarity based on ATN classifi-
cation (Ebenau et al., 2020). Specifically, we compared A + with A- 
patients, as well as subjects having at least two positive factors (one of 
them being A+, defined as confirmed Alzheimer’s pathology) with those 
that had not the confirmed Alzheimer’s pathology. 

From the back-fitted microstate signals, we obtained a discrete 
sequence by only considering transition between states and we 
computed several descriptors for each subject. Specifically, we extracted 
each microstate’s coverage, namely the percentage of time a given 
microstate remains active over the total time. We also computed the 
occurrence per second of each microstate. From the transition sequence, 
that is the sequence of transitions from a microstate to the other, we 
computed transition probabilities. Transition probabilities tij were 
defined as the probability of passing to microstate j, given the current 
state is microstate i. We then computed the non-linear complexity of the 
transitioning sequence by means of the Lempel-Ziv compression algo-
rithm. Lempel-Ziv complexity is an index of the richness of a sequence 
with a finite number of generating elements (in our case, microstate 
labels). It measures the number of “sub-words” that can be found in the 
entire sequence. The higher the Lempel-Ziv complexity, the more com-
plex is the signal. We computed this measure of complexity by 
measuring the length of the encoding dictionary of the sequence, by 
means of the zlib Python package (after removal of the Huffman coding 
component) and we normalized it by the total length of the signal to 
account for sequence length’s differences. Finally, we computed the 
Hurst exponent of the microstate sequence, as described for EEG mi-
crostates (Van de Ville et al., 2010), using the implementation in the 

+microstate toolbox (Tait and Zhang, 2022). The Hurst exponent de-
scribes the long-term memory of the sequence, with a value of 0.5 
indicating a random-walk sequence, and value of 1 indicating a totally 
correlated sequence. 

2.7. Statistical tests 

For each domain of variables (spectral, network, microstates) taken 
into account, normality was assessed by Shapiro-Wilk test. When the 
domain displayed normal behavior in most variables, we used one-way 
ANOVA to compare the three groups, followed by t-test post-hoc tests for 
pairwise comparisons. Otherwise, we used the non-parametric Kruskal- 
Wallis test to compare the three groups, followed by Wilcoxon rank sum 
post-hoc tests to compare medians pairwise. All post-hoc comparisons 
were corrected with the Bonferroni method. We used η2 as a measure of 
the effect size of either ANOVA or Kruskal-Wallis tests, and Cohen’s d as 
a measure of the effect size of the pairwise comparisons. 

All analysis were performed with custom scripts in Matlab 2020b, 
using the EEGLAB toolbox and other plugins where specified. 

3. Results 

3.1. PSD and network metrics 

First, we addressed the spectral differences among groups. Overall, 
the three conditions displayed differences in the delta band relative 
power and, to a lesser extent, in the alpha peak relative power, with MCI 
displaying the strongest delta and the weakest alpha (Fig. 2A). 

Statistically, the differences were significant for the delta band 
(ANOVA F-statistic = 3.29, p = 0.041, η2 = 0.052), but not in the alpha 
band (ANOVA F-statistic = 2.24, p = 0.111, η2 = 0.036). Post-hoc testing 
between group pairs in the delta band did not reveal any significant 
difference at the average power level (t-test post-hoc, HC vs. SCD: p =
0.707, Cohen’s d = 0.25, HC vs. MCI: p = 0.063, Cohen’s d = 0.64, SCD 
vs. MCI: p = 0.163, Cohen’s d = 0.385). We then repeated the com-
parison dividing the scalp into six ROIs (see Methods section 2.3 for 

Fig. 2. Power Spectral Density (PSD) analysis. (A) Mean relative power over SCD (red curve) and MCI (blue curve) groups, averaged across all EEG channels. The 
value of PSD is expressed in decibel in the frequency range 1–30 Hz. Solid lines represent mean value, while shaded areas show the 95% confidence interval of the 
PSD distribution. (B) Topographies of power distributions in the two conditions in four frequency bands: delta (1–4 Hz, upper left), theta (4–8 Hz, upper right), alpha 
(8–13 Hz, lower left), beta (13–30 Hz, lower right). Topographies are shown by using the 10/20 standard coordinates on the MNI template. Black lines within the 
topography represent the edges of the defined ROIs. Power is expressed as the percentage of band power compared to the total power in the range 1–48 Hz. Colorbar 
lower and upper bounds are set to the 5th and 95th percentile of the power distribution respectively. In all panels, the significance of the corresponding statistical test 
(see Methods) is represented as follow: * p < 0.05, ** p < 0.01, *** p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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details). Again, highest effects were found in delta and alpha bands. In 
the delta band, the left central and occipital ROIs displayed significant 
differences among groups but small effect size (central: ANOVA F-sta-
tistic = 3.47, p = 0.034, η2 = 0.055; occipital: ANOVA F-statistic = 3.30, 
p = 0.040, η2 = 0.052) (Fig. 2B). Post-hoc comparisons in these two 
areas revealed a significant increase in the delta power in the left central 
ROI in the MCI group, when compared to HC (t-test post-hoc: p = 0.047, 
Cohen’s d = 0.645). No significant differences were found in the other 
bands in any ROI. 

The analysis of the absolute spectral power yielded similar but non- 
significant results: the delta band displayed smaller differences, while 
the highest effects were found in the alpha band. However, no statistical 
difference was found at the average channel level (ANOVA, delta: F =
0.165, p = 0.848, η2 = 0.003, theta: F = 0.61, p = 0.544, η2 = 0.010, 
alpha: F = 2.51, p = 0.086, η2 = 0.041, beta: F = 2.12, p = 0.125, η2 =

0.034), nor at the ROI level. 
We conclude that, although spectral alterations might be induced by 

the MCI condition, their reliability is too low to lay the ground for EEG- 
based early prediction of dementia. 

Since the only significant difference was found in the delta range, we 
focused to investigate network modifications first in this specific band. 
Specifically, among the computed network metrics (average node 
strength (Fig. 3A), weighted clustering coefficient (Fig. 3B), weighted 
path length (Fig. 3C) and small-world index (Fig. 3D)), the only one with 
significant changes among groups was the small-worldness (Fig. 3D) 
(Kruskal-Wallis H-statistic = 9.548, p = 0.0085). Interestingly, SCD 
small-worldness resulted significantly higher compared to MCI (Wil-
coxon post-hoc: p = 0.012, Cohen’s d = 0.56) but not to HC (Wilcoxon 
post-hoc: p = 0.119, Cohen’s d = 0.63). The small-worldness metric did 
not display significant differences in the other bands (theta: Kruskal- 
Wallis H-statistic = 4.137, p = 0.126, alpha: Kruskal-Wallis H-statistic 
= 4.322, p = 0.115, beta: Kruskal-Wallis H-statistic = 2.776, p = 0.250), 
nor did the others network metrics (p > 0.05 for all tests). 

3.2. Microstate analysis 

To investigate changes in the overall topographical maps of activity 
in the different conditions, we then decomposed the scalp EEG according 
to standard microstates (Michel and Koenig, 2018) (see section 2.5 for 
details). The shape of the microstates was not different across the three 

conditions (multi-group TANOVA average dissimilarity: microstate A d 
= 0.316, p = 0.79; microstate B d = 0.583, p = 0.32; microstate C d =
0.353, p = 0.71; microstate D d = 0.459, p = 0.40). By back-fitting 
grand-average maps (Fig. 4A) into single-subject data, the temporal 
activity of scalp EEG was decomposed into a discrete sequence of mi-
crostates (Fig. 4B). 

We compared duration (Fig. 4C), coverage and occurrence (Fig. 4D) 
of each microstate among groups. We found significant differences in 
both the duration and coverage of microstate C (duration: Kruskal- 
Wallis H-statistic = 10.747, p = 0.0046; coverage: Kruskal-Wallis H- 
statistic = 7.837, p = 0.0199). 

Post-hoc testing revealed that microstate C displayed a decreased 
duration and coverage in MCI compared to HC (Wilcoxon post-hoc, 
duration: p = 0.029, Cohen’s d = 0. 65, coverage: p = 0.080, Cohen’s 
d = 0.73) and SCD (Wilcoxon post-hoc, duration: p = 0.032, Cohen’s d 
= 0.42; coverage: p = 0.075, Cohen’s d = 0.50). Microstate B displayed a 
change in both coverage and occurrence rate (coverage: Kruskal-Wallis 
H-statistic = 6.25, p = 0.044; occurrence: Kruskal-Wallis H-statistic =
6.84, p = 0.0326). In this case, an increase in both coverage and fre-
quency of occurrence was found in MCI, compared to SCD only (Wil-
coxon post-hoc, coverage: p = 0.0385, Cohen’s d = 0.54, occurrence: p 
= 0.0443, Cohen’s d = 0.52). Finally, a significant variation in micro-
state A coverage appeared (Kruskal-Wallis H-statistic = 7.65, p =
0.022), with an increase in the SCD group compared to HC (Wilcoxon 
post-hoc, p = 0.0178, Cohen’s d = 0.81). 

Further significant differences were found in transition probabilities 
among microstates (Fig. 4E, see Results for the complete statistics), 
coherently with changes in duration of each state. Even more interest-
ingly, the structure of the temporal patterns of microstates was signifi-
cantly altered in MCI, as indicated by a decrease in the LZ complexity 
compared to SCD (see section 2.6, Fig. 4F, left): Kruskal-Wallis H-sta-
tistic = 9.02, p = 0.011, post-hoc SCD vs MCI: p = 0.026, Cohen’s d =
0.45). Moreover, the long-term memory measured through the Hurst 
exponent (see section 2.6 for details) resulted in microstate patterns 
closer to a random walk, both in SCD and MCI compared to HC (Kruskal- 
Wallis H-statistic = 11.05, p = 0.0040, post-hoc HC vs SCD: p = 0.018, 
Cohen’s d = 0.63; SCD vs MCI: p = 0.002 8, Cohen’s d = 0.87; Fig. 3F, 
right). These results show that the temporal structure of microstates is 
reliably altered in MCI. 

Fig. 3. Network metrics. (A) Average node strength. (B) Weighted clustering coefficient. (C) Weighted characteristic path length. (D) Small-world index (Ω). In all 
panels, the significance of the corresponding statistical test (see Methods) is represented as follow: * p < 0.05, ** p < 0.01, *** p < 0.001. In violin plots the inner 
thick line represents the interquartile range of the distribution; the thin line shows the lower/upper adjacent values (1st quartile − 1.5 IQR and 3rd quartile + 1.5 IQR 
respectively). Shaded area represents the distribution of the data, as computed by kernel density estimate, and each datapoint is represented inside as a dot. 
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Fig. 4. Microstate metrics. (A) Grand-average microstate maps obtained by clustering single-subject topographies. (B) Example global field power (GFP) time courses 
for one HC (upper), one SCD subject (middle) and one MCI subjects (lower), in 2 s of continuous EEG signal. The GFP course is colored based on the active microstate 
in that time-point (Blue – Microstate A, Orange – Microstate B, Yellow – Microstate C, Purple – Microstate D). Qualitatively more prominence of the Microstate C can 
be observed in the MCI subject compared to the SCD one, as well as an overall less complex pattern of transitions. (C) Duration distributions in the three groups for 
each pair of microstates. The value is expressed as fraction of total time in which the EEG signal is covered by one microstate. (D) Frequency distribution of in the 
three groups for each pair of microstates, expressed as number of times the microstate appears per second. (E) Differences in transition probabilities among groups. 
The dashed arrow indicates that the transition from microstate at the base of the arrow is not different from the one at the tip of the arrow. A red arrow indicates a 
statistical increase in the pairwise comparison, while a blue arrow indicates a decrease in the transition probability (F) Lempel-Ziv complexity (left) and Hurst 
exponent (right) in the two groups. In all panels, the significance of the corresponding statistical test (see section 2.6) is represented as follow: * p < 0.05, ** p < 0.01, 
*** p < 0.001. In violin plots the inner thick line represents the interquartile range of the distribution; the thin line shows the lower/upper adjacent values (1st 
quartile − 1.5 IQR and 3rd quartile + 1.5 IQR respectively). Shaded area represents the distribution of the data, as computed by kernel density estimate, and each 
datapoint is represented inside as a dot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Microstate topographies based on ATN classification 

So far, our analysis focused on the relationship between neural ac-
tivity and clinical conditions (HC, SCD and MCI) defined by neuropsy-
chological assessments (see section 2.6). However, patients can have 
similar behavior even if the underlying progression of dementia is at 
different stages. To assess the relationship between EEG markers and 
this latter aspect, we acquired CSF biomarkers from a subset of our SCD 
and MCI subjects (n = 50, SCD = 30, MCI = 20, see section 2.1). We 
tested if the positivity to CSF markers was also associated to detectable 
changes in microstates topology. No difference was present among mi-
crostates when grouping by amyloid pathology (A+ (n = 16, of which 8 
SCD and 8 MCI) vs A- (n = 34, of which 22 SCD and 12 MCI), TANOVA 
dissimilarity: microstate A d = 0.036, p = 0.433; microstate B d = 0.031, 
p = 0.597; microstate C d = 0.029, p = 0.570; microstate D d = 0.004, p 
= 0.928, Bonferroni corrected, Fig. 5A). However, we found that the 
shape of the microstate C was significantly different between carriers of 
AD pathology (n = 10, of which 4 SCD and 6 MCI) and non-carriers (n =
40 of which 26 SCD and 14 MCI) (TANOVA dissimilarity: microstate A d 
= 0.032, p = 0.552; microstate B d = 0.048, p = 0.468; microstate C d =
0.124, p = 0.028; microstate D d = 0.060, p = 0.255, Bonferroni cor-
rected, Fig. 5B). 

4. Discussion 

Our work concurrently analyzed EEG features as power spectra, 
connectivity, and microstate markers in SCD, MCI and healthy controls. 
We found that some of these EEG features significantly differ across 
conditions. In particular, microstates are the most robust marker of 

differentiation between subjective and objective cognitive decline. The 
degradation of microstate C resulted in a lesser complexity of the 
microstate sequence in MCI. Results were even stronger when taking 
into account the AD CSF biomarkers profile in a subgroup of patients, as 
in this case microstate C topology itself was altered. These results sug-
gest that the possible progression from subjective to objective cognitive 
decline might be associated to a change in the global structure of cortical 
activity that can be properly detected by microstate analysis. 

The increasing interest in characterizing SCD is due to the possibility 
of intercepting Alzheimer’s Disease at the earliest stages of the pathol-
ogy. SCD constitute a heterogeneous group, as it could be related to 
conditions such as normal aging, personality traits, psychiatric condi-
tions, neurologic and medical disorders, substance use, and medication 
(Margolis et al., 2020). Therefore, understanding whether SCD is a valid 
concern and finding the most cost-effective tools to ascertain this is 
crucial both for people experiencing SCD and for targeting dementia 
prevention (Vellas et al., 2011). Several efforts have been put to this aim, 
identifying demographic (Mazzeo et al., 2020), cognitive (Bessi et al., 
2018; Chary et al., 2013; Mazzeo et al., 2019b; Silva et al., 2012; 
Wolfsgruber et al., 2020), genetic (Ali et al., 2018; Bessi et al., 2020b, 
2020a; Mazzeo et al., 2022; Mazzeo et al., 2021; Mazzeo et al., 2019a) 
and brain structure (Wang et al., 2020) features to stratify SCD patients 
according to the risk of progression to objective cognitive decline. 

In the last years, the potential use of EEG for diagnosing dementia 
pathologies, and in particular AD has been extensively investigated 
(Alberdi et al., 2016; Gouw et al., 2017; Malek et al., 2017). However, 
previous research has mostly focused on the classification of either 
healthy controls and MCI (or AD dementia patients), or healthy controls 
and SCD subjects. In this study we focused our attention on the 

Fig. 5. Topographical differences in ATN classification. (A) Group-level mean topographies of Amyloid negative (A-) and Amyloid positive (A + ) subjects. (B) 
Group-level mean topographies of SCD or MCI subjects due to Alzheimer’s Disease (AD pathology) and not due to Alzheimer’s Disease (No AD-pathology). In all 
panels, the significance of the corresponding statistical test (see section 2.7) is represented as follow: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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discrimination between SCD and MCI conditions, as we aimed to explore 
possible biomarkers of the ongoing cognitive decline. Such biomarkers 
should be cross-sectionally present in the MCI group, while should only 
be present in the subset of SCD that will develop the dementia. Hence, 
comparing these “closer” groups should help highlighting differences 
related to the onset of the disease and that could possibly be used as 
candidate biomarkers for longitudinal studies. 

4.1. Spectral analysis 

Our spectral results show a degree of similarity with the findings of 
previous research. In a previous work (Smailovic et al., 2018) a large 
cohort (>600 total subjects) of memory clinic patients was tested for 
differences in the spectral activity of SCD, MCI and Alzheimer’s patients. 
While the three-groups comparison highlighted differences in global 
field power in the delta, theta and alpha bands, these differences were 
mostly due to the EEG profile of Alzheimer’s patients, with less vari-
ability between the SCD and MCI groups. This is in accordance with 
what we found for power spectra at the sensors’ level (Fig. 2). In another 
work (Jeong et al., 2021), EEG power spectra of SCD patients were 
compared to healthy controls, and higher frontal-channels delta activity 
was found. While this is not true for the channel-level spectra in our 
data, we found similar trends in the delta band, although not significant. 
Our trends are also in line with the MEG study by López-Sanz and col-
leagues (López-Sanz et al., 2016) in which they claim that alpha band 
power decreases similarly in SCD and MCI compared to controls, but the 
slowing of the alpha band peak is only visible in the MCI cohort. Another 
work (Babiloni et al., 2010) found differences in spectral power of 
cortical sources in the parietal and occipital theta in SCD patients, as 
well as greater amplitude in the alpha band comparing SCD and MCI 
subjects. Differences with these results, while being partially in line with 
ours, may be due to the use of source power and a different subdivision 
in frequency bands (dividing alpha in two sub-bands). 

Overall, the lack of clear spectral differences between the two groups 
may indicate that the whole-brain changes that underpin the slowing in 
the oscillations widely observed for Alzheimer’s Disease are not yet 
markedly visible in the SCD condition. Further studies should investi-
gate whether taking other risk factors into account (e.g. by following the 
SCDplus criteria subdivisions (Jessen et al., 2014)) may reveal subgroups 
of SCD or MCI patients in which the neurodegeneration is more apparent 
at the spectral level. 

However, spectral differences may be obscured by the inherent inter- 
subject variability of power measurements in the EEG signal (e.g. due to 
the variability in the alpha peak (Haegens et al., 2014)). Hence, the lack 
of statistical significance of spectral features in our cross-sectional study 
does not rule out their possible importance in longitudinal studies. 

4.2. Network metrics 

On the other side, recent evidence suggests that connectivity-based 
approaches may be more able to characterize SCD with respect to 
other pathological stages of dementia (Lazarou et al., 2019). For 
frequency-based connectivity estimates, a decrease in the degree of 
connections has been reported in AD and MCI (Babiloni et al., 2018a, 
2006; Rossini et al., 2006). We did not find any difference among groups 
in the average strengths of the connection between brain areas. To avoid 
widely increasing the number of possible comparisons, we focused on 
the average strength over all brain areas, a measure that may not be 
sensitive enough to capture subtle differences in connectivity that may 
appear early in the cognitive decline process. This may be the reason 
why we did not find decreased connectivity even in the MCI cohort when 
compared to HC, as previously reported in other studies. Focusing on 
area-specific connections, we may find differences appearing even early 
in the AD continuum. 

Moreover, the small-worldness metric was reported to be disrupted 
in Alzheimer’s Disease (Vecchio et al., 2018). Interestingly, we found 

alterations of the small-world metric in the delta band in the SCD cohort, 
even though these changes normalize in the MCI group (see Fig. 3D). 
This u-shaped difference deserves further investigation but might be 
sub-optimal for decoding the patient’s clinical condition. Undergoing 
computational studies suggest that the increase in small-worldness only 
present in SCD patients is due to some form of protection mechanisms 
against the onset of the decline. In any case the differences with other 
studies (e.g. (Frantzidis et al., 2014; Xu et al., 2020)) may be due to 
several reasons: first, connectivity-based estimates of network proper-
ties are greatly influenced by methodological choices, especially related 
to source localization and the adopted connectivity metric, as reported 
(Mahjoory et al., 2017). Secondly, small-worldness is a summary metric 
that is computed at the whole-brain level. In the case of the conditions 
we are analyzing, global changes in the network properties of the system 
may not be observable at the stage of SCD or MCI, especially using time- 
invariant connectivity estimates. In this sense, using a simpler clustering 
approach that can still capture connectivity patterns in the data, even 
modelling dynamic transitions, such as microstate analysis, revealed 
better in increasing the discriminating capability. 

4.3. Microstate analysis 

Microstate analysis was already used in the past to discriminate be-
tween SCD, MCI and AD by (Smailovic et al., 2019). In their work, 
several differences have been highlighted in microstates characteristics 
comparing HC, SCD and MCI groups. Specifically, they identified altered 
topographies of the microstate A and D in each clinical condition 
compared to controls, and differences between SCD and controls for the 
microstate C. Conversely, we did not identify any topographical differ-
ence based on cognitive characterization (HC, SCD, MCI). Despite the 
consistent differences in this result, we hypothesize it may be due to the 
much larger number of participants in the study of Smailovic and col-
leagues compared to ours: the increased power of their sample allowed 
them to detect smaller differences in map topographies. These topo-
graphical differences prevent direct comparison with our results 
regarding duration, coverage, and occurrence. 

One key advancement relative to the work of Smailovic are our 
analysis of the temporal patterns of the microstates. First, we found 
significant differences in transition probabilities. Then, we also applied 
for the first time on an SCD cohort the computation of LZ complexity of 
the microstate sequence (Tait et al., 2020). The complexity of signals 
disruption, widely observed in the case of Alzheimer’s in EEG and MEG 
(e.g. (Tait et al. 2020; Shumbayawonda et al., 2020)) may also hold true 
in characterizing the difference between SCD and MCI. LZ complexity 
has been selected over other metrics of complexity of EEG signals, such 
as Approximate and Sample entropy (Delgado-Bonal and Marshak, 
2019) as it is optimized to handle discrete sequences of symbols, such as 
the microstate sequence. LZ complexity is known to be a robust marker 
of brain dysfunction, both when computed at the signal level (e.g. in 
depression (Bachmann et al., 2015), schizophrenia (Ibáñez-Molina et al., 
2018) and epilepsy (Abásolo et al., 2007; Bai et al., 2015)) and at mi-
crostates level (for example (Artoni et al., 2022; Tait et al., 2020; Zhao 
et al., 2022)). 

LZ complexity measures the diversity of patterns in the signal (in this 
case, the microstates sequence). It is a proxy measure for the loss of the 
information conveyed by the temporal evolution of cortical activity as 
this might occur since the earliest stages of cognitive decline. Indeed, 
our results show that the progression of cognitive decline is associated 
with a reduction in LZ complexity. 

We also introduced for the first time the Hurst exponent in the 
analysis of the microstate sequence in the SCD cohort: it revealed a 
gradient-like pattern of the long-term memory of the microstate 
sequence towards the random walk behavior as the cognitive decline 
progresses. Since the Hurst exponent in healthy adults correlates with 
long-term dependencies in the microstate sequence (Van de Ville et al., 
2010), our results suggest that a loss of long-term temporal connections 
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in the EEG signal may be a hallmark of cognitive decline. 
Moreover, such alterations to EEG microstates in the path towards 

dementia may not only be a tool to early diagnose the disease, but also a 
first step towards the development of therapies to at least alleviate the 
symptoms of AD. Recently, gamma audiovisual flicker stimulation has 
been proven a valid tool to reduce the symptoms of AD (Iaccarino et al., 
2016), even in humans with prodromal phases of the disease (He et al., 
2021). In a recent work (Zhang et al., 2021) it has been shown that 
gamma entrainment alters microstate dynamics (coverage, transition 
probabilities and Lempel-Ziv complexity) in healthy subjects compared 
to control stimulation. 

EEG microstates have also been extensively applied to the study of 
other neurological disorders, especially schizophrenia. Several schizo-
phrenia studies report an increase in the occurrence of microstate C 
compared to controls (Kikuchi et al., 2011; Nishida et al., 2013). In 
depression, studies have often reported variation of the microstate D 
temporal patterns (Li et al., 2021; Murphy et al., 2020). At the same 
time, the microstate C duration is reduced compared to controls also in 
other forms of dementia, such as frontotemporal dementia (Nishida 
et al., 2013). When comparing SCD and MCI, we observe instead a trend 
toward a decrease of microstate C occurrence and duration from SCD to 
MCI, and no differences in microstate D properties. This suggests there 
may be divergent pathways between neurodegenerative and psychiatric 
diseases. 

4.4. Microstate topographies based on ATN classification 

Smailovic and colleagues (Smailovic et al., 2019) showed that 
changes in the topography of microstate class C were associated with the 
CSF Aβ42 levels. Differently, we found no significant difference between 
the A + and A− cohorts. However, we found significant differences in 
the microstate C topography when comparing the AD-like CSF profile 
group (A + associated with T + and/or N + ) with the non-AD CSF 
profile. This may be due to our further categorization based on two CSF 
markers, able to reveal more subtle differences in the topographies of 
the groups compared to the single-marker classification. 

Moreover, we hypothesize that the differences that we found in the 
microstate temporal sequence in the cognitive characterization of the 
subjects (SCD and MCI), mostly found in microstate C, convert to 
topographical changes when selecting the subset of patients with AD 
pathology. In this view we could hypothesize that differences in the 
microstate C topography could be predictive of a future progression to 
dementia, being present in the subgroup of individuals more at risk for 
progression to AD dementia. Naturally, the evolution of individuals over 
time will serve to confirm these data. 

Interestingly, microstate C topography has been previously related to 
object-visual thinking (Milz et al., 2016) and to attention reorientation 
(Britz et al., 2010), hence highlighting how these two features may get 
disrupted early on in the cognitive decline process. 

4.5. Limitations 

Our study presents some limitations that should be addressed in 
future works. First, the sample size of our work is relatively limited if 
compared to some of the previous works (Smailovic et al., 2019; Smai-
lovic et al., 2018). In particular, the limited number of subjects with CSF 
did not allow for a complete two-factors study of the interplay between 
the clinical and ATN classification in determining EEG microstates. 
Another limitation is the lack of patients with full Alzheimer’s dementia, 
that could have helped in better checking whether the identified features 
are coherently describing the decline in all its stages. 

Another limitation of the current work is the absence of age matching 
between the SCD and MCI groups. While this is an inherent property of 
the cohort, due to the later occurrence of MCI in the Alzheimer’s con-
tinuum (Bessi et al., 2018; Smailovic et al., 2019), the different ages of 
the two groups may enhance some of the effects found in the identified 

markers (Rempe et al., 2023; Zappasodi et al., 2015). However, the 
differences found between SCD and MCI in microstate C duration and 
occurrence have an opposite sign compared to the age-related differ-
ences in the available literature (Koenig et al., 2002), corroborating our 
conclusions. 

An additional limitation in our results may be due to the limited 
amount of control subjects that were recruited. However, most of the 
results are robust to the unbalance in the sample sizes of the three groups 
thanks to the use of non-parametric tests. 

Finally, we also need to take into account that the SCD cohort is by 
definition a heterogeneous group, in which people that will develop a 
form of dementia coexist with healthy elderly. Since our sample size was 
limited, we only considered a limited number of possible covariates, 
most notably the CSF biomarkers. However, it will be necessary in future 
studies to investigate the relationship between EEG features and other 
neuropsychological characteristics, in order to better cluster subjects 
within the SCD condition. 

4.6. Perspectives and future studies 

This work demonstrated the possibility of finding resting-state EEG 
markers between two stages of cognitive decline cross-sectionally, by 
comparing different analysis methods. To the best of our knowledge, this 
is the first study assessing possible spectral, connectivity and microstate 
markers simultaneously in the same cohort of SCD and MCI subjects. 
Additionally, we introduced some features, such as the Hurst exponent, 
that were not previously used to describe the pre-clinical stages of AD 
but displayed significant differences across conditions. 

In conclusion, microstate analysis revealed to be the most prominent 
EEG marker to distinguish SCD, MCI and controls. Several improve-
ments to this study will be explored in the future as the study PREVIEW 
goes on. First, current SCD patients will be followed-up to track changes 
in their EEG metrics behavior and ultimately to check whether it is 
possible to prognostically use the methods we developed here to predict 
the onset of MCI or Alzheimer’s Dementia. Finally, a cross-validated 
machine learning algorithm will be developed to assess the prediction 
capability of the found markers to distinguish longitudinally the 
different forms of dementia. 
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Başar, E., Yener, G., Emek-Savaş, D.D., Triggiani, A.I., Franciotti, R., Taylor, J.P., 
Vacca, L., De Pandis, M.F., Bonanni, L., 2018a. Abnormalities of resting-state 
functional cortical connectivity in patients with dementia due to Alzheimer’s and 
Lewy body diseases: an EEG study. Neurobiol. Aging 65, 18–40. https://doi.org/ 
10.1016/j.neurobiolaging.2017.12.023. 

Babiloni, C., Del Percio, C., Lizio, R., Noce, G., Lopez, S., Soricelli, A., Ferri, R., 
Pascarelli, M.T., Catania, V., Nobili, F., Arnaldi, D., Famà, F., Orzi, F., Buttinelli, C., 
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