
Computer Networks 212 (2022) 109034

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Intent-based zero-touch service chaining layer for software-defined edge
cloud networks
B. Martini a,c, M. Gharbaoui b,∗, P. Castoldi b

a CNIT, Italy
b Scuola Superiore Sant’Anna, Pisa, Italy
c Universitas Mercatorum, Rome, Italy

A R T I C L E I N F O

Keywords:
IBN
Service chaining
Edge networking
SDN
NFV

A B S T R A C T

Edge Computing, along with Software Defined Networking and Network Function Virtualization, are causing
network infrastructures to become as distributed clouds extended to the edge with services provided as
dynamically established sequences of virtualized functions (i.e., dynamic service chains) thereby elastically
addressing different processing requirements of application data flows. However, service operators and
application developers are not inclined to deal with descriptive configuration directives to establish and operate
services, especially in case of service chains. Intent-based Networking is emerging as a novel approach
that simplifies network management and automates the implementation of network operations required by
applications.

This paper presents an intent-based zero-touch service chaining layer that provides the programmable
provision of service chain paths in edge cloud networks. In addition to the dynamic and elastic deployment
of data delivery services, the intent-based layer offers an automated adaptation of the service chains paths
according to the application’s goals expressed in the intent to recover from sudden congestion events in the
SDN network. Experiments have been carried out in an emulated network environment to show the feasibility
of the approach and to evaluate the performance of the intent layer in terms of network resource usage and
adaptation overhead.
1. Introduction

Thanks to 5G (and beyond) mobile networks, Internet of Things
(IoT) and a large set of smart devices (e.g., smart glasses, smart cars),
novel vertical applications are emerging in different industry fields
(e.g., telemedicine, hyper-connected smart cities, and industrial au-
tomation) that will improve several aspects of society and human lives.
In this context, pervasive cloud deployments extended to the edge
(i.e., Edge Computing (EC)) are essential to augment computing capa-
bilities, run distributed services and assure the interactive behaviour
that such emerging applications require [1].

Different operational and architectural design have been conceived
for implementing EC in different contexts and with different targets,
e.g., Multi-Access Edge Computing (MEC) [2], Fog Computing [3],
Cloudlet [4]. Established in telecommunication field, MEC considers
providing cloud capabilities to the access network (i.e., base stations or
Point of Presence (PoP)) so as to improve the quality of offered services
(e.g., real-time Quality of Service (QoS) through adaptive data through-
put closer to the users) [5]. A correlated trend is Network Function

∗ Corresponding author.
E-mail address: molka.gharbaoui@santannapisa.it (M. Gharbaoui).

Virtualization (NFV) with network functions (e.g., firewall, Network
Address Translation (NAT), Deep Packet Inspection (DPI)) deployed
as virtual appliances (i.e., Virtual Network Functions (VNFs)) and
flexibly provisioned in distributed edge telco clouds thereby enabling
innovative network service delivery models for telco service providers
through dynamic service chaining [6]. In this context, service-centric
control structures for edge networks would be desirable to effectively
establish and maintain service chains across edge clouds according to
expressed requirements [7].

In all EC schemes, Software-Defined Networking (SDN) is consid-
ered an attractive network solution to simplify the management of
the network, better utilize network resources and facilitate virtualiza-
tion within the network. In particular, SDN provides more efficient
and agile procedures for the establishment of data delivery paths
connecting specified sequences of virtual service or network compo-
nents, i.e., dynamic service chaining [8]. SDN also brings additional
benefits to the EC architecture in terms of service-centric networking
[7,9] and support of a northbound interface for third-party network
vailable online 18 May 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.109034
Received 6 October 2021; Received in revised form 26 April 2022; Accepted 7 May
 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:molka.gharbaoui@santannapisa.it
https://doi.org/10.1016/j.comnet.2022.109034
https://doi.org/10.1016/j.comnet.2022.109034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109034&domain=pdf

Computer Networks 212 (2022) 109034B. Martini et al.

I
o
g
v
i
o
i
i
p
h
t
w
c
F
w
f
f
t

p
a
i
i
l

applications to support EC services in highly dynamic ecosystem of
users, devices, and data communication requirements [10]. However,
the semantic gap between the business and the operational goal of
application providers and the network delivery potential necessitates
the underlying network to constantly (and consistently) adapt, protect,
and inform across all strands of the service-oriented landscape [11].
For this reason, Intent-Based Networking (IBN) [12] comes into play
as a novel approach in network management to (i) enable a loosely-
coupled interworking between applications (i.e., vertical applications
or service management applications) and network operators, and (ii)
further foster the development of third-party applications thanks to ab-
stractions and semantics not available at the SDN northbound interface.
Indeed, application developers are not inclined to specify low-level
technical parameters (e.g., Virtual Local Area Network (VLAN) tags,
forwarding rules, connection points) needed to realize their business
and operational goals in a specific application domain. Nevertheless,
SDN remains a prominent building block in the migration towards 5G
(and beyond) and intents support at the network edge.

In this paper, an intent-based and zero-touch service chaining
layer for software-defined EC is presented, allowing for adaptive ser-
vice chain paths and offering an effective interaction with the edge
computing-enabled applications. More specifically, the proposed solu-
tion provides an Intent Layer with autonomy and assurance features
for:

• dynamic enforcement and configuration of service chain paths
through SDN capabilities established at the network edge and
starting from high-level requests expressed by applications
through intent-based northbound REpresentational State Trans-
fer (REST) interface. This Application Programming Interface
(API) allows applications to request the set-up and tear-down
of data delivery services throughout chains of virtual functions
using application-oriented semantics (i.e., prescriptive rather than
descriptive directives) thus avoiding to deal with technology-
specific low-level implementation details (fulfilment phase).

• autonomous adaptation of service chain paths according to the
user intents and without requiring the user to report the in-
tent deviations from the desired outcome and to specify the de-
tailed technical steps for how to achieve that outcome (i.e., zero-
touch). Instead, the Intent Layer triggers the required configura-
tion changes in the network in order to maintain the intent and
assure the desired outcome leveraging the continuous monitoring
of the current status on network nodes and links during the whole
lifecycle of the intent (assurance phase). As a reconfiguration
trigger we considered the overload of a significant subset of
switches according to a load balancing criteria.

A number of research works recently addressed novel solutions for
BN in different contexts, namely network automation [13], service
rchestration [14], multi-domain networking [15] and data plane pro-
ramming [16,17]. Regarding the adoption of IBN in the EC context,
ery few works tackled this issue and are limited to the use of the
ntents in specific scenarios (e.g. vehicular networks [11,18]). On the
ther hand, numerous works investigated the use of IBN techniques
n SDN environments [19–21]. Although the proposed approaches go
nto the direction of seamless and automated provisioning of network
aths, most of them still rely on complex network configurations that
inder the interactions with the IBN framework. This is in contrast with
he straightforward template-based approach proposed in this work,
hich aims at facilitating the deployment of service chains in edge

omputing networks. Few works tackled the adoption of IBN in Service
unction Chaining (SFC) contexts [14,22,23] where only some aspects
ere addressed while in this work all the intent lifecycle management

eatures across edge clouds are implemented and assessed. Finally, the
unctionalities of the proposed approach are in line with the current
rends and initiatives in both dynamic service chaining and IBN carried
2

out by standardization bodies such as Internet Engineering Task Force
(IETF) [24,25].

This work has been inspired by authors previous work [26,27] on
the orchestration of dynamic service chains in SDN networks, and by
[28] on how to express slice intent requests through a template-based
approach. In this paper, the previous proposal for dynamic service
chaining in SDN networks in [26,27] is further enhanced by designing
and implementing an intent layer for service chaining including zero-
touch assurance. The proposal on intent-based networking beyond
network slicing presented in [28] is also extended with an intent layer
for edge networks for service chaining. The new features introduced
by the Intent Layer offer a service-oriented support for applications
to interact with the network aiming at the enforcement of the service
chaining paths and a more dynamic reaction to performance deviations
so as to assure service data delivery performance. Indeed, the con-
tinuous monitoring of the network status during the assurance phase
automatically guarantees the high availability of the service chains.

The remainder of the paper is organized as follows. Section 2 gives
a background on intent-based networking. Section 3 presents the refer-
ence scenario that motivates the use of an Intent Layer in SDN-enabled
edge computing infrastructures. Section 4 details the main components
of the intent-based framework architecture, while Section 5 highlights
the features brought by specific operations of the proposed Intent Layer.
Section 6 evaluates the performance of the presented approach under
different assumptions. Section 7 discusses the state of the art and recent
standardization initiatives. Finally, Section 8 concludes the paper.

2. Background on intent-based networking

The IBN concept represents a new approach to network manage-
ment conceived by the IETF where users at an Application Layer
(e.g., vertical’s Operations Support System/Business Support System
(OSS/BSS)) or a service layer (e.g., network operator OSS/BSS) can
express their business, service or operational goals through high-level
prescriptive directives (i.e., intents) thus unburdening applications to
deal with technology-specific low-level networking directives needed
to achieve those goals. Examples of intents are: ‘‘set a connection as a
high availability network service’’, ‘‘always maintain high quality of service
and high bandwidth for gold level users’’. On the other hand, the network
operators are left the flexibility of addressing the expressed goals based
on their own optimization decisions in the light of a loosely-coupled
interworking with applications [12].

The IBN approach is possible through the mediation of an Intent
Orchestration Layer (or Intent Layer) that allows to (i) automate the
implementation of network configurations required to realize the goals
expressed by applications, and (ii) regulate the lifecycle of the estab-
lished configurations in line with expressed goals. Overall it manages
and regulates the lifecycle of intent demands from applications through
fulfilment and assurance operations in a closed loop workflow. More
specifically:

• fulfilment operations deal with processing intents from their orig-
ination by a user to their realization in the network, includ-
ing translation and any required orchestration of coordinated
configuration operations;

• assurance operations deal with ensuring that the network actu-
ally complies with the desired intent once it has been fulfilled
also based on real-time collection, aggregation and assessment of
monitoring data.

These two kinds of operations are realized through the interworking
of the following main functional blocks: (i) the Translation which
arses the application’s intent and translates it into a set of networking
ctions, mainly configurations; (ii) the Management and Decision which
s responsible of identifying the needed actions to ensure that the
ntent is achieved including derivation of the algorithm to be used,
earning on how to optimize outcomes over time, and coordination

Computer Networks 212 (2022) 109034B. Martini et al.
Fig. 1. Service chaining in NFV/SDN-enabled edge network and cloud infrastructure.

of configurations and deployment actions, e.g., rendering of high-level
abstractions into lower-layer parameters, (iii) the Analyses/Verification
which continuously verifies the status of the intent, and if necessary
triggers corrective actions leveraging on Management and Decision
block, and finally (iv) the Intent Repository which is a database that
interacts with the intent Management and Translation modules to
provide mapping between the ‘‘intent’’ and its ‘‘configuration’’.

IBN allows application layers to interact with the Intent Layer
avoiding to learn the technical-specific language of the underlying
system. On the other hand, it also allows network providers to (i)
improve the network agility and availability, (ii) manage networks
holistically at a higher level of abstraction, and (iii) continuously
verify that tenant goals are met. Hence, IBN not only contributes to
increase network automation and flexibility to upper layers but also
to improve the robustness of the network through closed loop and
through continuous learning to reduce costs through dynamic network
operation and maintenance [29].

3. Reference scenario

In this section, the reference scenario that motivates the use of an In-
tent Layer in SDN-enabled edge network and computing infrastructures
for the benefit of vertical applications is presented.

The network scenario is shown on the bottom of Fig. 1 and re-
produces a typical set-up of a SDN-based network infrastructure in
edge computing service scenarios (either Fog Computing, Cloudlet or
MEC) where virtualized service or network functions are deployed as
virtual appliances over distributed edge computing nodes (i.e., micro-
sized servers in cloud platforms) co-located with and interconnected by
SDN-enabled network nodes managed via an SDN controller. Multiple
instances of each kind of virtualized service or network functions are
also considered that are operated in those geographically-distributed
servers as replications to allow for (i) keeping the service quality at
the highest level anywhere at the edge, (ii) enlarging service coverage
over a wider geographical area, and (iii) running back-up services
for high-critical applications [10]. As an example, in Fig. 1 multiple
instances of VNFs (i.e., firewalls, deep packet inspectors and load
balancers) are shown over distributed edge servers. This distributed
service deployment scenario is peculiar of edge computing set-up where
service requests are typically fulfilled as a concatenation of dynami-
cally selected service/network function instances (i.e., dynamic service
chaining) as part of end-to-end services delivery to users.
3

The complexity of such a combined scenario of edge clouds and
network requires cross-layer control mechanisms to orchestrate virtual
resources and cloud-like services in such a distributed environment.
For this reason, the reference scenario also includes a Service Orches-
trator shown on top of Fig. 1. In general terms, service orchestra-
tors are in charge of operational and functional processes involved
in designing, creating, and delivering end-to-end application services
(e.g., e-health, face recognition, entertainment) or network services
(e.g., virtual Radio Access Networks (RANs) and core networks). In case
of application services, service orchestration is performed by Service
Delivery Platforms usually inspired by Service Oriented Application
(SOA) principles [30] and horizontally-integrated Service Overlay Net-
work (SON) architectures, such as Next Generation SON (NGSON) [31].
In case of network services, Service Orchestrators are from the NFV
ecosystem. Indeed, NFV is another key technology that supports service
orchestration [32], through the NFV Orchestrator (NFVO) following the
European Telecommunications Standards Institute (ETSI) Management
and Orchestration (MANO) specifications [33]. In either cases, service
orchestration is based on specifications to define a composite service
as a flow of functional capabilities (i.e., service components or network
functions) that need to be sequentially invoked to deliver the end-to-
end service (e.g., abstract service chain specification) [34]. Accordingly,
service chain requests are generated and issued to the network layers
for path set-up.

This deployment scenario affects the service function chaining prob-
lem since it requires a novel service-centric structure and service con-
trol layers for edge networks to effectively establish service chains
across edge clouds in a dynamic environment featured by multiple
available service instances with different and variable loads over time.
Indeed, as opposed to host-centric solutions, service-centric operations
in edge networks prevent end-systems (e.g., user devices) to be aware
of the service end-points to resolve their Internet Protocol (IP) ad-
dress dynamically (e.g., based on context information) since relying on
specific service-aware components to effectively track the locations of
service instances and select the most proper one [7]. It is agreed that
SDN can provide several benefits in this scenario thanks to software-
based and centralized control over the network. In particular, thanks
to the SDN capability to have a general view of the network and to
act programmatically on network nodes, the SDN controller can (i)
track the locations of service instances under its coverage [35], (ii)
better select the most appropriate ones for the incoming service request,
and (iii) accordingly handle connectivity among service components or
network functions so as to provision service chains (service chain path
set-up) [36].

As shown in Fig. 1, the chain composed of a firewall (FW), a
deep packet inspector (DPI) and a load balancer (LB) is established
by identifying the FW-1, DPI-4 and LB-2 as proper instances and by
enforcing the proper flow rules on switches sw-1 to sw-6 so as to set-up
the chain paths.

Within SDN, a northbound interface (NBI) has been designed to
provide a common interface between the SDN controller and the wide
range of network applications that can be developed on top. Recently,
additional abstractions have been devised at the SDN controller NBI
to specify connectivity requests between two end-hosts [37]. However,
there is an inherent semantic gap between the way the service chains
are handled by service orchestrators (i.e., abstract service chain spec-
ifications) and the way SDN controllers handle connectivity and the
flow rules set-up across the switches. Indeed, the NBI is conceived for
network specialists to mainly handle packet-level forwarding and data
monitoring and not to handle multi-hop logical connectivity among
virtualized appliances on overlay networks. On the other hand, ser-
vice developers are not inclined to specify descriptive configuration
directives and continuously check low-level technical parameters of
forwarding rules settings, topology and protocols (e.g., VLAN tags,
connection points) since they are more focused on realizing their
business and operational goals (e.g., service delivery and reliability).

Computer Networks 212 (2022) 109034B. Martini et al.
On top of that, network operators aim at addressing customers goals
driven by their own optimization process on resource usage and at
automating operations for network services and connectivity set-up to
lower operational costs. The matching between these two dispositions
is possible through higher-level interfaces to foster the development
of third-party applications and to provide the connectivity services
with abstractions for service chaining not available at SDN northbound
interface.

From the above considerations, an intent-based approach is pro-
posed in this work supported by a middleware layer (i.e., Intent Layer)
between Service Orchestrators and SDN controllers as part of a service
orchestration process (either at application or at network service level)
for dynamic service chaining in a distributed deployment scenario
at edge. In particular, in the following section we present an Intent
Layer for the dynamic service function chain enforcement (including
assurance) across a set of edge clouds interconnected via SDN and
hosting multiple service instances. If the service function chaining
problem is typically tackled into the edge clouds (i.e., within comput-
ing/data center networks) [38], in this work an extension of such a
problem across distributed edge clouds is considered involving SDN
and intents to address service function chain paths in a dynamic and
application/service-oriented way [39].

4. Intent layer design for edge networks

In this section, the intent framework for SDN edge cloud networks
is presented aimed at the provisioning of adaptive service data paths
to applications that are therefore unburdened from using prescriptive
directives. Fig. 2 presents the intent-based framework in terms of
functional design and the key aspects of the overall proposed archi-
tecture. The framework extends a SDN-enabled Network Layer with an
Intent Layer that automatically handles the SDN edge network resource
management capabilities (e.g., data forwarding, load information), thus
allowing for a flexible and efficient configuration of network paths
while continuously satisfying the requirements specified in the intent.
The Intent Layer elaborates intents from an Application Layer that
represents any entity that is interested in automatically deploying
service chains with specific throughput guarantees in a SDN-based
edge network and computing infrastructure, i.e., Service Orchestrators.
In order not to deal with specifications or constraints on selection,
allocation, concatenation of required resources (e.g., mapping to VLAN
tags, connection points), they express prescriptive directives to the
Intent Layer in terms of desired outcome and operational or business
goal to achieve, i.e., intents. This is in accordance with the principle
that applications ask the network ‘‘what to do’’ and not ‘‘how to do it’’
[40].

The main components of the Intent Layer are described below.
Although the presented building blocks and interactions are valid for a
generic intent, for their description the case of a service chain intent
is mainly considered.

• Intent Manager : exposes a NBI to handle the intents received from
the Application Layer and takes care of any operation to fulfil
the intent requests. More specifically, it performs the Translation
operation to parse the intent and derive the operational steps
necessary to meaningfully configure the network according to the
user’s goals and requirements expressed in the Intent. This can
be achieved through different approaches such as the usage of
deep neural networks to understand human specific language, the
adoption of Yet Another Next Generation (YANG) and Topology
and Orchestration Specification for Cloud Applications (TOSCA)
based models to represent intents [41], etc. The Intent Manager
also performs the Verification operation to verify the translated
intents can be executed in the network according to its current
state (i.e., execution verification). If the intent can be executed,
it is admitted and the Intent Manager triggers the Configuration
4

Fig. 2. Intent framework: Functional design and building blocks.

and Deployment Engine to enforce it in the SDN edge network.
The Intent Manager is also triggered by the Adaptation Module in
case the validity verification check is not passed during the intent
lifecycle in order to trigger re-optimization or remediation actions
to recover the expected performance as required by the expressed
intent. First, the Intent Manager checks again the eligibility of the
intent by verifying the feasibility of its deployment according to
the new status of the network. As at the time of the original intent
request, it makes sure that there are enough resources available
to answer the request (i.e., an intent can be directly blocked if
for example all the switches in the network are overloaded) and
guarantees that the deployment of the intent with its specific
requirements (e.g., amount of throughput) will not impact the
existing intents in the system (i.e., the redirection of the intent
will not cause the congestion of other switches.) If the intent
request is eligible, the Intent Manager then forwards the request
to the Configuration and Deployment Engine to calculate and
enforce a new (part of) service chain path.

• Configuration and Deployment Engine: responsible for coordinating
the provisioning actions of the end-to-end service data paths
along the chain to enforce the intent in the network upon trig-
gering by the Intent Manager. The forwarding of the packets is
required across multiple segments composing the end-to-end de-
livery path where a segment is a path along the switches starting
from a VNF (or a source endpoint) and terminating at the next
VNF (or the final destination endpoint) in the logical chain. Thus,
a number of different provisioning actions need to be coordinated
under the same workflow of service chain set-up to address the
intent request. Each provisioning action aims at the set-up of
each segment, so that their combination allows to accomplish the
whole end-to-end path setup of the service chain expressed in the
intent. The Configuration and Deployment Engine, other than acting
for the intent fulfilment, also acts for re-enforcing (part of) service
chain along a different path in the network if remediation actions
are required. In either cases, the Configuration and Deployment
Engine interacts with the SDN controller through appropriate APIs
to handle the low-level directives (i.e., Openflow messages [42])
to install the forwarding rules throughout the network switches
for each delivery path that is needed for the end-to-end service
chain set-up.

Computer Networks 212 (2022) 109034B. Martini et al.

f

• Adaptation Module: continuously verifies the overall status of the
network through the polling of OpenFlow statistics and super-
vising operations to maintain the performance of established
intents (i.e., validity verification) in line with specified require-
ments, despite possible changes in the network status due to
dynamic service requests (e.g., steady increase of traffic load). In
case of intent validity failure (e.g., a switch congestion degrades
data delivery throughput required for the service chain intent),
it is responsible of triggering the Intent Manager for starting
re-optimization procedures and remedial actions eventually lever-
aging the Configuration and Deployment Engine to implement them
in the SDN network through, e.g., re-establishment or redirection
of data delivery paths.

• Statistics Collector : interacts with the SDN controller to retrieve
network statistics related to the switches composing the data
plane. Different metrics can be considered, such as bandwidth,
jitter, delay, or even more sophisticated and consolidated metrics
to derive the switch status (e.g., average switches load). The
statistics data are then made available to the Adaptation Module
to decide if remediation or re-optimization actions are needed.

• Registry : contains service and operational data on network nodes
and delivery paths. In particular, it contains a list of the available
virtual functions instances with related information (e.g., type,
network location in terms of IP prefix, Data Path Identifier and
port of the switch they are connected to) and a list of the estab-
lished data delivery (segment) paths with additional information
(e.g., IP addresses of end-points, identifier and port number of
intermediate network nodes) realizing (part of) running service
chain instances.

As result of the interworking among the described components, the
ollowing phases underpin the overall Intent Layer operation:

• Awareness: consists in the collection of OpenFlow statistics (and
related data processing) performed by the Statistic Collector
through the SDN Controller NBI to derive the current network
status. Based on network state awareness, remedial actions can
be triggered as part of the assurance phase. In this work, we
chose the switches load as a metric for the validation mechanism
since it directly impacts the throughput and thus the Quality of
Experience (QoE) of users/applications. It is also strictly related
to other metrics since overloaded switches will start discarding
packets (increase of packet loss) and network congestion will
cause a delay increase. In Section 5.2 more details are given
regarding the OpenFlow monitoring process and the switch load
estimation supporting the Awareness phase.

• Fulfilment & Verification: consists in the set of actions performed
by the Intent Manager to (i) derive the operations necessary to
meaningfully configure the network according to the user’s goals
and requirements expressed in the Intent (Translation) and (ii)
validate the compliance of the underlying network with the Intent
requirements and hence verify if the Intent can be accepted
based on the current network status (Verification). In this work,
the intents are issued through Intent Manager NBI and expressed
through a template from which the Intent Manager extracts the
set of parameters necessary for the configuration of the ser-
vice chain (e.g., source, destination, VNFs) and the verification
check is performed based on the availability of network resources
(e.g., intent throughput does not overload the switches according
to a certain threshold on current switch load). If the verification
is passed, the Intent is enforced in the network leveraging the
Configuration and Deployment Engine. In Section 5.1 the Intent NBI
is described along with the Intent template. In Section 5.3 further
details are given on the actions performed by the Intent Manager
and the steps to enforce the Intent into the network.
5

Table 1
REST API offered by the Intent Layer.

Intent type HTTP method Description

Simple POST Sets-up a path between the endpoints
supplied in the request message.

DELETE Deletes the path.

Composite POST Sets-up a path between the endpoints
supplied in the request message that
traverses a given number of network
functions.

DELETE Deletes the composite path.

• Assurance & Validation: consists in the set of actions for the
continuous check if the intents statuses are fully compliant with
the users requirements/goals originally expressed in the Intents.
Indeed, due to the dynamic scenario of incoming intent requests
with unknown arrival patterns (i.e., dynamic service requests),
the resulting network status and resource allocations (e.g., es-
tablished traffic flows) may change, even unexpectedly. Hence,
the Intent Layer may have to deal with unpredictable situations
that may compromise/degrade the performance of established
intents. For this reason, reconfiguration actions may be required
to maintain the performance of established intents despite those
changes in the underlying network status. In this regard, different
criteria (and correspondingly different performance indicators)
can be considered to trigger reconfiguration actions (e.g., re-
liability, QoS/QoE, load balancing) corresponding to as many
different resource management goals (e.g., minimize SLA vio-
lations, improve cost- and energy-efficiency, maximize request
acceptance rate) while assuring the delivery of the expected level
of performance with intents defined objectives. More specifically,
the throughput metric can be used to trigger reconfigurations
towards addressing reliability and load balancing (computed at
node level) and QoS/QoE (computed at flow-level), the network
latency metric between edge nodes can be consider to address
QoS/QoE, notifications on failures can be considered to handle
network reliability criteria. The overall process is governed by the
Adaptation Module that continuously polls the collected network
statistics and process and store performance metrics to trigger
The Intent Manager to perform reconfiguration actions, if needed,
regarding the execution of the Intent. In this work, we consider
the load of a significant subset of switches as a relevant perfor-
mance metric and the exceeding of a specified load threshold as
a reconfiguration trigger according to a load balancing criteria
as part of resource management operation policies. More specifi-
cally, upon the overload of one or more switches, the Adaptation
Module triggers the Intent Manager to perform remediation/re-
optimization actions that consist in the redirection of the paths
traversing the overloaded switch(es) to other available switches
in the network. In Section 5.4 additional details and workflows
are given on how the Adaptation Module acts in cooperation with
the Intent Manager in this phase.

5. Intent northbound interface and layer operations for service
chaining

In this section, the characteristics of the intents for service chains
are highlighted (5.1) and the description on how the three different
phase operations are run in the proposed implementation of the Intent
Layer for service chaining is detailed (5.2) to (5.4).

5.1. Intent northbound interface for service chaining

The interaction between the Application Layer and the Intent Layer
is handled by a RESTful interface. REST is a resource-oriented architec-

tural style for networked systems, which is considered a best practice

Computer Networks 212 (2022) 109034B. Martini et al.

p
a
(

a
t
n
t
T
b
d

5

(
s
a
c
(
e
m
t
c
d
[

i
a
c
s
t
d
t
b
t

𝐿

𝐿

o

𝑆

s
F
w
w

t
t
d
h
t
f
t
t
o
t
i
s
r
t
t

5

c

for building distributed hypermedia systems and web service interfaces.
Indeed, REST is also widely adopted in the software-defined networking
area.

In order to allow applications express their operation goals, two
types of intents were defined that are differentiated according to the
parameters expressed in the request. More specifically, simple intents
only require the specification of the source and destination endpoints to
setup a path with a specific throughput, while composite intents require
the specification of the endpoints as well as the number and type of
virtual functions that must be traversed by the traffic along the network
path. Table 1 summarizes the set of operations exposed by the Intent
Layer to the Application Layer.

In this regard, a template is considered that has to be filled out to
specify the operation goals in terms of intents without taking care of the
low-level implementation details. The template-based approach offers
a high level abstraction on network resources and network behaviours
and allows users to easily specify their goals, which will then be
translated into a set of network configurations realizing the service
chaining. New requirements can be simply added as new parameters
in the template.

<In t en t Id=" In t en t I d ">
<Parameters>

<Source_ IP=" 10 .0 .3 .1 " />
<Des t i na t i on _ IP=" 10.0 .11.1 " />
<Chain>

<Length=2/>
<Node_Id=" F i rewa l l " />
<Order=1/>
<Node_Id=" DPI " />
<Order=2/>

<Chain/>
<Throughput=" 5 " />

</ Parameters>
</ In t en t>

Listing 1: Example of an intent template

Once the request is correctly translated by the Intent Manager, the
arameters for its fulfilment are extracted and sent to the Configuration
nd Deployment Engine which constructs a JavaScript Object Notation
JSON) based message that is sent to the Network Layer.

The extract presented in Listing. 1 shows an example of the template
dopted in this work for a composite path setup requesting that all
he traffic originating at a node with IP address 10.0.3.1 and termi-
ating at a destination node with IP address 10.0.11.1 should pass
hrough a network function chain made by a firewall and a DPI. The
hroughput parameter set to 5 specifies the amount of traffic that must
e guaranteed between the two endpoints during the whole service
uration.

.2. Awareness: SDN-based network monitoring and load estimation

A background monitoring of the network nodes is necessary to
i) obtain operational data related to the actual utilization of the
witches and/or links, and (ii) adequately support the Configuration
nd Deployment Engine and Adaptation Module operations based on the
urrent operational status of network nodes. Within SDN, the OpenFlow
OF) protocol allows for the live-manipulation of the flow tables of OF-
nabled switches as well as the retrieval of real-time data statistics for
onitoring purpose. In particular, in this work OF statistics relative

o the traffic load from the switches in the network are periodically
ollected: (i) per-flow received/transmitted packets/bytes, (ii) flow
uration, and (iii) per-port received/transmitted packets/bytes/errors
43]. Then the per-port bytes counters of each switch are used to assess
6

i

Fig. 3. Screenshot of the Grafana system — Status of switches load.

ts load and its capability to support the required packet processing
nd exchanges. The difference of received/transmitted bytes between 2
onsecutive queries is computed and consequently the traffic rate at the
witch ports by dividing by the duration of the polling time. Based on
his information, consolidated trends of traffic load at switches ports are
erived [44]. More specifically, for each switch s, at the port connected
o the link l, 2 consecutive counter values for transmitted and received
ytes (i.e., Tx_Bytes or Rx_Bytes) at 𝑡𝑖−1 and 𝑡𝑖 are collected, then the
raffic rate at the link l is calculated as follows:

𝑖𝑛𝑘_𝐿𝑜𝑎𝑑_𝐼𝑛𝑖(𝑠, 𝑙) =
[𝑅𝑥_𝐵𝑦𝑡𝑒𝑠(𝑠, 𝑙, 𝑡𝑖) − 𝑅𝑥_𝐵𝑦𝑡𝑒𝑠(𝑠, 𝑙, 𝑡𝑖−1)] ∗ 8

(𝑡𝑖 − 𝑡𝑖−1)
;

𝑖 = 1, 2,… , 𝑛 (1)

𝑖𝑛𝑘_𝐿𝑜𝑎𝑑_𝑂𝑢𝑡𝑖(𝑠, 𝑙) =
[𝑇𝑥_𝐵𝑦𝑡𝑒𝑠(𝑠, 𝑙, 𝑡𝑖) − 𝑇𝑥_𝐵𝑦𝑡𝑒𝑠(𝑠, 𝑙, 𝑡𝑖−1)] ∗ 8

(𝑡𝑖 − 𝑡𝑖−1)
;

𝑖 = 1, 2,… , 𝑛 (2)

The Statistics Collector then processes the retrieved statistics to
btain the operational status of the switches as follows:

𝑤𝑖𝑡𝑐ℎ_𝐿𝑜𝑎𝑑𝑖(𝑠) =
∑

𝑙
𝐿𝑖𝑛𝑘_𝐿𝑜𝑎𝑑_𝐼𝑛𝑖(𝑠, 𝑙) +

∑

𝑙
𝐿𝑖𝑛𝑘_𝐿𝑜𝑎𝑑_𝑂𝑢𝑡𝑖(𝑠, 𝑙) (3)

The collected statistics can be visualized using Grafana, an open
ource graphical representation tool [45]. In the example shown in
ig. 3 a network topology composed of 11 switches and a situation
here already few intents have been processed and enforced by frame-
ork is considered.

For each established intent, 1MB of User Datagram Protocol (UDP)
raffic is sent between the two endpoints composing the chain. In
he screenshot, the status of the switches in terms of average load is
isplayed. It can be noticed that at a given time, not all the switches
ave the same load and that their status dynamically changes over the
ime. More specifically, if the switches load threshold is for example
ixed to 5MB, it cen be clearly observed that from 15:27 to 15:35 all
he switches loads are below the threshold. Few seconds after 15:35,
he load of switches 2, 4, 8, and 10 suddenly increases due to the setup
f new incoming intents and the flow of their related traffic. Since
he load of those switches exceeds the threshold, a remediation action
s triggered, i.e., a path redirection mechanism involving less loaded
witches. From the figure, it can be clearly observed that, after the
edirection is completed, the load of those switches drops below the
hreshold thus performing a better distribution of the traffic over all
he switches available in the network.

.3. Fulfilment and intent verification

In this subsection, details on how the Intent Layer components
ontribute in the fulfilment of intents are given. The case of composite
ntents is considered.

Computer Networks 212 (2022) 109034B. Martini et al.
Fig. 4. Flowchart of the fulfilment phase.

In addition to the Intent Manager, the fulfilment phase mainly in-
volves the Configuration and Deployment Engine, the Statistics Collector
and the SDN controller to enforce the intent in the network after the
verification that the intent can be supported. More specifically, as
shown in the flowchart depicted in Fig. 4, the fulfilment operates as
follows.

After the translation of the template and the extraction of the
intent’s parameters, the Intent Manager verifies the feasibility of the
deployment of the intent according to the current network status
(Verification). It starts by retrieving the status of the switches directly
connected to the endpoints and capable of satisfying the request re-
quirements (i.e., source and destination endpoints, virtual functions
to be traversed), called ‘‘original source’’ and ‘‘original destination’’
7

switches in the flowchart, and checks their current load. If at least one
of those switches is overloaded, the request is rejected.

Otherwise, it forwards the request to the Configuration and De-
ployment Engine, which for all the VNFs composing the service chain,
interacts with the SDN controller to select the appropriate switches
for the request and then splits the chain into a set of segments where
each segment is composed of an ‘‘intermediate source switch’’ directly
connected to one VNF and an ‘‘intermediate destination switch’’ con-
nected to the successive VNF in the chain. The switches composing
each segment are then also checked for their current load through
several interactions between the Intent Manager and the Configuration
and Deployment Engine. If at least one of switches is overloaded, the
request is rejected. Otherwise the intent is enforced in the network by
setting the necessary flow rules on the set of eligible switches along the
path.

5.4. Assurance and intent validation

In this subsection, details are given on how the Intent Layer com-
ponents contribute in automatically validating (i.e., zero-touch man-
agement) each enforced intent to maintain its status during its whole
life-time in accordance with the expressed goals. The case of composite
intent is considered.

In addition to the Intent Manager, the assurance phase mainly in-
volves the Adaptation Module and the Statistics Collector to decide if
actions are needed to maintain the intent despite data rate degradation
or delay increasing. Indeed, after its fulfilment, the intent can deviate
from the desired outcome due to dynamic network conditions, e.g., in-
crease in the switches load. Therefore intent status is continuously
monitored to guarantee its agreed parameters while responding to the
continuous changes of the network. This is part of the validity verifica-
tion operation running in background to assure the intents remain in
line with the outcomes expressed by the application (i.e., zero-touch
and fully automated operation).

More specifically, the validation operates as follows. Thanks to the
monitoring process performed in background, the Adaptation Module
periodically checks the operational data of all the switches and retrieves
the list of currently active paths. For each switch that is connected to
a cloud platform, if the average load is higher than a given threshold,
the switch is considered as overloaded. The Adaptation Module triggers
then the Intent Manager to perform corrective actions regarding the
execution of the intent. For this purpose, once a congestion notification
is received, the Intent Manager interacts with the Coordination and
Deployment Engine to trigger the redirection of the active data delivery
paths passing through the overloaded switch to other switches available
(i.e., not overloaded) in the data plane.

In Fig. 5 a flowchart that summarizes the different steps executed
during the validation process is presented. More specifically, the Adap-
tation Module periodically checks the collected statistics, which are
relative to the status of the switches present in the network. The Adapta-
tion Module examines the switches one by one (i.e., ‘‘More switches?’’)
and elaborates their statistics to get the overall load of each switch.
If the average load of one or more switches in higher than a given
threshold, it triggers the Intent Manager to perform remediation actions.
The Intent Manager, checks again the eligibility of the intent, and if the
new deployment is feasible triggers the Coordination and Deployment
Engine to enforce the new network configuration. This latter gets the
list of flow entries installed in the switch and deletes them one by one
(i.e., ‘‘More flow entries?’’). Then, from the list of deleted paths, the
source and destination IP addresses of each path are obtained and all
the traffic (i.e., ‘‘More paths?’’) is redirected to other unloaded switches
in the network where the flow rules are re-installed.

It is worth pointing out that the execution verification may result
in the need to block some intent requests from the applications be-
cause of lack of resources. On the other hand, the validity verification
aims at maintaining established intents despite dynamic network status

Computer Networks 212 (2022) 109034B. Martini et al.

n
c
c
c
E
t

r
c
t
v
s
i
s

s
p
d
p
q
v
p

Fig. 5. Flowchart of the validation phase.

(e.g., increasing network load). Hence, intent verification and valida-
tion are also resource management operations since overall resulting in
and taking advantages from a better resource utilization. Indeed, intent
processing combined with effective resource management and control
capabilities are beneficial not only to fulfil at best the incoming intent
requests but also to increase the possibility to fulfil upcoming/future
intent requests while assuring the running ones.

6. Performance evaluation

In this section, a set of results obtained after carrying out a number
of experiments is presented to explore the performance of the presented
automated deployment and show its effectiveness.

6.1. Emulation settings

In order to evaluate the performance of the proposed framework,
a virtualized environment is adopted where a prototype of the pro-
posed Intent Layer is implemented. The Intent Layer components are
executed and configured to interact with a Network Layer emulated
using Mininet, a network emulator that allows to deploy a SDN-based
network [46]. As a reference network, the Abilene topology is used
[47] which is a high-performance backbone network created by the
Internet2 community and composed of 11 nodes connected in a mesh
topology. In each node of the topology, an OpenFlow-enabled emulated
switch is deployed. Mininet typically uses the default Linux bridge
or Open vSwitch running in kernel mode to switch packets across
interfaces. As a result, the OpenFlow switches created by Mininet
provide the same packet delivery semantic that would be provided
by a hardware switch. A subset of these switches are connected to
emulated cloud platforms that contain the virtual functions while the
remaining switches are simply forwarding switches. Moreover, a real
SDN controller, Floodlight [48], is used for the setup of the service
8

s

chains paths and traffic steering. In particular, for the selection of
the appropriate switch, the dijkstra’s shortest-path algorithm provided
by the SDN controller is exploited to select the closest instance for
each service specified in the chain. In this algorithm, the switches are
associated with no weight. Moreover, all the nodes in the topology are
randomly chosen to behave as a source/destination of the service chain
requests. If not specified otherwise, the VNFs performing the same type
of network functions are assumed to be present in each cloud platform,
which releases us from the use of any placement algorithm since the
focus of this paper is on the service chains establishment through
intent-based operations. In addition, to emulate the traffic flowing in
the network, a UDP traffic generated from the Iperf tool [49] is sent
from each source host to each destination host specified in the requests.
The amount of traffic sent is equal to the throughput value expressed
in the intent and randomly varies within the interval [1 Mbps, 10 Mbps].

In the following, two types of tests were conducted. First, in Sec-
tions 6.2 and 6.3, to demonstrate the validity and feasibility of the
approach, a simple API that takes the intent template as input and sends
it to the Intent Manager was implemented. After the fulfilment of the
intent (setup of the service chain path in the network), the Iperf tool
was used to generate UDP traffic equal to the amount specified in the
intent request. The requests follow a deterministic Inter-arrival Time
(IAT) equal to 10 s. In Section 6.4, the performance of the Intent Layer
verification and validation mechanisms is assessed focusing more on
the network load and the behaviour of the Adaptation module. For this
purpose, a more dynamic pattern for the intent requests is considered
(the requests follow a Poisson distribution characterized by an inter-
arrival and holding times exponentially distributed with an average
of 1∕𝜆 equal to 20 s and 1∕𝜇 varying within the range [5 s, 60 s]
respectively). Also during these tests, UDP traffic was generated using
the Iperf tool. Results were collected with a confidence interval of 5%
at a confidence level of 95%.

6.2. Performance of intent enforcement in edge cloud environment

In this paragraph, the SDN Network Layer performance is evaluated
while enforcing composite service chain intents and when different
pervasiveness levels of VNFs in the network clouds are adopted. For
this reason, the verification operation is deactivated and the validation
mechanism is not adopted, and only the intent enforcement in the
network nodes is considered which is the operation that is mainly
affected by network and cloud deployment set-up. The number of
requested virtual functions in a chain is fixed to 3, which is a reasonable
umber (not too low and not too high [50,51]). This is only a design
hoice and not a limitation of the prototype, which is able to consider
hains with different lengths. The number of switches connected to a
loud platform is also varied from 3 to 10 out of 11 available switches.
ach cloud platform contains a fixed number of virtual functions equal
o 3.

In Fig. 6 the flow setup time is evaluated, defined as the total time
equired to setup the flow entries in all the switches across the service
hain paths. Results show that the setup time is quite independent from
he number of switches connected to the cloud platforms. The small
ariations are due to the total path length (i.e., in terms of number of
egments) which might differ from one request to the other and which
n some cases necessitates traversing other switches (i.e., forwarding
witches) thus increasing the setup time.

Fig. 7 plots the average number of flow entries installed in the
witches as a function of the number of switches connected to cloud
latforms. Results show that the number of flow entries considerably
ecreases by increasing the number of switches connected to cloud
latforms, which can be explained as follows. Data delivery path re-
uests are characterized by a source, a destination and a chain of
irtual functions that are generated randomly. Identifying a feasible
ath results in identifying a shortest path that traverses the set of

witches connected to the type of VNF specified in the request. Since

Computer Networks 212 (2022) 109034B. Martini et al.

p

t
t
c
n
a
s

o
r
d
u
e
w
c
b
c
h
b
s
p
i
c
r

o
e
A
s
w

o

o
e
L
c
i
d
f
p
t
w
s
s
A
n
t
s
t
b

Fig. 6. Flow setup time vs. number of switches connected to cloud platforms.

Fig. 7. Number of flow entries vs. number of switches connected to the cloud
latforms.

hat the cloud platforms connected to the switches are assumed to con-
ain all the possible types of VNFs, increasing the number of available
loud platforms and spreading them on different switches decreases the
umber of paths traversing the same switch for a given VNF, which
lleviates the load (i.e., in terms of number of flow entries) on the
witches.

Fig. 8 plots the Round Trip Time (RTT) as a function of the number
f switches connected to cloud platforms. The RTT refers to the time
equired for a packet to travel from a specific source to a specific
estination and then gets back again. To do so, the Ping tool was
sed to measure the RTT between each source/destination couple of
very intent request successfully fulfilled and then the average value
as calculated. Results show that increasing the number of switches

onnected to the cloud platforms slightly decreases the RTT. Such
ehaviour is typical of edge networks where the service is brought
loser to the customers through the proliferation of cloud platforms
osting the VNFs. In fact, given that the shortest path algorithm has
een used for the selection of the VNFs, having larger number of
witches with cloud platforms provides a higher number of alternative
aths. However, the gain is limited (1 ms in the best case), which
mplies that the deployment of a relatively small number of switches
onnected to the cloud platforms might be acceptable thanks to VNFs
eplications.

This result shows the importance of a trade-off between the number
f the edge clouds platforms deployed in the network and the QoE
xpressed in terms of end-to-end delay experienced by users requests.
ugmented Reality (AR) applications for example in different fields
uch as healthcare, entertainment and education require low latency,
hich can be brought down by reducing the number of hops. On the
9

f

Fig. 8. RTT for a different number of switches connected to the cloud platforms.

Fig. 9. Intent deployment time vs. chain’s length.

other hand, the deployment cost of the edge cloud platforms and the
energy efficiency aspects such as their power consumption are also
important parameters to be taken into consideration.

6.3. Performance of intent-based service layer

Secondly, the performance of the Intent Layer considering different
numbers of VNFs in the chain (i.e., chain length) was evaluated. To this
purpose, the number of switches connected to cloud platforms was fixed
to 5 and the chain length varied from 2 to 5. Again, the verification
peration is deactivated and the validation mechanism is not adopted.

In Fig. 9 the overall intent deployment time is plotted as a function
f the service chain’s length. The deployment time refers to the time
lapsed between receiving the intent request from the Application
ayer and its complete fulfilment at the Network Layer. It mainly
onsists into two components: (i) the intent processing time, which
ncludes the translation time, the time necessary for checking the
atabase, the time necessary for the communication between the Con-
iguration and Deployment Engine and the controller, etc.; and (ii) the
ath setup time, which is mainly relative to the flow rules installa-
ion time. The experiment was conducted as follows. Several intents
ith different service chains length (going from 2 to 5) and different

ources/destinations values were sent. Each time an intent request was
ent, a timer was triggered to start measuring its deployment time.
fter the fulfilment of the intent (setup of the service chain path in the
etwork), the timer was stopped. In this plot, only the time spent by
he Intent Manager to reply for successful intents is considered. Results
how that by considering more services in one request, the deployment
ime increases mainly for the increase of the number of switches to
e traversed that consequently necessitate more interactions and more
low entries to be installed.

Computer Networks 212 (2022) 109034B. Martini et al.

i
i
p
i
2
t

t
t
V
e
a
t
s
A
i
h
t
r

6

m
v
r
n
a
t

c
I

a
T
a
t
s
t
t

v
s
b
t
s
o
i
A
a
t

l
s
a
e
b
e
s
b
w
t
t

Fig. 10. Number of flow entries vs. chain’s length.

Fig. 11. RTT vs. chain’s length.

The plot in Fig. 10 shows that the number of flow entries installed
n the switches increases as the number of required services in a chain
ncreases. In fact, since the number of switches connected to cloud
latforms is limited to five, increasing the number of virtual functions
n one request also increases the number of traversed switches (from

to 5) which requires the setup of more flow entries to forward the
raffic along the data delivery path.

Fig. 11 plots the average RTT as a function of the different lengths of
he service chains considered in all the requests. The VNFs are assumed
o be transparent (i.e., no packet modification is performed) and the
NFs performing the same type of network functions are present in
ach cloud platform, which releases us from the use of any placement
lgorithm. Once the intent request was successfully fulfilled, the ping
ool was used to measure the RTT from each source to each destination
pecified in the intents, and the obtained average values were plotted.
s expected, it can be observed that the RTT experienced by the packets

ncreases as the number of services in the chain increases. In fact, when
aving more services in the chain, the number of traversed switches
hat need to be configured (i.e., setup of flow entries) increases which
aises the RTT.

.4. Performance of the intent layer verification & validation

After focusing on the performance of intent processing and enforce-
ent operations, in this paragraph the impact of the verification and

alidation mechanisms on the rate of fulfilled intents is assessed in
elation to the effectiveness of resource utilization in the SDN edge
etwork.The impact of the verification and validation mechanisms is
lso assessed in terms of further processing load that they required
o be implemented. More specifically, the blocking probability (BP) is
10

a

Fig. 12. Blocking probability.

alculated as the probability that one request is not accepted by the
ntent Manager since the network in its current state cannot support

the execution of the intent. In this work, the load status of the switches
was considered as a metric for the network congestion. A switch is con-
sidered overloaded if its average load is higher than a given threshold.
We also provide the average switches load and the overhead on the
Intent Layer expressed in terms of exchanged messages and number of
performed redirections. The results are compared with the basic Intent
Layer operation where no verification and validation mechanisms are
adopted (i.e., only intent translation and enforcement are performed).

For each test, a sequence of 100 composite intent requests has
been generated. Each request is characterized by a random source, a
random destination and 3 virtual functions. The number of switches
connected to a cloud platform is fixed to 5. The requests follow a
Poisson distribution characterized by an inter-arrival and holding times
exponentially distributed with an average of 1∕𝜆 and 1∕𝜇, respectively.
1∕𝜆 is fixed to 20 s while 1∕𝜇 varies within the range [5 s, 60 s], thus
chieving the desired load computed as 𝜆∕𝜇 and expressed in Erlang.
he holding time corresponds to the time necessary for maintaining
ctive a flow. Also for these tests, a UDP traffic is generated using
he Iperf tool and sent from each source host to each destination host
pecified in the requests. The amount of traffic sent is equal to the
hroughput value expressed in the intent. The switches average load
hreshold is fixed to 20 MB.

Fig. 12 plots the blocking probability and shows that, when the
erification feature is considered, at low loads, BP is low since the
witches are not overloaded, which minimizes the risk for an intent to
e rejected independently from the adopted mechanism. By increasing
he load, BP increases in the no validation case while it remains almost
table but lower when the validation mechanism is adopted. In fact,
nce the average load of a switch reaches the threshold, the already
nstalled flows are deleted and redirected to less congested switches.
t the arrival of a new request, the current load is already balanced on
ll the available switches which decreases its probability to be rejected
hus allowing to accommodate more intents.

In Fig. 13 the average service time is fixed to 20 s and the average
oad of the switches connected to cloud platforms is plotted. Results
how that with respect to the baseline (no verification and no validation
re performed), the introduction of at least one of the two mechanisms
nhances the performance. In fact, in the baseline high disparities can
e noticed among the switches in terms of average load where, for
xample, switches 2 and 4 are almost doubly loaded with respect to
witches 6 and 10. Moreover, the adoption of the path redirection or the
locking features separately introduces an improvement in the results
ith respect to the baseline. This is confirmed by the load balancing of

he current traffic among all the available switches. The path redirec-
ion presents slightly better results since it is performed periodically
nd does not depend on the arrival rate of the requests. Finally, as

Computer Networks 212 (2022) 109034B. Martini et al.

e
p
a

d
r
m
a
t
o

v
n
a
b
n
t
r
f
a

R
a
d
T
e
t
h

f
t

Fig. 13. Average Load in the switches connected to cloud platforms.

Fig. 14. Number of redirections for different loads.

xpected, the combination of the two features further enhances the
erformance which results in an almost equal distribution of the load
mong the switches.

Load balancing is an important design goal especially for multime-
ia applications such as live broadcast, video on demand (VoD) and
eal-time conferencing. In fact, those applications have high require-
ents in terms of reliability and real-time performance which can be

ddressed through load balancing since it allows to maintain a high
hroughput while minimizing the packet loss due to the overload of
ne or multiple switches in the network.

In the following graphs, the overhead on the Intent Layer of the
erification and validation mechanisms is evaluated. In Fig. 14, the
umber of performed redirections is plotted, which increases linearly
s the network load increases. In fact, at high loads more switches
ecome overloaded more frequently which, as expected, increases the
umber of the redirections in order to balance the load and then limit
he switches congestions. Moreover, results show that the number of
edirections is lower when the verification mechanism is adopted. In
act, in such a case the overhead is minimized since no more requests
re accepted when the network is congested.

Fig. 15 plots the redirection time as a function of the network load.
esults show that the time necessary to the controller for deleting
path traversing an overloaded switch and setting it up through a

ifferent sequence of switches is independent from the current load.
he redirection time mainly depends on the characteristics of the
nvironment in which the SDN controller is running and the network
opology is emulated (e.g., CPU and RAM of the virtual machines
osting them).

Fig. 16 plots the number of messages exchanged between the dif-
erent components of the Intent Layer and the SDN controller. When
he validation mechanism is not adopted, the number of messages
11
Fig. 15. Redirection time.

Fig. 16. Number of messages exchanged between the controller components.

is constant and is relative to the setup/deletion of the flows which
corresponds to the number of data delivery requests. On the contrary,
as expected, the redirection feature increases the number of messages
exchanged between the Intent Layer and the Network Layer since every
time a redirection is performed, a new path is calculated and new flow
entries are set-up which necessitates further communication messages
(e.g., path delivery set-up, path tear-down, access to the database, etc.).
It is worth highlighting that the overhead is higher when the verifica-
tion is not performed since all the requests are accepted independently
from the current network load which increases the congestion and then
the number of redirections.

7. State of the art

Several works in literature show that the adoption of SDN, possibly
in combination with an orchestration layer, provides increasing flexi-
bility and scalability to dynamic service chaining [52]. Moreover, the
emerging IBN concept combined with software-defined networks pave
the way for the automation and efficiency of edge computing scenar-
ios. In this section, the above concepts are discussed in three related
research areas. Then, the contribution of this work is highlighted as a
result of the reported analysis of related works.

7.1. SDN-based service chaining

The use of SDN in service function chaining is considered as a
promising technology to programmatically enforce data delivery paths
in the network and thus to dynamically steer application/service data
flows across a set of service functions/virtual functions taking part in
the service chains [52]. In this area of investigation, [53] proposes
the NIMBLE system that uses SDN-based traffic steering operations for

Computer Networks 212 (2022) 109034B. Martini et al.
middleboxes management and compositions. The key idea is based on
the establishment of tunnels between all switches pairs in the network,
which significantly reduces the number of flow entries and allows to
simply forward packets among the different middleboxes present in
the network. Similar to what we do in this work the middleboxes
deployment is based on a software architecture for configurable routers
(Click modular router) while relying on cloud providers or middleboxes
placed in virtual machines VMs is considered as a possible extension
of the work. [54] proposes the StEERing framework for dynamically
steering data flows across a specified chain of middleboxes while
leveraging SDN and the OpenFlow protocol. The framework supports
efficient forwarding for a large number of applications and subscribers.
As proposed in this work, in their simulations, authors adopt the
Abilene topology and distinguish between switches connected to ser-
vices and simple forwarding switches, while the experimental testbed
is quite limited since composed of 4 middleboxes and 4 OpenFlow
switches. [55] presents a prototype of an SDN-enabled node that, given
a new user device connected to one of its physical ports, is able to
dynamically instantiate the user-specific forwarding graph by forcing
the user data to traverse the required set of network functions over a
user-specific path set-up across instances of programmable OpenFlow
switches (i.e., Logical Switch Instances). Upon the arrival of a new
network function forwarding graph, an LSI is activated on-the-fly to
steer traffic among the required VNFs deployed either as DPDK pro-
cesses or in docker containers, in contrast with our approach where
VNFs are already deployed in the emulated cloud platforms. Traffic
isolation features for service chaining are also considered in [56] where
a novel approach and a prototype is presented to integrate network
services into a service chaining system. The network isolation of service
instances allows a simplified deployment process. As in this work,
during the proof-of-concept, the service chaining relied on Mininet
and custom scripts for creating the network and the service instances.
However, unlike in this proposal where the SFC deployment is fully
automated, in [56] middleboxes still require a minimal configuration
which is costly and error-prone. On the other hand, the orchestra-
tion of network and cloud-based NFV resources is a relevant research
areas, especially in combination with SDN control plane solutions
[57]. Indeed, a coordinated control of both cloud- and network-layer
resources is recommended in order to provide adaptive service data
delivery and adequate user service experiences [58]. In our previous
works, concatenated connectivity in computing networks (i.e., into
data-center/cloud networks) was also investigated [59] and we also
contributed to an end-to-end service chaining including connectivity
in edge clouds [60] or within network slicing for industry 4.0 [61].
Latency, adaptability and availability requirements were also investi-
gated in [62]. In this area of research, [63] proposes an orchestrator
for resilient service function chaining operations in cloud networks
able to recover from service function failures by activating a stand-
by VNF instance and, accordingly, by rerouting the network path of
the chain to include the new instance. In [64] authors present a SDN
controller design to address the service chain orchestration aiming at
dynamically handling multiple data flows, at differentiating traversed
network functions (i.e., forwarding graphs) to address different user
SLA, and at steering the data traffic throughout nodes, accordingly.
They also used a monitoring system based on packet inspection to verify
the meeting of the data flow to the SLA. In [65] authors present an SDN
orchestrator for dynamic chaining of computing and communication
resources while assuring better than best effort data delivery among
virtual functions (i.e., VMs) in Cloud Data Centers. Moreover, a set
of chaining strategies are proposed that consider the current load of
switches and servers for resource selections. [38] authors present a
distributed service chaining approach that coordinates among the VNFs
selection, placement and routing operations. The simulated network
relied on a common data center topology where the focus is mainly on
an efficient VNF instances selection to improve intra-cloud resources
12

utilization and minimize links load ratio.
7.2. Software-defined edge computing

The proliferation of edge devices and the increasing requirements
in terms of minimization of service delay and energy consumption has
participated in the popularity of Edge Computing, which allows for
bringing computational infrastructures and thus services closer to the
end users. However, along with its benefits, edge computing brings also
some technical challenges and complexities that can be faced through
the adoption of SDN [66].

More specifically, SDN can help in improving the performance
experienced by the users of edge computing systems by exploiting
the OpenFlow capabilities to monitor service utilization and manage
the load on edge servers. In [67] authors propose an edge computing
framework that allows for dynamic route calculation to suitable edge
servers for real-time vehicle monitoring. The framework is based on
the integration of EC and SDN and the obtained results show its
efficiency in terms of resources utility and delay. In [68] authors build
a software-defined vehicular edge networking structure that achieves
load-balancing by the virtue of the global load status information. The
proposed algorithm allows to meet the requirements of computation
and transmission delay for various vehicular tasks.

SDN also allows to flexibly handle users handover to avoid any
performance disruptions when an edge device moves from a cloudlet
to the other. Such operation is performed through dynamic flows
redirection [69] or VMs live migration [70]. On the other hand, when
coupled with edge computing, SDN helps in providing an efficient IoT
service orchestration and contributes in solving the challenges related
to complex IoT management [71]. In [72], authors present a framework
for IoT that employs an edge computing layer of Fog nodes controlled
and managed by an SDN network. The proposed framework relies on
distributed SDN controllers and OpenFlow switches that in concordance
with a load balancing algorithm achieves higher efficiency in terms of
latency and resource utilization. In [73] authors exploit the benefits of
SDN to support the use of large-scale fog-enabled vehicular network
services by investigating the design principles and evaluating a traffic
accident rescue use case. The obtained results clearly show how SDN
contributes in easing the fog/cloud network integration and improves
user experiences and the efficiency of vehicular communications.

However, despite all the research work performed within the
software-defined edge computing area, there is only few works that
tackle the hiddenness of all the network configuration complexities
from the end users, while further simplifying their access to the edge
computing services as we do in this work through the implementa-
tion of the Intent Layer. Among those, [11] presents an intent-based
network control framework designed for data dissemination in the
vehicular edge computing environment. In their work, authors use
the Open Network Operating System (ONOS) controller along with
an AI-based optimization engine and confirm how the use of the
IBN approach allows for a significant preservation of the desired QoS
requirements (i.e., energy efficiency, latency reduction).

Finally, it is worth pointing out that generic cloud data centers are
not pretty in scope of this paper since they are more focused on cross-
edge service function chaining in Edge Computing scenarios where
routing (and network control in general) play a more key role to justify
the use of SDN [38]. Indeed, in this work, a distributed environment
of services interconnected with a generic mesh network topology is
considered that provides multiple options for network connections
supporting service chain paths.

7.3. Intent-based networking

The use of IBN techniques in SDN environments has been lately
investigated in numerous works. More specifically, [19] presents an IBN
approach for service routing and QoS control on the Koren-SDI infras-
tructure. Authors demonstrate the efficiency of IBN-driven routing in

ensuring service provisioning and guaranteeing the seamless fulfilment

Computer Networks 212 (2022) 109034B. Martini et al.
of QoS demands by changing traffic routes dynamically through a Ma-
chine Learning (ML) based approach used to select the best paths. The
presented solution is based on the prediction of future link utilization
while in this work the current network status is considered as part of the
verification operation of the intent before processing it. In [21], authors
propose Alviu, an SD-WAN network orchestrator, which allows for
a dynamic intent-based configuration of Wide Area Networks (WAN)
that assures end-to-end network slicing. The proposed orchestration
solution is based on an SDN controller which abstracts the network
equipments to be managed and facilitates their configuration. Although
an IBN approach is adopted, the network characterization is declared
through a set of descriptors, in contrast with the simplified template-
based approach presented in this work. Moreover, no intent validation
mechanism is adopted to ensure the automation and self-assurance of
the intent-based platform as proposed in this paper. In [20] an intent-
based NBI for end-to-end service management and orchestration across
multiple technological domains is proposed. The general approach has
been tested in an SDN-based testbed to show the benefits taken from a
fully automated infrastructure. In [74], an intent-based NBI is designed
to enable cross-domain end-to-end service management. The particular
use case of an IoT infrastructure deployment has been considered for
the experiment validation of the NBI. Finally, the Intent Framework of-
fered byONOS allows to easily express the connectivity requirements in
an SDN network through the specification of endpoints, constraints and
actions [37]. Although simple, the framework still requires technical
skills for the network configuration.

Other research initiatives regard the definition of descriptive inter-
faces, which is an essential aspect of IBN since it allows the accurate
definition of services characteristics and network-related requirements
to enable automated service chaining deployment and optimization
[75]. To this purpose, an intent-based approach has been considered in
[76] where authors claim the necessity to consolidate infrastructure-
independent abstractions for specifying network functionalities and
use an efficient and scalable virtualization platform to translate ab-
stract specifications into concrete infrastructure configuration primi-
tives. [77] presents a prototype that provides an intent-based service
request API that allow the description of services in a more declara-
tive manner (i.e., in terms of intentions and strategies). Finally, [78]
proposes a NBI for intent declaration based on a behaviour-driven
approach. Intents are specified in plain text and then translated into
pre-compiled network policies before converting them into low-level
rules by an SDN controller, which makes network configuration easier
and paves the way for a simple and more expressive interface for
intent-driven networking.

Few research works tackled the adoption of IBN in SFC contexts. In
[22], a framework called OpenPATH is developed for the deployment of
NFV applications with a special focus on traffic steering among NF ser-
vice chains. The OpenPATH implementation meets some requirements
of intent-based networking (e.g., an intuitive API for representing SFC
policies,automatic deployment of the SFCs). However, unlike this work
which focuses on the intent layer, the main focus of OpenPATH is on
SFC placement and packet forwarding while some aspects of the IBN
lifecycle are not addressed such as intents verification and assurance
phases. [23] presents an intent conflict resolution scheme to avoid
conflicts among intents declared by multiple users. As in this work, the
intent template is simply composed of a source, destination, an SFC and
a priority constraint. However, authors only deal with the validity and
reliability of the conflict resolution scheme (intent verification) leaving
intent execution and assurance details to future works. In [14] a proof-
of-concept implementation of an intent-based northbound interface for
VNFs dynamic service chaining is presented. Also in this work, the
NBI takes as input a template including the source, destination and
VNFs list in the service chain and then forwards the intent request to
a Virtual Infrastructure Manager (VIM), which interacts with an SDN
controller to steer traffic among the VNFs. The framework also allows
13

for remediation actions through the update of the SFCs. However, the
update can only be performed upon a specific request while in this
work we handle congestion issues automatically as part of the lifecycle
management of the intent.

Finally, the functionalities of the approach proposed in this work
are in line with the current trends and initiatives in both dynamic
service chaining and IBN carried out by some standardization bodies.
The IETF is promoting the adoption of an intent-based interface to
enable applications to easily describe their requirements for network
connectivity to the network management systems [79]. Moreover, the
IETF is defining a set of control functionalities and interfaces required
for governing service function chains, e.g., enable/disable operations,
service chain modification [24]. In particular, a set of control functions
are foreseen to establish, maintain and recover service chains while
exploiting monitoring status information to detect, e.g., service function
unavailability or data delivery degradations along paths bound to a
given service chain. Moreover, in [25] the need of addressing the high
availability of the service function chains and of the connecting paths
is stated as addressed in this work.

8. Conclusions

In this paper, an intent-based service chain layer is presented that
allows for the dynamic deployment of service chains paths through the
SDN capabilities of edge cloud networks. The proposed approach is
flexible and scalable since it offers a simple way for users/applications
to express their goals in a high-level manner using a straightforward
template-based approach while the technical details for their imple-
mentation are left to the network operation system. In this way, the
structured intent facilitates the translation of the requirements into con-
figuration directives while being close enough to the natural language
used by operators and home users. In addition to the easiness of the
service chains paths provisioning, the adaptive features provided by
the Intent Layer offer the possibility to activate recovery actions when
data delivery degradations are detected thus meeting the requirements
specified in the intent. As a further indication of the extensibility of
the framework, in the Performance Evaluation section the impact of the
variation of the service chains length and the number of cloud platforms
in the network were assessed showing that those modifications do not
impair existing system functions. On the other hand, for real edge-based
applications to be deployed, the results highlighted the necessity of a
trade-off between the pervasiveness of the edge cloud computing plat-
forms in the network and the QoE perceived by the users. This proposal
presents a step forward in the adoption of intent-based networking
in edge cloud networks, which is still not a well explored research
area. However, the proposed framework is still under development and
some aspects still need to be investigated such as (i) the adoption of
more sophisticated parameters for the assurance phase (single flow
performance instead of/or in addition to the switches overload), (ii) the
improvement of the intents template to include further details strictly
related to the edge cloud context and provide a formalized intent
language expression, and (iii) the investigation of different network
topologies and traffic patterns.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

We would like to thank Ahmed Ali Mohammed and Hagos Lemlem
Adhane for their contribution in the Performance Evaluation section of
this paper.

This work was carried out in the framework of the Department of
Excellence in Robotics and Artificial Intelligence funded by MIUR to

the Scuola Superiore Sant’Anna.

Computer Networks 212 (2022) 109034B. Martini et al.
References

[1] L.U. Khan, et al., Edge-computing-enabled smart cities: A comprehensive survey,
IEEE Internet Things J. 7 (10) (2020) 10200–10232, http://dx.doi.org/10.1109/
JIOT.2020.2987070.

[2] Mobile edge computing (MEC); framework and reference architecture, in: ETSI,
ETSI GS MEC 003 1.1.1, 2016.

[3] R.K. Naha, S. Garg, D. Georgakopoulos, P.P. Jayaraman, L. Gao, Y. Xiang,
R. Ranjan, Fog computing: Survey of trends, architectures, requirements, and
research directions, IEEE Access 6 (2018) 47980–48009, http://dx.doi.org/10.
1109/ACCESS.2018.2866491.

[4] M. Muniswamaiah, T. Agerwala, C.C. Tappert, A survey on cloudlets, mobile
edge, and fog computing, in: 8th IEEE International Conference on Cyber Security
and Cloud Computing (CSCloud)/7th IEEE International Conference on Edge
Computing and Scalable Cloud (EdgeCom), 2021, pp. 139–142, http://dx.doi.
org/10.1109/CSCloud-EdgeCom52276.2021.00034.

[5] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, M. Guizani, Multi-access edge
computing: A survey, IEEE Access 8 (2020) 197017–197046, http://dx.doi.org/
10.1109/ACCESS.2020.3034136.

[6] M. Gharbaoui, et al., Resource orchestration strategies with retrials for latency-
sensitive network slicing over distributed telco clouds, IEEE Access (2021) 1,
http://dx.doi.org/10.1109/ACCESS.2021.3115173.

[7] A. Sathiaseelan, et al., SCANDEX: Service centric networking for challenged
decentralised networks, in: Proceedings of the Workshop on Do-It-Yourself Net-
working: An Interdisciplinary Approach, Association for Computing Machinery,
2015, pp. 15–20.

[8] G. Castellano, et al., A model-based abstraction layer for heterogeneous SDN
applications, Int. J. Commun. Syst. 32 (17) (2019) e3989, http://dx.doi.org/10.
1002/dac.3989.

[9] T. Braun, et al., Service-centric networking extensions, in: Proceedings of the
28th Annual ACM Symposium on Applied Computing, Association for Computing
Machinery, 2013, pp. 583–590.

[10] A.C. Baktir, A. Ozgovde, C. Ersoy, How can edge computing benefit from
software-defined networking: A survey, use cases, and future directions, IEEE
Commun. Surv. Tutor. 19 (4) (2017) 2359–2391, http://dx.doi.org/10.1109/
COMST.2017.2717482.

[11] A. Singh, et al., Intent-based network for data dissemination in software-defined
vehicular edge computing, IEEE Trans. Intell. Transp. Syst. 22 (8) (2021)
5310–5318.

[12] A. Clemm, et al., Intent-based networking - concepts and overview, 2020,
[Online] Available: https://Bit.Ly/2ImukBF.

[13] T. Szyrkowiec, et al., Automatic intent-based secure service creation through a
multilayer SDN network orchestration, IEEE/OSA J. Opt. Commun. Netw. 10 (4)
(2018) 289–297.

[14] F. Callegati, et al., Performance of intent-based virtualized network infrastructure
management, in: IEEE International Conference on Communications (ICC), 2017,
pp. 1–6.

[15] S. Arezoumand, et al., MD-IDN: Multi-domain intent-driven networking in
software-defined infrastructures, in: Proc. Int. Conf. Netw. Service Manage.
(CNSM), Tokyo, Japan, 2017.

[16] B. Lewis, et al., Using P4 to enable scalable intents in software defined networks,
in: Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), 2018, pp. 442–443.

[17] M. Gharbaoui, et al., Programmable and automated deployment of tenant-
managed SDN network slices, in: IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2020, pp. 1–6, http://dx.doi.org/10.1109/NOMS47738.
2020.9110302.

[18] H. Liao, et al., Learning-based intent-aware task offloading for air-ground
integrated vehicular edge computing, IEEE Trans. Intell. Transp. Syst. 22 (8)
(2021) 5127–5139.

[19] T. Khan, et al., Intent-based networking approach for service route and QoS
control on KOREN SDI, in: Proceedings of IEEE Conference on Network
Softwarization (NetSoft), 2021, pp. 1–5.

[20] G. Davoli, et al., Intent-based service management for heterogeneous
software-defined infrastructure domains, Int. J. Netw. Manage. 29 (1) (2019).

[21] R. Perez, et al., Alviu: An intent-based SD-WAN orchestrator of network
slices for enterprise networks, in: Proceedings of IEEE Conference on Network
Softwarization (NetSoft), 2021, pp. 1–5.

[22] P. Krishnan, et al., OpenPATH: Application aware high-performance software-
defined switching framework, J. Netw. Comput. Appl. 193 (2021).

[23] J. Zhang, et al., A conflict resolution scheme in intent-driven network, in:
IEEE/CIC International Conference on Communications in China (ICCC), 2021,
pp. 23–28.

[24] M. Boucadair, et al., Service function chaining (SFC) control plane components &
requirements, 2016, https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-
plane-06.

[25] B. Sarikaya, et al., Service function chaining: Subscriber and service identification
use cases and variable-length NSH context headers, 2018, https://datatracker.ietf.
org/doc/html/draft-sarikaya-sfc-hostid-serviceheader-07.
14
[26] A. Mohammed, et al., SDN controller for network-aware adaptive orchestration in
dynamic service chaining, in: IEEE NetSoft Conference and Workshops (NetSoft),
2016, pp. 126–130.

[27] B. Martini, et al., SDN controller for context-aware data delivery in dynamic
service chaining, in: Proceedings of the 1st IEEE Conference on Network
Softwarization (NetSoft), 2015, pp. 1–5.

[28] M. Gharbaoui, et al., Implementation of an intent layer for SDN-enabled
and QoS-aware network slicing, in: IEEE 7th International Conference on
Network Softwarization (NetSoft), 2021, pp. 17–23, http://dx.doi.org/10.1109/
NetSoft51509.2021.9492643.

[29] Q. Sun, W. Liu, K. Xie, An intent-driven management framework, [online]
https://tools.ietf.org/html/draft-sun-nmrg-intent-framework-00.

[30] T. Erl, SOA, Principles of Service Design, Prentice Hall, 2008.
[31] IEEE standard for service composition protocols of next generation service

overlay network, in: IEEE Std 1903.2-2017, 2018, pp. 1–54, http://dx.doi.org/
10.1109/IEEESTD.2018.8365908.

[32] Network functions virtualisation (NFV); management and orchestration, in: ETSI,
GS NFV-MAN 001 1.1.1, 2014.

[33] Network functions virtualisation (NFV): Architectural framework, ETSI GS NFV
2 (2) (2013) V1.

[34] F. Paganelli, M. Ulema, B. Martini, Context-aware service composition and
delivery in NGSONs over SDN, IEEE Commun. Mag. 52 (8) (2014) 97–105,
http://dx.doi.org/10.1109/MCOM.2014.6871676.

[35] S. Charpinel, et al., SDCCN: A novel software defined content-centric networking
approach, in: IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), 2016, pp. 87–94, http://dx.doi.org/10.
1109/AINA.2016.86.

[36] B. Martini, F. Paganelli, A service-oriented approach for dynamic chaining of
virtual network functions over multi-provider software-defined networks, Future
Internet 8 (2) (2016) 24.

[37] ONOS intent framework, 2021, https://wiki.onosproject.org/display/ONOS/
Intent+Framework.

[38] M. Ghaznavi, et al., Distributed service function chaining, IEEE J. Sel. Areas
Commun. 35 (11) (2017) 2479–2489.

[39] Z. Zhou, Q. Wu, X. Chen, Online orchestration of cross-edge service function
chaining for cost-efficient edge computing, IEEE J. Sel. Areas Commun. 37 (8)
(2019) 1866–1880, http://dx.doi.org/10.1109/JSAC.2019.2927070.

[40] A. Clemm, et al., Intent-based networking - concepts and definitions, 2021,
[Online] Available: https://Tools.Ietf.Org/Pdf/Draft-Irtf-Nmrg-Ibn-Concepts-
Definitions-05.Pdf.

[41] F. Paganelli, et al., Network service description model for VNF orchestration
leveraging intent-based SDN interfaces, in: IEEE Conference on Network Soft-
warization (NetSoft), 2017, pp. 1–5, http://dx.doi.org/10.1109/NETSOFT.2017.
8004210.

[42] OpenFlow switch specification, [online] https://opennetworking.org/sdn-
resources/openflow-switch-specification/.

[43] N. McKeown, et al., Openflow: Enabling innovation in campus networks, ACM
SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74.

[44] M. Gharbaoui, et al., Cloud and network orchestration in SDN data centers:
Design principles and performance evaluation, Comput. Netw. 108 (2016)
279–295, http://dx.doi.org/10.1016/j.comnet.2016.08.029.

[45] Grafana labs, [online] https://grafana.com/.
[46] http://mininet.org/.
[47] Abilene topology, [online] https://web.archive.org/web/20080113120821/http:

//abilene.internet2.edu/.
[48] Project floodlight, [online] https://floodlight.atlassian.net/wiki/spaces/

floodlightcontroller/overview.
[49] https://iperf.fr/.
[50] D. Borsatti, et al., Performance of service function chaining on the OpenStack

cloud platform, in: 14th International Conference on Network and Service
Management (CNSM), 2018, pp. 432–437.

[51] H. Chai, et al., A parallel placement approach for service function chain using
deep reinforcement learning, in: IEEE 5th International Conference on Computer
and Communications (ICCC), 2019, pp. 2123–2128, http://dx.doi.org/10.1109/
ICCC47050.2019.9064448.

[52] A.M. Medhat, T. Taleb, A. Elmangoush, G.A. Carella, S. Covaci, T. Magedanz,
Service function chaining in next generation networks: State of the art and
research challenges, IEEE Commun. Mag. 55 (2) (2017) 216–223.

[53] Z. Qazi, et al., Practical and incremental convergence between SDN and
middleboxes, Open Netw. Summit (2013).

[54] Y. Zhang, et al., Steering: A software-defined networking for inline service
chaining, in: Int. Conf. on Network Protocols (ICNP), IEEE, 2013, pp. 1–10.

[55] I. Cerrato, et al., User-specific network service functions in an SDN-enabled
network node, in: 3rd European Workshop on Software Defined Networks, 2014.

[56] J. Blendin, et al., Position paper: Software-defined network service chaining, in:
Third European Workshop on Software Defined Networks, 2014, pp. 109–114,
http://dx.doi.org/10.1109/EWSDN.2014.14.

[57] F. Callegati, et al., SDN for dynamic NFV deployment, IEEE Commun. Mag. 54
(10) (2016) 89–95.

http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1109/JIOT.2020.2987070
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb2
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/ACCESS.2018.2866491
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00034
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00034
http://dx.doi.org/10.1109/CSCloud-EdgeCom52276.2021.00034
http://dx.doi.org/10.1109/ACCESS.2020.3034136
http://dx.doi.org/10.1109/ACCESS.2020.3034136
http://dx.doi.org/10.1109/ACCESS.2020.3034136
http://dx.doi.org/10.1109/ACCESS.2021.3115173
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb7
http://dx.doi.org/10.1002/dac.3989
http://dx.doi.org/10.1002/dac.3989
http://dx.doi.org/10.1002/dac.3989
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb9
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1109/COMST.2017.2717482
http://dx.doi.org/10.1109/COMST.2017.2717482
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb11
https://Bit.Ly/2ImukBF
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb13
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb14
http://dx.doi.org/10.1109/NOMS47738.2020.9110302
http://dx.doi.org/10.1109/NOMS47738.2020.9110302
http://dx.doi.org/10.1109/NOMS47738.2020.9110302
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb23
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-06
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-06
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-06
https://datatracker.ietf.org/doc/html/draft-sarikaya-sfc-hostid-serviceheader-07
https://datatracker.ietf.org/doc/html/draft-sarikaya-sfc-hostid-serviceheader-07
https://datatracker.ietf.org/doc/html/draft-sarikaya-sfc-hostid-serviceheader-07
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb26
http://dx.doi.org/10.1109/NetSoft51509.2021.9492643
http://dx.doi.org/10.1109/NetSoft51509.2021.9492643
http://dx.doi.org/10.1109/NetSoft51509.2021.9492643
https://tools.ietf.org/html/draft-sun-nmrg-intent-framework-00
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb30
http://dx.doi.org/10.1109/IEEESTD.2018.8365908
http://dx.doi.org/10.1109/IEEESTD.2018.8365908
http://dx.doi.org/10.1109/IEEESTD.2018.8365908
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb33
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb33
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb33
http://dx.doi.org/10.1109/MCOM.2014.6871676
http://dx.doi.org/10.1109/AINA.2016.86
http://dx.doi.org/10.1109/AINA.2016.86
http://dx.doi.org/10.1109/AINA.2016.86
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb36
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb38
http://dx.doi.org/10.1109/JSAC.2019.2927070
https://Tools.Ietf.Org/Pdf/Draft-Irtf-Nmrg-Ibn-Concepts-Definitions-05.Pdf
https://Tools.Ietf.Org/Pdf/Draft-Irtf-Nmrg-Ibn-Concepts-Definitions-05.Pdf
https://Tools.Ietf.Org/Pdf/Draft-Irtf-Nmrg-Ibn-Concepts-Definitions-05.Pdf
http://dx.doi.org/10.1109/NETSOFT.2017.8004210
http://dx.doi.org/10.1109/NETSOFT.2017.8004210
http://dx.doi.org/10.1109/NETSOFT.2017.8004210
https://opennetworking.org/sdn-resources/openflow-switch-specification/
https://opennetworking.org/sdn-resources/openflow-switch-specification/
https://opennetworking.org/sdn-resources/openflow-switch-specification/
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb43
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb43
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb43
http://dx.doi.org/10.1016/j.comnet.2016.08.029
https://grafana.com/
http://mininet.org/
https://web.archive.org/web/20080113120821/http://abilene.internet2.edu/
https://web.archive.org/web/20080113120821/http://abilene.internet2.edu/
https://web.archive.org/web/20080113120821/http://abilene.internet2.edu/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://iperf.fr/
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb50
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb50
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb50
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb50
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb50
http://dx.doi.org/10.1109/ICCC47050.2019.9064448
http://dx.doi.org/10.1109/ICCC47050.2019.9064448
http://dx.doi.org/10.1109/ICCC47050.2019.9064448
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb52
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb52
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb52
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb52
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb52
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb53
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb53
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb53
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb54
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb54
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb54
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb55
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb55
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb55
http://dx.doi.org/10.1109/EWSDN.2014.14
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb57
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb57
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb57

Computer Networks 212 (2022) 109034B. Martini et al.
[58] W. Cerroni, et al., Cross-layer resource orchestration for cloud service delivery:
A seamless SDN approach, Comput. Netw. 87 (2015) 16–32.

[59] B. Martini, et al., Experimenting SDN and cloud orchestration in virtualized
testing facilities: Performance results and comparison, IEEE Trans. Netw. Serv.
Manag. 16 (3) (2019) 965–979, http://dx.doi.org/10.1109/TNSM.2019.2917633.

[60] M. Gharbaoui, et al., Experimenting latency-aware and reliable service chaining
in next generation internet testbed facility, in: 2018 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), 2018, pp.
1–4, http://dx.doi.org/10.1109/NFV-SDN.2018.8725783.

[61] C. Chang, et al., Performance isolation for network slices in industry 4.0: The
5growth approach, IEEE Access 9 (2021) 166990–167003.

[62] M. Gharbaoui, et al., An experimental study on latency-aware and self-adaptive
service chaining orchestration in distributed NFV and SDN infrastructures,
Comput. Netw. 208 (2022) 108880, http://dx.doi.org/10.1016/j.comnet.2022.
108880.

[63] A. Medhat, et al., Resilient orchestration of service functions chains in a
NFV environment, in: IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 2016, pp. 7–12.

[64] F. Callegati, et al., Dynamic chaining of Virtual Network Functions in cloud-
based edge networks, in: Proceedings of the 1st IEEE Conference on Network
Softwarization (NetSoft), 2015, pp. 1–5.

[65] B. Martini, et al., An SDN orchestrator for resources chaining in cloud data
centers, in: European Conference on Networks and Communications (EuCNC),
2014, pp. 1–5, http://dx.doi.org/10.1109/EuCNC.2014.6882628.

[66] A. Baktir, et al., How can edge computing benefit from software-defined
networking: A survey, use cases, and future directions, IEEE Commun. Surv.
Tutor. 19 (4) (2017) 2359–2391.

[67] S. Goudarzi, et al., Dynamic resource allocation model for distribution operations
using SDN, IEEE Internet Things J. 8 (2) (2021) 976–988, http://dx.doi.org/10.
1109/JIOT.2020.3010700.

[68] Z. Li, E. Peng, Software-defined optimal computation task scheduling in vehicular
edge networking, Sensors 21 (3) (2021) http://dx.doi.org/10.3390/s21030955,
URL https://www.mdpi.com/1424-8220/21/3/955.

[69] M. Peuster, et al., Let the state follow its flows: An SDN-based flow handover
protocol to support state migration, in: 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), 2018, pp. 97–104, http://dx.doi.org/
10.1109/NETSOFT.2018.8460007.

[70] S. Secci, et al., Linking virtual machine mobility to user mobility, IEEE Trans.
Netw. Service Manage. 13 (4) (2016) 927–940.

[71] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R.U. Rasool, W. Dou, Complementing
IoT services through software defined networking and edge computing: A
comprehensive survey, IEEE Commun. Surv. Tutor. 22 (3) (2020) 1761–1804,
http://dx.doi.org/10.1109/COMST.2020.2997475.

[72] A. Muthanna, A. A. Ateya, A. Khakimov, I. Gudkova, A. Abuarqoub, K.
Samouylov, A. Koucheryavy, Secure and reliable IoT networks using fog comput-
ing with software-defined networking and blockchain, J. Sensor Actuator Netw.
8 (1) (2019) http://dx.doi.org/10.3390/jsan8010015, URL https://www.mdpi.
com/2224-2708/8/1/15.

[73] J.C. Nobre, et al., Vehicular software-defined networking and fog comput-
ing: Integration and design principles, Ad Hoc Networks 82 (2019) 172–181,
http://dx.doi.org/10.1016/j.adhoc.2018.07.016, URL https://www.sciencedirect.
com/science/article/pii/S1570870518305080.

[74] W. Cerroni, et al., Intent-based management and orchestration of heterogeneous
openflow/IoT SDN domains, in: IEEE Conference on Network Softwarization
(NetSoft), 2017, pp. 1–9.

[75] J. Wolfgang, et al., Research directions in network service chaining, in: IEEE
SDN for Future Networks and Services (SDN4FNS), 2013, pp. 1–7.

[76] R. Cohen, et al., An intent-based approach for network virtualization, in:
IFIP/IEEE International Symposium on Integrated Network Management (IM),
2013, pp. 42–50.
15
[77] N. Blum, et al., Insert an intent-based service request API for service exposure in
next generation networks, in: 32nd Annual IEEE Software Engineering Workshop
(SEW ’08), 2008.

[78] F. Esposito, et al., A behavior-driven approach to intent specification for
software-defined infrastructure management, in: IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), 2018, pp.
1–6, http://dx.doi.org/10.1109/NFV-SDN.2018.8725754.

[79] S. Hares, et al., NEMO (NEtwork MOdeling) language, October 2015, https:
//tools.ietf.org/html/draft-haresibnemo-overview-01.

B. Martini is a Head of Research with the CNIT Na-
tional Laboratory of Photonic Networks and Technologies
(PNT Lab) and an Affiliate Researcher with Sant’anna
School of Advanced Studies, Italy. Before joining CNIT
PNT Lab, she worked for two large telco companies,
Italtel and Marconi Communications (currently Ericsson).
Her research interests include network virtualization
and orchestration in SDN/NFV/5G environments, service
platforms for next-generation networks, network control/-
management architectures, and security solutions for
multi-domain IP/optical net-works and NFV deployments.
She is an Adjunct Professor with Sant’Anna School of
Advanced Studies and the University of Pisa, Italy. She
has been involved in several national/EU research
projects, the recent ones 5GPPP 5GEX, 5GTRANSFORMER,
and 5GROWTH, and in several FIRE projects (OFELIA,
FED4FIRE+,TRIANGLE, and 5GINFIRE) with leading roles.
She has co-authored more than 100 papers in international
journals and conference proceedings.

M. Gharbaoui is a Research Engineer at the Scuola Supe-
riore Sant’anna, Pisa, Italy. She received her Ph.D. degree
in Innovative Technologies of Information & Communica-
tions Engineering and Robotics in 2012 from the Scuola
Superiore Sant’anna, Pisa. Her main research interests are in
the field of software-defined networking, network function
virtualization, network orchestration, the development and
the implementation of service-oriented architectures and
service management for smart cities. She has been involved
in several EU projects and has co-authored more than 50
papers appeared in international journals and conferences.

P. Castoldi has been a professor at Scuola Superiore
Sant’anna, Pisa, Italy since 2001. He was abroad at Prince-
ton University (USA) overall about two years in 1996, 1997,
1999, 2000. He is currently a leader of the ‘‘Net-works and
Services’’ research area at Scuola Superiore Sant’Anna, Pisa.
His research interests cover telecommunications networks
and system both wired and wireless, and more recently reli-
ability, switching paradigms and control of optical networks,
including application-network cooperation mechanisms for
cloud networking. He is an IEEE Senior Member and he is
an author of more than 400 international publications.

http://refhub.elsevier.com/S1389-1286(22)00187-6/sb58
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb58
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb58
http://dx.doi.org/10.1109/TNSM.2019.2917633
http://dx.doi.org/10.1109/NFV-SDN.2018.8725783
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb61
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb61
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb61
http://dx.doi.org/10.1016/j.comnet.2022.108880
http://dx.doi.org/10.1016/j.comnet.2022.108880
http://dx.doi.org/10.1016/j.comnet.2022.108880
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb63
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb63
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb63
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb63
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb63
http://dx.doi.org/10.1109/EuCNC.2014.6882628
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb66
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb66
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb66
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb66
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb66
http://dx.doi.org/10.1109/JIOT.2020.3010700
http://dx.doi.org/10.1109/JIOT.2020.3010700
http://dx.doi.org/10.1109/JIOT.2020.3010700
http://dx.doi.org/10.3390/s21030955
https://www.mdpi.com/1424-8220/21/3/955
http://dx.doi.org/10.1109/NETSOFT.2018.8460007
http://dx.doi.org/10.1109/NETSOFT.2018.8460007
http://dx.doi.org/10.1109/NETSOFT.2018.8460007
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb70
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb70
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb70
http://dx.doi.org/10.1109/COMST.2020.2997475
http://dx.doi.org/10.3390/jsan8010015
https://www.mdpi.com/2224-2708/8/1/15
https://www.mdpi.com/2224-2708/8/1/15
https://www.mdpi.com/2224-2708/8/1/15
http://dx.doi.org/10.1016/j.adhoc.2018.07.016
https://www.sciencedirect.com/science/article/pii/S1570870518305080
https://www.sciencedirect.com/science/article/pii/S1570870518305080
https://www.sciencedirect.com/science/article/pii/S1570870518305080
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb74
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb74
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb74
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb74
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb74
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb75
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb75
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb75
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb76
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb76
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb76
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb76
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb76
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb77
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb77
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb77
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb77
http://refhub.elsevier.com/S1389-1286(22)00187-6/sb77
http://dx.doi.org/10.1109/NFV-SDN.2018.8725754
https://tools.ietf.org/html/draft-haresibnemo-overview-01
https://tools.ietf.org/html/draft-haresibnemo-overview-01
https://tools.ietf.org/html/draft-haresibnemo-overview-01

	Intent-based zero-touch service chaining layer for software-defined edge cloud networks
	Introduction
	Background on intent-based networking
	Reference scenario
	Intent layer design for edge networks
	Intent northbound interface NBI and layer operations for service chaining
	Intent northbound interface NBI for service chaining
	Awareness: SDN-based network monitoring and load estimation
	Fulfilment and intent verification
	Assurance and intent validation

	Performance evaluation
	Emulation settings
	Performance of intent enforcement in edge cloud environment
	Performance of intent-based service layer
	Performance of the intent layer verification validation

	State of the art
	SDN-based service chaining
	Software-defined edge computing
	Intent-based networking

	Conclusions
	Declaration of competing interest
	Acknowledgement
	References

