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A B S T R A C T

Tubular structures made of elastic helical fibers are widely found in nature and in technology. The complex
and highly nonlinear mechanical properties of such assemblies have been understood either through minimal
models or through complex simulations describing each individual fiber and their interactions. Here, inspired
by Chebyshev’s geometric model of nets, we propose and experimentally validate a modeling framework that
treats tubular braided meshes as continuum surfaces corresponding to the virtual envelope defined by the
fibers. The key idea is to relate surface geometry and fiber kinematics, enabling us to follow large deformations.
This theory is amenable to efficient computations and, in axisymmetric cases, the problem reduces to finding
two scalar fields defined over 1D segments. We validate our model against experiments of axial compression,
revealing the existence of a plateau with vanishing stiffness in the axial force–displacement curve, a feature that
could prove particularly useful in applications where an applied compressive force needs to be held constant
even against settlements of the compressed object.
1. Introduction

Tubular structures made of elastic helical fibers are common in
nature and technology. These structures appear in many different con-
texts at many different length scales and exhibit nontrivial mechanical
properties. Examples are helices in the structures of folded proteins
and biopolymers (e.g. , DNA, microtubules), the axoneme of eukaryotic
flagella, helical fibers in the walls of plant cells and in muscular
hydrostats, helical springs, braided composites, or antennas for space
satellites (Chouaieb et al., 2006; Olson et al., 2013; Arroyo and DeSi-
mone, 2014; Kuenstler et al., 2020; Gao et al., 2020; Quaglierini et al.,
2021; Harte and Fleck, 2000a,b).

At intermediate scales, braided meshes in McKibben pneumatic
actuators are an important example of tubular structures made of many
interwoven helical fibers (Tondu, 2012; Hassan et al., 2018). These
structures transform the radial expansion induced by inflating an inner
balloon into axial displacements and exhibit a highly nonlinear, yet
very robust and reproducible, mechanical response. Hence, they are
particularly suitable for artificial muscle applications. Braided cylin-
drical meshes are also used as grippers following the principle of the
Chinese finger trap (Shang et al., 2019). The large – yet fully reversible
– deformations they exhibit in response to human and animal touch
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make the manipulation of these structures easy and rewarding. In fact,
they are used as anti-stress devices for humans and as toys for kittens.

The highly nonlinear response stems from the variation of the ge-
ometry of the helical fibers as the structure is compressed or extended;
for example, depending on the braiding angle of their fibers, they
respond to pressurization by either extending or contracting along the
axis. In applications where axial displacement is an undesired outcome
of pressurization, as in reinforced garden hoses and tires, the fibers
are wound at a special angle (‘‘magic angle’’) for which no axial
displacement is induced by variations of pressure. Furthermore, the
axial stiffness of the mesh depends on the braiding angle, which is
interesting as it makes the structure ‘‘adaptive’’, that is, its stiffness can
be tuned by applying a compressive pre-load (Connolly et al., 2017).

To quantitatively understand the nonlinear mechanics of these as-
semblies, two different approaches of contrasting complexity have been
followed. At one end, if any variation of the braiding angle along the
axis is neglected and fibers are approximated as circular helices (Tondu,
2012), an application of the Principle of Virtual Work (PVW) defines a
simple formula for the axial force necessary to balance a given internal
pressure depending on the braiding angle. This modeling approach
captures key features of these structures but it is too simplistic to
faithfully reproduce many operating conditions of the braided devices.
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Fig. 1. (a) Sketch of the initial configuration of the mesh, with the initial braiding angle 𝜃0 highlighted in the inset. (b) Example of a deformed configuration of the mesh, where
the braiding angle 𝜃 is a function of position.
At the other end, these structures have been modeled by an explicit
‘‘fiber-by-fiber’’ strategy using Finite Elements Methods (FEM); in this
approach, fibers are divided into the truss-like elements that form the
pantograph-like substructures of the mesh, which are then described
and solved for as individual beams linked together through boundary
conditions (Hassan et al., 2018). Despite their accuracy, these sim-
ulations are computationally expensive and do not reveal the inner
working principles behind the overall behavior of these structures.

In this paper, we propose a new coarse-grained or mesoscopic
modeling framework for tubular structures composed by helical fibers,
formulated at an intermediate level of complexity, to retain the physical
insight and computational efficiency of simple theories as well as the
ability to quantitatively model complex non-uniform deformation sce-
narios. To this aim, we exploit the concept of virtual envelope surface,
that is, the surface of revolution on which the center-lines of all fibers
lie. The elastic energy of the envelope surface is then obtained from
the energy stored by the deformed fibers, each modeled as a Kirchhoff
rod, i.e., as an inextensible and unshearable Cosserat rod. Similar ap-
proaches are found in Giorgio et al. (2015, 2016), Steigmann (2018b,a),
Giorgio et al. (2018), Shirani and Steigmann (2021), McAvoy and
Steigmann (2022). Considering axisymmetric deformations, our coarse-
grained model reduces dramatically the complexity of the problem,
which boils down to solving for two scalar fields, that is, the braiding
angle 𝜃 that the fibers form with the parallels of the envelope surface
as a function of their position along the axis of the tubular mesh, and
the angle 𝜑 expressing the misalignment of the frame of directors with
respect to the Darboux frame.

We then focus on the response under axisymmetric loads of cylin-
drical braided meshes, analyzing it through a computational implemen-
tation of our model, which we validate against experiments of axial
compression. Our results highlight the existence of a plateau in the
axial force/displacement curve, during which the mesh contracts under
a constant compressive force with effectively zero stiffness (or ‘‘ex-
treme compliance’’), akin to superelasticity in shape-memory materials.
However, rather than relying on the material microstructure and phase
transformations at the atomic scale, here this response is the result of
the architecture of the braid seen as a metamaterial. This remarkable
feature could prove particularly useful in applications requiring force
buffering against large extensions and compressions.

The remainder of this paper is organized as follows. In Section 2,
we present the mathematical framework on which our model is based.
2

In Section 3, we present our main findings on braided meshes and
compare numerical simulations with experimental results. In Section 4,
we discuss their implications and outline possible directions for future
work.

2. Mathematical modeling

We consider a cylindrical mesh with initial radius 𝑅0 and initial
height 𝐻0, composed of 𝑁f identical inextensible fibers, whose center-
lines form circular helices in the reference configuration, which we
assume to be stress-free. Fibers are organized in pairs of helices of
opposite chirality, i.e., one right-handed and one left-handed, and share
the same helical axis which coincides with the one of the mesh, see
Fig. 1a. In the reference configuration, right-handed helices form a
positive angle 𝜃0 ∈ (0, 𝜋∕2) with the parallels of the cylinder (braiding
angle), while left-handed ones form an angle equal to −𝜃0.

Our goal is to study equilibrium configurations of the mesh under
compression or extension, while it is subjected to axisymmetric loads
and constraints. To do so, we develop a continuum theory for the mesh
based on its envelope surface, i.e., the surface where the center-lines
of the fibers lie. We then attribute the energy of the fibers, modeled
as elastic Kirchhoff rods, to the envelope surface, thus reducing the
complexity of the problem and speeding up its solution.

To obtain the kinematics of the envelope surface, we first describe
it in the natural parametrization for surfaces of revolution in terms of
parallels and meridians, both in reference and deformed configurations.
Then, we impose the inextensibility of the fibers and obtain a formula-
tion of the metric of the envelope surface in terms of 𝜃, the angle that
right-handed fibers form with the parallels of the mesh in the deformed
configuration and that in principle depends on position (see Fig. 1b).
By substituting the obtained metric into the natural parametrization,
we describe the kinematics of the envelope surface in terms of 𝜃 alone.
Finally, we model the fibers as Kirchhoff rods with an internal field 𝜑,
i.e., the angle of misalignment of the frame of directors with respect
to the Darboux frame of the rod as a curve embedded in the virtual
envelope surface. The elastic energy of the mesh is then obtained in
terms of the strains of the rods, that are functions of 𝜃, 𝜑. Note that we
are assuming that no buckling occurs at the level of individual fibers.
In fact, while single helical fibers tend to buckle under compression, it
has been shown that meshes with a higher number of fibers (𝑁𝑓 ≥ 8)

are stabilized (Quaglierini et al., 2021).
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2.1. Geometry and kinematics of the envelope surface as a surface of
revolution

Let {𝒆1, 𝒆2, 𝒆3} be the global Cartesian reference frame, with 𝒆3 along
the axis of the mesh. We describe the envelope surface of the mesh in
its initial configuration as a cylinder, parametrized by

𝝌0(𝑢, 𝑣) =
(

𝑅0 cos
(

𝑢
𝑅0

)

, 𝑅0 sin
(

𝑢
𝑅0

)

, 𝑣
)

, (𝑢, 𝑣) ∈ [0, 𝐿0] × [0,𝐻0],

here 𝐿0 = 2𝜋𝑅0. We restrict our attention to axisymmetric deforma-
ions, parametrized by

(𝑢, 𝑣) =
(

𝑟(𝑣) cos
(

𝑢
𝑅0

+ 𝜓(𝑣)
)

, 𝑟(𝑣) sin
(

𝑢
𝑅0

+ 𝜓(𝑣)
)

, 𝑧(𝑣)
)

,

where 𝑟(𝑣), 𝑧(𝑣) are the distance from the axis and the current axial
coordinate, and 𝜓(𝑣) is the azimuthal displacement. We assume no
sliding between fibers; since fibers are identical (modulo chirality) and
both right-handed and left-handed ones are present, the system does
not rotate with respect to its axis. Therefore, we set 𝜓 ≡ 0,

𝝌(𝑢, 𝑣) =
(

𝑟(𝑣) cos
(

𝑢
𝑅0

)

, 𝑟(𝑣) sin
(

𝑢
𝑅0

)

, 𝑧(𝑣)
)

.

For the sake of readability, we will drop the dependency from 𝑢, 𝑣 in the
following. We compute the columns of the derivative D𝝌 of the map 𝝌 ,

𝝌 ,𝑢 =
(

− 𝑟
𝑅0

sin
(

𝑢
𝑅0

)

, 𝑟
𝑅0

cos
(

𝑢
𝑅0

)

, 0
)

,

𝝌 ,𝑣 =
(

𝑟,𝑣 cos
(

𝑢
𝑅0

)

, 𝑟,𝑣 sin
(

𝑢
𝑅0

)

, 𝑧,𝑣

)

,

where commas denote partial derivatives, and in turn the coefficients
of the first fundamental form,

𝐸 = 𝝌 ,𝑢 ⋅ 𝝌 ,𝑢 =
(

𝑟
𝑅0

)2
,

𝐹 = 𝝌 ,𝑢 ⋅ 𝝌 ,𝑣 = 0 ,

𝐺 = 𝝌 ,𝑣 ⋅ 𝝌 ,𝑣 = (𝑟,𝑣)2 + (𝑧,𝑣)2 .

(1)

We then define a field of unit vectors normal to the surface,

𝑵 ∶=
𝝌 ,𝑢 ∧ 𝝌 ,𝑣

‖𝝌 ,𝑢 ∧ 𝝌 ,𝑣‖
= 1

√

𝐺

(

𝑧,𝑣 cos
(

𝑢
𝑅0

)

, 𝑧,𝑣 sin
(

𝑢
𝑅0

)

,−𝑟,𝑣

)

,

where {𝝌 ,𝑢,𝝌 ,𝑣,𝑵} is a positively-oriented orthogonal basis of R3. Thus,
the coefficients of the second fundamental form are computed as

𝑒 = 𝝌 ,𝑢𝑢 ⋅𝑵 = −
𝑟𝑧,𝑣

𝑅2
0

√

𝐺
,

= 𝝌 ,𝑢𝑣 ⋅𝑵 = 0 ,

𝑔 = 𝝌 ,𝑣𝑣 ⋅𝑵 =
𝑟,𝑣𝑣𝑧,𝑣 − 𝑟,𝑣𝑧,𝑣𝑣

√

𝐺
.

(2)

.2. Angle-based parametrization of inextensible fibers

The braided mesh is composed of two families of non-orthogonal
ibers. By definition, their center-lines lie on the envelope surface
here, in the reference configuration, they form right-handed and

eft-handed helices with braiding angles 𝜃0, −𝜃0, respectively. Generic
ibers, left- and right-handed, can be represented in the parametric
lane 𝑢, 𝑣 as
L(𝑠) =

(

𝑢L
0 + 𝑠 cos(𝜃0),𝐻0 − 𝑠 sin(𝜃0)

)

, 𝑠 ∈
[

0 , 𝐻0 sin
−1(𝜃0)

]

, (3)

𝐶R(𝑡) =
(

𝑢R
0 + 𝑡 cos(𝜃0), 𝑡 sin(𝜃0)

)

, 𝑡 ∈
[

0 , 𝐻0 sin
−1(𝜃0)

]

, (4)

where 𝑠, 𝑡 are arc-length parameters and 𝑢R
0 , 𝑢

L
0 are 𝑢-intercepts of the

two lines. The image of these parametric lines through the map 𝝌0, that
is 𝝌0(𝐶L(𝑠)), 𝝌0(𝐶R(𝑡)), represents the center-lines of the fibers in the
reference configuration; since 𝝌0 is an isometry, 𝑠, 𝑡 are the arc-lengths
3

of these space curves as well. After deformation, fibers are described
Fig. 2. Sketch of how the braiding angle changes during deformation, going from 𝜃0
to 𝜃. The shear angle 𝛾 is also shown.

by 𝑐L(𝑠) = 𝝌(𝐶L(𝑠)), 𝑐R(𝑡) = 𝝌(𝐶R(𝑡)), with tangent vectors 𝒂(𝑠) = 𝑐L
,𝑠(𝑠)

nd 𝒃(𝑡) = 𝑐R
,𝑡 (𝑡), computed by the chain-rule as

= [D𝝌](cos(𝜃0),− sin(𝜃0))T = cos(𝜃0)𝝌 ,𝑢 − sin(𝜃0)𝝌 ,𝑣 , (5)

𝒃 = [D𝝌](cos(𝜃0), sin(𝜃0))T = cos(𝜃0)𝝌 ,𝑢 + sin(𝜃0)𝝌 ,𝑣 . (6)

o enforce the inextensibility of fibers, we impose that their tangent
ectors remain of unit length, i.e.,

⋅ 𝒂 = 𝒃 ⋅ 𝒃 = 1 , (7)

hich, according to Eqs. (5),(6), is equivalent to

cos2(𝜃0) + 𝐺 sin2(𝜃0) = 1 . (8)

From the definition of 𝜃(𝑣) ∈ (0, 𝜋∕2) as the current braiding angle,
ee Fig. 2, we have that

⋅ 𝒃 = cos(2𝜃) , 𝒂 ∧ 𝒃 = sin(2𝜃)𝑵 . (9)

lternatively, we can compute the same quantities from Eqs. (5),(6) in
erms of the metric induced by the deformation map,

⋅ 𝒃 = 𝐸 cos2(𝜃0) − 𝐺 sin2(𝜃0) , 𝒂 ∧ 𝒃 = (𝐸𝐺)
1
2 sin(2𝜃0)𝑵 . (10)

Hence, by combining Eqs. (8),(9),(10) we can rewrite 𝐸, 𝐺 as

𝐸 =
cos2(𝜃)
cos2(𝜃0)

, 𝐺 =
sin2(𝜃)
sin2(𝜃0)

, (11)

so that the metric tensor of the envelope surface of the mesh is a
function of 𝜃 alone, i.e.,

𝑔(𝜃) =
[

𝐸 𝐹
𝐹 𝐺

]

=

⎡

⎢

⎢

⎢

⎢

⎣

cos2(𝜃)
cos2(𝜃0)

0

0
sin2(𝜃)
sin2(𝜃0)

⎤

⎥

⎥

⎥

⎥

⎦

. (12)

ince fibers are inextensible, we can see the envelope surface of the
raided mesh as clothed/covered by a Chebyshev net formed by the
enter-lines of our two families of fibers (Pipkin, 1984; Steigmann and
ipkin, 1991; Ghys, 2011; Baek et al., 2018) and, following previous
lassical work (Pipkin, 1984), we can define the shear angle 𝛾 as

= 2(𝜃0 − 𝜃) , (13)

here 𝛾 > 0 indicates a decrease of the internal angle between
ibers (see Fig. 2). It can be shown that the well-known relations for
hebyshev nets hold in our case as well. In particular, we have that

,𝑡 = 𝛾,𝑡(𝒃 ∧𝑵) + (𝒃,𝑡 ⋅𝑵)𝑵 , (14)

𝐾 =
𝛾,𝑠𝑡

sin(2𝜃)
, (15)

where 𝐾 is the Gaussian curvature of the surface.
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2.3. Geometry of the mesh in terms of the braiding angle

We have expressed the coefficients of the metric tensor in terms
of 𝑟(𝑣), 𝑧(𝑣), as well as in terms of the current braiding angle 𝜃(𝑣). By
omparing Eqs. (1),(11) we obtain

=
𝑅0

cos(𝜃0)
cos(𝜃) , 𝑧,𝑣 =

sin(𝜃)
sin(𝜃0)

(

1 − 𝑅2
0 tan

2(𝜃0)𝜃2,𝑣
)

1
2 , (16)

which we can substitute into Eq. (2) to get

𝑒 = −
𝑟𝑧,𝑣

𝑅2
0

√

𝐺
= −

tan(𝜃0)
𝑅0

𝑧,𝑣
tan(𝜃)

,

=
𝑟,𝑣𝑣𝑧,𝑣 − 𝑟,𝑣𝑧,𝑣𝑣

√

𝐺
= −

𝑅0
cos(𝜃0) sin(𝜃0)

sin2(𝜃)
𝜃,𝑣𝑣
𝑧,𝑣

.
(17)

Therefore, the geometry of the deformed envelope surface is fully
described by its initial geometry and 𝜃(𝑣). Note that we assume 𝑧,𝑣 ≥ 0,
hus excluding eversions of the mesh (local maxima of 𝑧). Moreover,
he fact that the argument of the square root in Eq. (16) must be
on-negative induces an embeddability constraint,

2
,𝑣 ≤

1
𝑅2
0 tan

2(𝜃0)
⟺ − 1

𝑅0 tan(𝜃0)
≤ 𝜃,𝑣 ≤

1
𝑅0 tan(𝜃0)

,

howing that braiding angle distributions 𝜃(𝑣) with very large spa-
ial variations cannot be achieved with an axisymmetric deforma-
ion map (Marder et al., 2007). Finally, according to the Theorema
gregium by Gauss, we can write the Gaussian curvature 𝐾 in the (𝑢, 𝑣)

parametrization as

𝐾 = − 1

2
√

𝐸𝐺

[(

𝐸,𝑣
√

𝐸𝐺

)

,𝑣

+

(

𝐺,𝑢
√

𝐸𝐺

)

,𝑢

]

=

= − 1

2
√

𝐸𝐺

(

𝐸,𝑣
√

𝐸𝐺

)

,𝑣

=
sin2(𝜃0)

cos(𝜃) sin(𝜃)
𝜃,𝑣𝑣 .

(18)

While Eq. (15) is a well-known general result that holds true also for
non-axisymmetric, non-tubular meshes, Eq. (18) is a special relation
valid only for axisymmetric tubular nets, which in their reference
configuration are cylinders with braiding angle 𝜃0 and axial coordinate
𝑣. However, this restricted formulation allows us to appreciate more
directly how different angle profiles originate different geometries. In
particular, it highlights that

1. 𝜃 ≡ 𝑐𝑜𝑛𝑠𝑡. leads to a cylinder:

𝜃,𝑣 ≡ 0 ⇒ 𝑟,𝑣 = −
𝑅0

cos(𝜃0)
sin(𝜃)𝜃,𝑣 ≡ 0 ,

2. 𝜃 = 𝛼𝑣, 𝛼 = 𝑐𝑜𝑛𝑠𝑡. leads to a cone:

𝜃,𝑣 ≡ 𝛼 ⇒
𝑟,𝑣
𝑧,𝑣

= −
𝛼𝑅0 tan(𝜃0)

(

1 − 𝛼2𝑅2
0 tan

2(𝜃0)
)
1
2

≡ 𝑐𝑜𝑛𝑠𝑡 ,

3. 𝜃,𝑣𝑣 ≠ 0 leads to surfaces with non-zero Gaussian curvature,

esults that are not immediately apparent from the general formulation
f Eq. (15). The results of the present section are analogous to those
n Arroyo and DeSimone (2014) in the context of a different system of
urfaces made of sliding rods.

.4. Fibers as elastic Kirchhoff rods

Fibers are modeled as elastic Kirchhoff rods, with directors 𝒅R,L
𝑖 , 𝑖 =

1, 2, 3 forming a positively-oriented orthonormal basis at each point
along them. Since we consider only axisymmetric deformations and
fibers are mechanically equivalent, each fiber will have the same elastic
energy regardless of its chirality, and the total elastic energy of the
mesh will be the one of a single fiber times their number 𝑁f, counting
4

both right-handed and left-handed fibers. Therefore, in the following
we will drop the superscripts R, L for the sake of readability, and we
will study the kinematics of a single generic right-handed fiber.

Since the center-line of each fiber lies on the envelope surface, we
can attach a second positively-oriented orthonormal frame to it, i.e.,
he Darboux frame defined by {𝑵 , (𝒃 ∧𝑵), 𝒃}, where 𝒃 is the tangent

vector to the curve, and 𝑵 is the vector normal to the surface. Under
the Kirchhoff hypothesis, 𝒅3 coincides with 𝒃, so that the two frames
always share one vector. We can then express 𝒅1 in the Darboux frame
as

𝒅1 = cos(𝜑)𝑵 + sin(𝜑) (𝒃 ∧𝑵) , 𝜑 ∈ [0, 2𝜋),

and in turn

𝒅2 = 𝒅3 ∧ 𝒅1 = cos(𝜑) (𝒃 ∧𝑵) + sin(𝜑)𝒃 ∧ (𝒃 ∧𝑵) = cos(𝜑) (𝒃 ∧𝑵) − sin(𝜑)𝑵 .

Summing up, the directors for a generic right-handed fiber with arc-
length coordinate 𝑡 are defined by

⎧

⎪

⎨

⎪

⎩

𝒅1(𝑡) ∶= cos(𝜑)𝑵 + sin(𝜑) (𝒃 ∧𝑵) ,
𝒅2(𝑡) ∶= cos(𝜑) (𝒃 ∧𝑵) − sin(𝜑)𝑵 ,
𝒅3(𝑡) ∶= 𝒃 .

Thus, we can describe the kinematics of fibers in terms of the one of
the envelope surface – which in turn can be described in terms of 𝜃(𝑣)
– and of the angle 𝜑(𝑣). In the local basis

{

𝒅1,𝒅2,𝒅3
}

, derivatives of
directors along the fibers are expressed through the vector of strains
𝒖 =

(

𝑢1, 𝑢2, 𝑢3
)⊺ (Antman, 2005; Goriely, 2017), that is,

𝒅𝑖,𝑡 = 𝒖 ∧ 𝒅𝑖 , 𝑖 = 1, 2, 3.

The strains are given by

⎧

⎪

⎨

⎪

⎩

𝑢1 = 𝒅2,𝑡 ⋅ 𝒅3 = −𝒅3,𝑡 ⋅ 𝒅2 = cos(𝜑)𝑦1 + sin(𝜑)𝑦2 ,
𝑢2 = 𝒅3,𝑡 ⋅ 𝒅1 = −𝒅1,𝑡 ⋅ 𝒅3 = cos(𝜑)𝑦2 − sin(𝜑)𝑦1 ,
𝑢3 = 𝒅1,𝑡 ⋅ 𝒅2 = −𝒅2,𝑡 ⋅ 𝒅1 = 𝑦3 + sin(𝜃0)𝜑,𝑣 ,

(19)

where

𝑦1 = −𝒃,𝑡 ⋅ (𝒃 ∧𝑵) , 𝑦2 = 𝒃,𝑡 ⋅𝑵 , 𝑦3 = 𝑵 ,𝑡 ⋅ (𝒃 ∧𝑵) . (20)

Since the rod kinematics depends on the shape of the envelope surface
and on the angle between frames, strains can be expressed in terms
of 𝜃(𝑣), 𝜑(𝑣), and their derivatives. Next, we derive these relations. By
recalling Eq. (9) and noting that

𝒂 ⋅𝑵 ,𝑡 = −𝒂,𝑡 ⋅𝑵 , 𝒃 ⋅𝑵 ,𝑡 = −𝒃,𝑡 ⋅𝑵 ,

we can rewrite 𝑦3 as

𝑦3 = 𝑵 ,𝑡 ⋅
(

𝒃 ∧ (𝒂 ∧ 𝒃)
sin(2𝜃)

)

= 𝑵 ,𝑡 ⋅
(

𝒂
sin(2𝜃)

− 𝒃
tan(2𝜃)

)

=

= −
𝒂,𝑡 ⋅𝑵
sin(2𝜃)

+
𝒃,𝑡 ⋅𝑵
tan(2𝜃)

.
(21)

From Eq. (6) we have

𝒃,𝑡 = cos2(𝜃0)𝝌 ,𝑢𝑢 + 2 cos(𝜃0) sin(𝜃0)𝝌 ,𝑢𝑣 + sin2(𝜃0)𝝌 ,𝑣𝑣 , (22)

,𝑡 = 𝒃,𝑠 = cos2(𝜃0)𝝌 ,𝑢𝑢 − sin2(𝜃0)𝝌 ,𝑣𝑣 , (23)

hich combined with Eqs. (14),(21) allow us to rewrite Eq. (20) in
erms of 𝜃, 𝑧 and their derivatives,

1 = −𝛾,𝑡 = 2 sin(𝜃0)𝜃,𝑣 , (24)

2 = 𝑒 cos2(𝜃0) + 𝑔 sin
2(𝜃0) =

= −
cos(𝜃0) sin(𝜃0)

𝑅0

𝑧,𝑣
tan(𝜃)

− 𝑅0 tan(𝜃0) sin
2(𝜃)

𝜃,𝑣𝑣
𝑧,𝑣

, (25)

𝑦3 = −
𝑒 cos2(𝜃0) − 𝑔 sin

2(𝜃0)
sin(2𝜃)

+
𝑒 cos2(𝜃0) + 𝑔 sin

2(𝜃0)
tan(𝜃)

=

= − tan(𝜃)𝑒 cos2(𝜃0) +
𝑔 sin2(𝜃0)
tan(𝜃)

=

=
cos(𝜃0) sin(𝜃0) 𝑧,𝑣 −

𝑅0 tan(𝜃0) sin(2𝜃)
𝜃,𝑣𝑣 . (26)
𝑅0 2 𝑧,𝑣



International Journal of Solids and Structures 282 (2023) 112451J. Quaglierini et al.

T
c
t
(

2

u
a
r
s



w

c
𝑟
f
B

s

𝑊

w
s
s

f
t
a
a
p
t
n

I

𝑦

𝑦

Recalling Eq. (16)2, which expresses 𝑧,𝑣(𝑣) in terms of 𝜃(𝑣), we conclude
that the strains 𝒖 =

(

𝑢1, 𝑢2, 𝑢3
)⊺ given by Eq. (19) are functions of

𝜃(𝑣), 𝜑(𝑣) alone, i.e.,

𝑢𝑖 ≡ 𝑢𝑖
(

𝜃(𝑣), 𝜃,𝑣(𝑣), 𝜃,𝑣𝑣(𝑣), 𝜑(𝑣), 𝜑,𝑣(𝑣)
)

, 𝑖 = 1, 2, 3 . (27)

Notably, in the initial configuration we have 𝜃 ≡ 𝜃0, 𝜑 ≡ 0, which
implies 𝑧,𝑣 ≡ 1 and thus

𝑢1 0 = 0 , 𝑢2 0 = −
cos2(𝜃0)
𝑅0

, 𝑢3 0 =
cos(𝜃0) sin(𝜃0)

𝑅0
. (28)

herefore, the bending strain 𝑢2 0 is equal in absolute value to the
urvature of a circular helix and the torsional strain 𝑢3 0 is equal to
he torsion of a right-handed circular helix(see Chapter 10.4 in Bower
2009)).

.5. Energetics of the mesh

Let 𝑊 (𝑢1, 𝑢2, 𝑢3) be the elastic energy density of a single rod per
nit length. Then, accounting for the fact that there are 𝑁f rods in the
ssembly and that in the reference configuration the arc-length 𝑡 of a
od is related to the parametric coordinate 𝑣 by the relation 𝑡 = 𝑣∕ sin 𝜃0,
ee Eq. (4), the elastic energy of the rod assembly can be written as

el ∶=
𝑁f

sin 𝜃0 ∫

𝐻0

0
𝑊 (𝑢1, 𝑢2, 𝑢3) d𝑣.

Recalling Eq. (27), it is clear that the elastic energy can be viewed
as a functional of braiding angle and angle between rod and Darboux
frames, el[𝜃, 𝜑]. The height of the mesh can be controlled by applying
an axial force. The total potential energy accounting for the work of
the axial force 𝐹 is

[𝜃, 𝜑] = el[𝜃, 𝜑] − 𝐹
(

∫

𝐻0

0
𝑧,𝑣 d𝑣 −𝐻0

)

. (29)

Alternatively, the height of the mesh can be controlled introducing a
constraint functional

[𝜃, 𝜑] = el[𝜃, 𝜑] − 𝜆h

(

∫

𝐻0

0
𝑧,𝑣 d𝑣 − ℎtarget

)

, (30)

where 𝜆h is a Lagrange multiplier and ℎtarget is the prescribed height of
the mesh. To find the equilibrium configurations of the mesh, we use
the Principle of Virtual Work, which requires that the functional [𝜃, 𝜑]
is stationary with respect to variations of its arguments, i.e.,

𝛿 (𝜃, 𝜑 ; 𝛿𝜃, 𝛿𝜑) = 0 , ∀𝛿𝜃,∀𝛿𝜑,

here 𝛿 is the virtual variation of the total potential energy of
the system under arbitrary virtual perturbations 𝛿𝜃, 𝛿𝜑 of 𝜃(𝑣), 𝜑(𝑣)
onsistent with boundary conditions. We note that Eq. (16) expresses
, 𝑧,𝑣 in terms of 𝜃, thereby providing the required relations to impose
ixed position, Eq. (16)1, or clamping boundary conditions, Eq. (16)2.
oundary conditions may also constrain 𝜑.

To model the elastic energy density of a single rod, we adopt a
imple quadratic expansion given by

(𝑢1, 𝑢2, 𝑢3) =
1
2

[

𝐵1
(

𝑢1 − 𝑢1 0
)2 + 𝐵2

(

𝑢2 − 𝑢2 0
)2 + 𝐵3

(

𝑢3 − 𝑢3 0
)2
]

,

here 𝐵1, 𝐵2 are bending stiffnesses of fibers along 𝒅1,𝒅2, 𝐵3 their tor-
ional stiffness along 𝒅3; the intrinsic strains 𝑢𝑖 0 are given by Eq. (28),
o that the initial configuration is stress free.

The proposed theory is restricted to axisymmetry but otherwise is
ully nonlinear and geometrically exact. The only additional assump-
ion, that the rod center-lines of all symmetry-related rods remain on

virtual envelope surface, is purely kinematic and quite reasonable
s further discussed in the next section. Hence, the only material
arameters are the number of fibers, the initial braiding angle, and
he elastic properties of the rods. It is interesting to note that it does
ot map to a usual membrane or shell theory, even an anisotropic one.
5

s

ndeed, we can rewrite Eq. (24)–(26) as

1 = −cos(𝜃0)
𝐸,𝑣

√

𝐸𝐺
= tan(𝜃0) sin(𝜃0)

𝐺,𝑣
√

𝐸𝐺
, (31)

𝑦2 = 𝑒 cos2(𝜃0) + 𝑔 sin
2(𝜃0) , (32)

3 = sin(𝜃0) cos(𝜃0)

(

𝑔
√

𝐸
𝐺

− 𝑒
√

𝐺
𝐸

)

, (33)

showing that the elastic energy density of the surface depends not only
on the first and second fundamental forms, as would a nonlinear Koiter
shell theory, but also on derivatives of the metric coefficients. It can
thus be interpreted as a nonlinear Koiter shell model with higher-order
membrane elasticity. Furthermore, it depends on an additional internal
field 𝜑(𝑣).

2.6. Interweaving and sliding between fibers

In our model, all rods lie on the same virtual surface. If applied
to braided interweaving fibers, our model makes an approximation
since the non-interpenetrating fibers need to depart from this surface to
interweave, which further results in cross-fiber interactions. In partic-
ular, additional elastic energy is stored because of interweaving (Peng
et al., 2013). Indeed, at crossing points fibers interlace with one another
and thus deviate from the behavior of circular helices. This local
phenomenon can be seen as a ‘‘high-frequency oscillation’’ on their
geometry, superimposed to the ‘‘low-frequency carrier’’ due to the
curvature and torsion of the corresponding circular helix. By neglecting
this effect, we are conceptually applying a ‘‘low-pass filter’’ to the kine-
matics of the braided mesh, thus discarding energy contributions from
high-frequency contents. Moreover, another subtlety is represented by
frictional interactions, whose complex nonlinear behavior is affected
by the possibility that fibers slide with respect to each other. At least
for now, we do not model these effects and neglect sliding between
fibers. To ensure no inter-penetration, we constrain the braiding angle
to remain between two limit values, i.e., 𝜃 ∈ [𝜃min, 𝜃max] ∩

(

0, 𝜋2
)

.
We remark that the realization of a surface made of two families of

helical fibers is not restricted to braids. Our model can be physically
realized with other micro-architectures such as pin-jointed rods (Olson
et al., 2013).

3. Results

In order to validate our model, we study the behavior of a cylin-
drical mesh subjected to prescribed compression and we compare
numerical results with experimental ones. We simulated two extreme
cases for our model: in the first one, the misalignment angle 𝜑 is al-
lowed to fully relax, while in the second one it is set to zero, effectively
reducing our model to a one-parameter description. Since in this last
scenario the frame of directors always coincides with the Darboux one,
we shall refer to it as the ‘‘Darboux hypothesis’’.

3.1. Experimental setting

We used a commercial braided mesh with radius 4 mm, height
130 mm, made of 144 fibers. Fibers had an initial braiding angle of
71◦ and were 0.275 mm in diameter (measured with microscopy, see
Fig. 3a); their ends are fused together so that no radial changes at the
bases are allowed. In order to interface the mesh with an INSTRON®
testing machine, we 3D-printed resin supports which work through
friction. Once the mesh was mounted in place, its free length was
95 mm, see Fig. 3b.

The top base of the mesh was subjected to 7 cycle of prescribed
axial displacements, in order to assess the magnitude of hysteresis in
the system. At each cycle, the top base was lowered by 50 mm in 10
teps at 1 mm∕s, with 5 s in between each ramp (to assess the magnitude
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Fig. 3. (a) Microscopy of a fiber bundle (3D Digital Microscope HRX-01, Hirox). (b)
The setup assembled and mounted in place.

of visco-elastic effects), and brought back to initial condition using
the same timing of the loading steps. The axial force on the sample
was measured using a 1-N load cell connected to the testing machine.
Furthermore, the experiment was filmed to measure the braiding angle
at a specific point of the mesh through image analysis, performed with
a custom MATLAB® implementation of the Hough transform.

3.2. Numerical implementation

We implemented the previously described mathematical model with
a MATLAB® custom code that solves for the equilibrium configuration
of the structure by minimizing Eq. (30) with respect to 𝜃(𝑣), 𝜑(𝑣),
discretized using a B-Spline approximation of degree 3. This approxi-
mation has differentiable second derivatives, and hence leads to square
integrable elastic energies, which involve second derivatives of 𝜃(𝑣).
The integrals in Eq. (30) are performed using a 3 point Gauss–Legendre
quadrature rule. We solve the equilibrium problem numerically using
a constrained optimization algorithm requiring the derivatives of the
elastic energy and the length constraint with respect to the coefficients
of the B-Spline expansions of 𝜃(𝑣) and 𝜑(𝑣). We found that 43 degrees
of freedom per field were enough for accurate results (that is, further
refinements did not change the solutions), leading to fast simulations
as detailed later.

We assumed that fibers have a circular cross-section, with diameter
reported in Section 3.1. Furthermore, we set the following parameters:

1. initial braiding angle of the mesh 𝜃0 = 71◦, measured from
microscopy images;

2. limit braiding angles 𝜃max = 𝜃0 and 𝜃min = 19◦, computed from
image analysis;

3. number of fibers in the mesh 𝑁f = 144, measured from the
sample;

4. Young’s modulus 𝐸𝑌 = 4 GPa and Poisson’s ratio 𝜈 = 0.43, that
are reasonable values for plastic materials at room temperature;

5. bending stiffness 𝐵1 = 𝐵2 ≈ 1.123 × 10−6 N m2 and torsional
stiffness 𝐵3 = 𝐵1∕(1 + 𝜈) ≈ 7.853 × 10−7 N m2, computed
from the measured fiber diameter and 𝐸𝑌 assuming a circular
cross-section.

We note that there are no additional parameters in our model, and
hence no parameter was adjusted to fit experimental results.

We simulated the behavior of the mesh adopting a continuation
approach, considering 41 levels of axial strain, from 0 up to 50∕95 ≈
0.53. The overall simulation took ≈ 4.71 seconds (MATLAB® R2022b
on a Manjaro Linux distribution with RAM 64 GiB and processor Intel®
CoreTM i9-9900KFx16) solving for 86 degrees of freedom, compared to
the ∼105 of a typical FE model (Hassan et al., 2018).
6

3.3. Comparison of numerical and experimental force–displacement curves

We highlight two remarkable features of the mechanical response
of the system, namely (1) the emergence of a broad plateau in the
force–displacement curve (after a certain compression), see Fig. 4, and
(2) the formation of a locked cylindrical region in the center of the
mesh characterized by a limit angle, see Fig. 5a. Indeed, the axial
force initially increases, so that the structure could be approximated
as a linear spring in a regime of small compressions; the response then
‘‘softens’’ until the mesh reaches a flat region, i.e., where small changes
in 𝜃 do not affect the force experienced by the mesh. As compression
further increases, a mechanical locked region between fibers nucleates
at the center of the mesh as 𝜃 cannot be reduced below a limit angle;
this angle is measured to be approximately equal to 90◦ − 𝜃0, and
therefore set to this value in simulations. By further compressing the
mesh, the angle 𝜃 reaches its limit value in a wider and wider region,
forming a cylindrical core at the center of the structure (predicted also
in Giorgio et al. (2018)). We notice that the force creep, occurring
during pauses between loading steps, is small compared to the applied
load, therefore justifying our treatment of the mesh as a purely elastic
system.

From a quantitative point of view, the comparison between force–
displacement curves, reported in Fig. 4, shows a good agreement be-
tween the experimental profile and the numerical one in the case
𝜑 ≡ 0 (Darboux hypothesis), while numerical results for fully relaxed 𝜑
tend to underestimate the compression force. A possible interpretation
is that, in the real system, friction and interweaving between fibers
hinders the relaxation of 𝜑. In addition, Fig. 5b reports a comparison
between the experimental angle-displacement profile and the numerical
one from our simulations, both evaluated at 𝑣 ≈ 0.36𝐻0 (i.e., where
the two red fibers cross). Overall, the profiles are close to one another,
and the offset between them can be attributed to a systematic error
introduced by the video setup.

Our model allows us to interpret the force plateau observed in
experiments. In our simulations, the plateau region is characterized
by a tangent modulus that decreases almost to zero compared with its
initial value. This corresponds to an almost vanishing second derivative
of the total energy with respect to the base displacement. In particular,
the second derivative vanishes and even changes sign for simulations
with unconstrained 𝜑. This behavior can be described as an interplay
of energetic components: while the second derivative of the torsional
energy always remains positive, the ones of the bending energies
progressively decrease and eventually become negative; once their
magnitude is large enough to counterbalance the torsional component,
the second derivative of the total elastic energy equals zero and thus
the plateau emerges (see Fig. 6a). As soon as the locked region starts to
appear, the second derivative of the total elastic energy increases back
and the plateau ends.

3.4. Misalignment angle profiles

Regarding our simulation with unconstrained 𝜑, Fig. 7 compares the
initial configuration (𝜑 ≡ 0) with the profiles of 𝜑(𝑣) obtained at several
displacements. For all configurations, the angle is anti-symmetric with
respect to 𝑣 = 𝐻0∕2, meaning that the director 𝒅1 coincides with the
outer normal vector 𝑵 at the ends and at the midpoint of the mesh. This
was an expected feature: 𝜑 (0), 𝜑 (𝐻0) = 0 and the problem is symmetric
with respect the sagittal plane, so that the misalignment must be zero
at 𝑣 = 𝐻0∕2; moreover, in order to be symmetric with respect to the
sagittal plane, 𝒅1 must deviate from 𝑵 in opposite directions on the two
halves of the mesh. The magnitude of the peaks in 𝜑 increases with the
displacement, while their positions shift towards the ends of the mesh.
While at lower compression levels the angle 𝜑 could be approximated
with a sine, at sufficiently high ones it shows two lobes progressively
closer to the ends of the mesh; in the central region, 𝜑 behaves almost

linearly, with a slope at 𝑣 = 𝐻0∕2 that decreases with compression.
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Fig. 4. Comparison between the force–displacement curves obtained through numerical simulations (𝜑 = 0 and free 𝜑) and the experimental one. Insets report equilibrium
configurations at 11 compression levels, both for the experiment and the simulation with 𝜑 = 0..

Fig. 5. (a) Evolution of the angle 𝜃 (in degrees) with increasing compressive displacements (case 𝜑 = 0). As compression increases, a locked cylindrical region, with 𝜃 = 90◦−𝜃0 = 19◦,
grows at the center of the mesh. (b) Comparison of numerical 𝜃 profiles, both for free 𝜑 and 𝜙 = 0, with measured ones at 𝑣 ≈ 0.36𝐻0. We reported the average of measurements
across all cycles with bars indicating minimum and maximum measured values.
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Fig. 6. Second derivative of bending, torsional, and total elastic energies of the mesh with respect to top-base displacements, in the case (a) 𝜑 = 0 and (b) unconstrained 𝜑.
Fig. 7. Comparison of 𝜑 profiles for different compression levels. The angle can be initially approximated as a sine, while at higher compressions three zones emerge, that is, two
lobes near the ends of the mesh and an almost linear region in the center .
This means that initially the central region stores energy through 𝜑,
and then releases it; remarkably, this happens at compression levels
for which the central locked region has already started to arise.

Although no measures of this misalignment have been taken during
experiments, the large peak values (more than 40◦) that appear for un-
constrained 𝜑 seem somehow unlikely, as they should lead to a visible
macroscopic effect on the mesh. This fact, together with the fact that
full relaxation of 𝜑 leads to underestimate the required compression
force, see Fig. 4, suggests that, when braiding and friction are taken
into account, the misalignment (if any) is reduced.

4. Discussion and conclusions

In conclusion, we developed an analytical model of a cylindrical
braided mesh, implemented it numerically using B-Splines, and vali-
dated it against experimental observations. Results indicate that our
model can predict the behavior of physical braided meshes with a
good degree of accuracy and at low computational cost, which makes
it suitable for design optimization through grid searches. In future
work, we plan to extend our formulation in order to capture effects not
modeled for the time being, such as friction, sliding, and interweaving
of fibers. Also, it would be interesting to choose different models for
the elastic energy of fibers, with energy densities growing with respect
to the strains faster than quadratically.
8

We stress that the proposed model can capture the mechanical
response of meshes under extension as well. However, extension tests
are not feasible on commercial meshes: since they are typically wound
at the angle of maximum packing (𝜃0 ≈ 𝜃𝑚𝑎𝑥), their extension is limited
to negligible displacements.

The emergence of the plateau region during compression experi-
ments simultaneously poses interesting questions and opens new sce-
narios. Indeed, along the plateau, a braided mesh can compress an
object with a force that remains constant even against settlements of
said object. A deeper understanding of the phenomenon, that is, its
dependency on geometric and material parameters as well as boundary
conditions, could allow us to tune the plateau region, both in terms
of its size and starting point, obtaining operating regions of ‘‘infinite’’
compliance. This feature will be investigated more closely in future
work.
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