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Abstract: The COVID-19 pandemic required communities throughout the world to deal with un-
known threats. Using Twitter data, this study aimed to detect reactions to the outbreak in Italy and
to evaluate the relationship between measures derived from social media (SM) with both national
epidemiological data and reports on the violations of the restrictions. The dynamics of time-series
about tweets counts, emotions expressed, and themes discussed were evaluated using Italian posts
regarding COVID-19 from 25 February to 4 May 2020. Considering 4,988,255 tweets, results highlight
that emotions changed significantly over time with anger, disgust, fear, and sadness showing a down-
ward trend, while joy, trust, anticipation, and surprise increased. The trend of emotions correlated
significantly with national variation in confirmed cases and reports on the violations of restrictive
measures. The study highlights the potential of using SM to assess emotional and behavioural
reactions, delineating their possible contribution to the establishment of a decision management
system during emergencies.

Keywords: COVID-19; social media; Twitter; health emergency; emotional and behavioural reaction;
emergency management

1. Introduction

On 31 December 2019, the World Health Organization (WHO) was informed by the
Chinese authorities of an outbreak of pneumonia of unknown cause in the city of Wuhan [1].
Two months later, the coronavirus (COVID-19) responsible for the cases of pneumonia—
officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the
WHO in February 2020—had already spread all over the world, thus becoming a global
health emergency. The pandemic affected communities throughout the world, with short-
and medium-term consequences not only on health (physical and mental) but also on
society as a whole.

Similarly to previous epidemics, a wave of emotions and behaviours swept over
communities in parallel with the diffusion of the virus [2–4]. The virus also went viral on
social media (SM). A month later, when WHO declared the SARS-CoV-2 to be a global
public health emergency [5], billions of users around the world had already started to share
news, opinions, and emotions on social networks regarding the consequences of this new
coronavirus outbreak [6,7].

In the digital era, SM represent the easiest tool to keep oneself informed. During
the COVID-19 outbreak, worldwide health agencies, institutions, and scientific journals
regularly published information through a large number of platforms, reaching millions of
people [8].
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A survey conducted during the first month of the cordon sanitaire in Wuhan and
another study in Taiwan showed that the majority of participants interviewed sought
COVID-19 information on SM or online [9,10].

Due to the increasing popularity of SM platforms, researchers have already used them
to track the emotional and sentimental response to emergencies during previous epidemics
or disasters (e.g., Zika, Ebola, and H1N1 epidemics as well as the Fukushima disaster).
While a branch of literature has focused on the use of SM to estimate the number of cases
during epidemics [11–13], few studies have explored the use of big data from SM to analyze
the themes most frequently discussed during the emergency, as well as the related emotions
elicited and their link to users’ psychological responses and social behaviour [14–17].

During emergencies, policymakers are often faced with the problem of ineffective
or misleading communication, which can generate a state of panic and confusion in the
population. This highlights the importance of not only correctly managing communication
during emergencies but also monitoring its impact on specific audiences.

Users using SM platforms such as Twitter form virtual communities that discuss their
life and various topics through the use of likes, hashtags, mentions, and retweets that form
a complex network [18].

Social media are also becoming more and more used as an alternative source for
evidence-based information on health, thus having the potential of representing an addi-
tional valuable source for surveillance of public health, which can affect the impact of the
intervention as well as the engagement of right and wrong health-related behaviour [19,20].

In this context, the use of data from SM represents an opportunity to develop a
real-time surveillance system, providing policymakers with a continuous and timely as-
sessment of people’s behaviours and people’s interpretation of public health intervention,
together with proxy measures of social awareness, risk perception and compliance with
recommendations [14,15,21].

Based on the real-time feedback from a similar system, it will be possible to immedi-
ately detect “problems” and also to direct citizens to appropriate sources of information—
counteracting misinformation [22] and enhancing risk communication—aimed at helping
in the diagnosis of a disease and in the referral to appropriate health care services, including
psychological support and progress in terms of scientific research [8,23].

As the first country in the West that was heavily hit by the pandemic, Italy was also the
first to introduce strict measures of containment and isolation [24]. In Italy, from the first
confirmed case of community transmission (21 February) to the beginning of the lockdown
(9 March), the number of infected cases rapidly increased to 9172, with 463 deaths [25].

The quarantine already in place in the regions of Lombardy and Veneto at the end
of February was then extended to the rest of the country [26]. The measures imposed by
the nationwide lockdown dramatically limited most working and social activities. It was
also unprecedented, and triggered contrasting behavioural and emotional responses, with
potential short- and long-term psychological and social consequences.

Although researchers analyzed SM in order to understand how different populations
and countries were affected by the COVID-19 emergency [7,27,28], to the best of our
knowledge, there are few studies on the use of SM to understand public reactions to
the COVID-19 pandemic in Italy. Neither are there studies providing a comprehensive
overview of the dynamics of information and emotions shared over such an extensive
time period and evaluating the relationship between measures derived from SM with both
national epidemiological data and reports on the violations of the restrictions.

This study aimed to track the reactions on Twitter in response to the news of the
COVID-19 pandemic in Italy during a period of over two months of restrictive measures,
from 25 February to 4 May 2020. The focus is on the dynamics of the volume of tweets,
and the trends of their emotional and semantic content. The final aim was to assess the
utility of the data from SM, in this case, Twitter, for the continuous monitoring of people’s
emotional and behavioural reactions during a health emergency, and for the detection of
emerging themes.
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2. Materials and Methods

Setting. Italy was the first country in Europe to be affected by the COVID-19 pandemic.
After the detection of imported cases, the first locally acquired cases were detected in mid-
February 2020. On 23 February 2020, the threshold of 100 cases was exceeded. Accordingly,
on 23 February, the first-decree law was enacted, which imposed restrictive measures
on some municipalities in the north of Italy; restrictive measures were then extended
to six other regions on 25 February 2020 [29]. On 9 March, the government imposed a
national quarantine [26], which was then extended until 4 May 2020 [30] and gradually
lifted afterwards.

Data sources and pre-processing. A descriptive study was performed using Twitter data
and data from the Italian Department of Civil Protection. Indeed, using the rtweet pack-
age [31] in R software, tweets posted in Italian between 25 February 2020 and 4 May 2020 and
related to conversations about COVID-19 were retrieved daily considering specific trending
hashtags (i.e., #COVID19, #COVID_19, #COVID2019, #COVID, #iorestoacasa, #coronavirus,
#coronavirusitalia, #COVID-9, #lockdown) as keywords for data extrapolation.

After removing duplicates, the remaining sample, a total of 4,988,255 Twitter posts
(1,256,890 tweets and 3,731,365 retweets) referring to conversations about COVID-19 shared
in Italian during the study time frame, constituted the study database and was then pre-
processed (i.e., normalization and cleaning of the text of the tweet, tokenization of the
words) using the tidytext R package [32].

All analyses used public, anonymized data adhering to the terms and conditions,
terms of use and privacy policies of Twitter.

The Italian dataset of COVID-19 data (i.e., total hospitalized, home isolation, total pos-
itives, total variation in newly confirmed cases, new positives, discharged healed, deceased,
total cases) per region throughout the time frame of interest (25 February–4 May) was built
using daily data available from the Italian Department of Civil Protection [25]. Data on the
number of daily violations of restriction measures issued were also collected [33].

Emotion analysis. Since in situations such as the health emergency context considered
in the present study, there is typically an overexpression of negative sentiment on SM that
may produce noisy estimates when classifying sentiment, emotions were instead evaluated.
Using the get_nrc_sentiment function implemented in the syuzhet R package [34], emotions
expressed in each tweet were identified and scored according to Saif Mohammad’s National
Research Council (NRC) Emotion Lexicon [35]. Basically, the NRC associates the retrieved
text words with eight emotions: anger, fear, anticipation, trust, surprise, sadness, joy, and
disgust. For each emotion, the daily (and weekly) proportion of the number of words
(used in tweets) expressing that emotion was obtained by dividing the number of words
related to the specific emotion by the total number of words expressing positive and
negative sentiment used in tweets that day. A similar process was performed for the weekly
proportion of tweets expressing the various emotions.

Semantic analysis. To explore the most common themes in the tweets, a semantic
analysis of the most frequent pairs of adjacent words, bigrams (such as “primo caso” or
“porte chiuse”), was performed. For each of the 10 weeks covering the analysis period, the
most frequent 50 bigrams of words were extracted. After removing the bigrams formed by
two verbs, two coders independently reviewed the bigrams and assigned them to specific
categories identified in a work about COVID-19 in the US [28] in accordance with their
semantic meaning. A third coder solved disagreements, analyzing independently the
bigrams and discussing the coding with the other two coders to decide the category. Then,
the two main coders reviewed the categories assigned and aggregated them into six major
themes: “virus and pandemic impact”, “geopolitics and government”, “medical support”,
“preventive measures”, “information seeking”, and “community” (Supplementary Table
S1). Furthermore, an additional theme, “time”, was identified.

Accordingly, seven themes were thus used, and the number of bigrams and their rela-
tive frequency were recorded. Results from the semantic analysis considering bigrams and
individual words are similar, and for the sake of simplicity, just the bigrams were recorded.
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Statistical analysis. Statistical analyses performed aimed at describing and detecting
eventual patterns in time-series related to the volume of tweets posted, the percentage of
tweets expressing specific emotions, and the frequency of mention of themes identified
through the semantic analysis to both evaluate the dynamic of the public’s reactions to
the pandemic over time and also to assess relationships between those series. Moreover,
also considering and evaluating time-series related to epidemiological data (i.e., daily
series of the variation in the number of new cases) as well as of violations of the restrictive
measures analyses aimed also at identifying possible relationships between them and data
from Twitter.

In detail, in order to explore the dynamics of the volume of tweets throughout the time
period considered, the daily number of tweets was calculated, also differentiating verified
(accounts considered to be of public interest, such as institutions, politicians, famous
people, etc.) from non-verified accounts. The average weekly number of tweets over the
10 weeks of analysis was also obtained. For both the volume of posts and the percentage of
posts expressing specific emotions, original daily time-series and series obtained using the
simple moving average (MA) based on 7-day points were generated to identify patterns
over time, smoothing out peaks and the “weekend effect” (i.e., a drop in the number of
tweets on Saturdays and Sundays). Indeed, MA is a method used to smooth out short-term
fluctuations in time-series data to highlight long-term trends or cycles, and it is obtained by
averaging k data points of the original time-series, where k is the order of the MA, k = 7 in
the present analysis.

The non-parametric Mann–Kendall trend test was used to explore the presence of a
monotonic trend in the time-series considered. Given a time-series evaluated over n data
points, the Mann–Kendall test is based on the following statistics:

S =
n−1

∑
i=1

n

∑
j=k+1

sign(xj − xi)

Spearman rho correlation was used to assess the relationship between the mean weekly
frequency of emotions and the themes tweeted (identified through the semantic analysis).

Finally, the cross-correlation function was derived to assess correlations between time-
series related to the percentage of tweets expressing specific emotions and epidemiological
data (i.e., daily series of the variation in the number of new cases) as well as of violations of
the restrictive measures.

All analyses were performed using R version 3.6.2, and p-value < 0.05 was considered
for statistical significance.

3. Results
3.1. Volume of Twitter Posts

Figure 1 reports the daily counts of tweets (and retweets) over the study period with
key dates/events highlighted together with the daily count of new cases detected and
the cumulative number of cases. The number of posts published peaked around 9 March
2020 when the President of the Council of Ministers imposed a decree ordering a national
quarantine, and thereafter the daily count of tweets fluctuated. Considering the time-series
related to the daily variation in newly confirmed cases, no overlap with the daily counts of
tweets was found.

Differentiating between verified and non-verified accounts, it became evident that
activities of the Twitter community were largely driven by verified accounts; in fact, despite
the difference in terms of volume, the timeline of tweet counts shared by the two types of
accounts overlapped (Figure 2).
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Figure 1. Daily counts of tweets and daily counts of newly detected COVID-19 cases. (a) Daily counts
of tweets posted throughout the time frame with notes about national key events. (b) Timeline of
newly detected cases. In all panels, national key events are highlighted, and the original time-series
of row count and the smoothed series were obtained using simple moving average (MA) based on
7 days to remove peak and the “weekend effect”.

During the study period, the mean daily number of posts increased from 21,720 in
week 1, tripling in week 2, and doubling again in week 3 when the national lockdown was
imposed. The mean number of posts slightly decreased in weeks 4 and 5, with around
50,000 to 60,000 posts per day in the following weeks (Supplementary Table S2).
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Figure 2. Daily counts of tweets. (a) Daily counts of tweets (and retweets) posted throughout the
time frame among verified accounts. (b) Daily counts of tweets (and retweets) posted throughout
the time frame among non-verified accounts. In all panels, national key events are highlighted, and
the original time-series of row count and the smoothed series were obtained using simple moving
average (MA) based on 7 days to remove peak and the “weekend effect”.

3.2. Emotion Analysis

Trust was the most commonly reported emotion in the tweets retrieved (39.4%),
followed by fear (34.1%), and anticipation (30%). The remaining emotions (i.e., joy, sadness,
anger, surprise, disgust) were detected in less than 30% of tweets even though the data
varied considerably over the study period (Figure 3).
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The trend analysis showed a significant decrease over time in the frequency of tweets
expressing anger (tau = −0.161, p-value = 0.049), disgust (tau = −0.314, p-value < 0.001), fear
(tau = −0.499, p-value < 0.001), and sadness (tau = −0.345, p-value < 0.001); conversely, there
was a significant increase in the percentage of tweets expressing anticipation (tau = 0.212,
p-value = 0.010), joy (tau = 0.408, p-value < 0.001), surprise (tau = 0.215, p-value = 0.009)
and trust (tau = 0.313, p-value < 0.001).

3.3. Word Frequency and Semantic Analysis

Table 1 reports the frequency bigrams detected in tweets posted throughout the
study period according to the seven themes defined by the sematic analysis. Top bigrams
associated with each theme are also reported.

Table 1. Results from the semantic analysis, theme identified, top bigrams associated and overall
frequency of mentions throughout the study period.

Theme Top Bigrams %

Preventive measures Zona rossa; stare casa; state casa; Italia zona; porte chiuse; zone rosse; scuole chiuse;
restare a casa; rimanete a casa; zona protetta 21.5%

Geopolitics and government Tutta Italia; protezione civile; segretario generale; cessate fuoco; fuoco globale; globale
firma; cura Italia; appello segretario; task force; presidente consiglio 17.3%

Medical support Terapia intensiva; medici infermieri; prima linea; operatori sanitari; personale sanitario;
posti letto; sistema sanitario; sanità pubblica; pronto soccorso; test sierologici 15.5%

Virus and pandemic Nuovi casi; emergenza coronavirus; casi positivi; emergenza sanitaria; contagio prego;
coronavirus COVID; corona virus; emergenza epidemia; prendere COVID; virus COVID 14.1%

Community Buona Pasqua; andrà bene; fare spesa; raccolta fondi; migliaia di persone; persone
mondo; sostenendo appello; mondo sostenendo; scuole università; forza Italia 12.4%

Information seeking Primo caso; conferenza stampa; ultime notizie; cosa fare; diventando virale; live
coronavirus; coronavirus ultime; informazioni aggiornamenti; notizie diretta 11.3%

Time Fino aprile; ogni giorno; fino marzo; due mesi; fino maggio; due settimane; ultime ore;
quest’anno; metà marzo; fino luglio 7.9%
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As a whole, “Preventive measures” was the most frequently discussed theme, followed
by, in order of citation (from the most frequent to the least frequent): “Geopolitics and gov-
ernment”, “Medical support”, “Virus and pandemic impact”, “Community”, “Information
seeking”, and “Time”.

However, the frequency of the themes identified varied slightly over time (Figure 4).
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Themes were identified through semantic analysis of the 50 most frequent bigrams
in each week. The weekly percentage citation frequency was then obtained by divid-
ing the occurrence of bigrams by the overall frequency of mentions associated with the
bigrams extracted.

In particular, a significantly increasing trend was found for “information seeking”
(tau = 0.644, p-value = 0.012), while a significant decreasing trend was detected for “pre-
ventive measure” (tau = −0.556, p-value = 0.032). No significant trend was found for the
other themes. Of note, while bigrams related to “virus and pandemic impact” peaked in
the first week (corresponding to the initial phase of the epidemic), most themes, particu-
larly “geopolitics and government”, fluctuated over time. Bigrams related to “preventive
measures” peaked in the third week, i.e., when the national lockdown was imposed, and
decreased thereafter.

Pairwise correlations between the themes suggested a significant positive correlation
between bigrams related to “information seeking” with both “geopolitics and govern-
ment” and “virus and pandemic impact” (rho = 0.490, p-value = 0.048 and rho = 0.590,
p-value = 0.042, respectively). On the other hand, the frequency of bigrams related to
“preventive measures” correlated negatively with both “geopolitics and government” and
“information seeking” (rho = −0.840, p-value = 0.001 and rho = −0.670, p-value = 0.022,
respectively); a significant negative correlation was also found between the use of words
related to “time” and “geopolitics and government” (rho = −0.590, p-value = 0.031); see
Supplementary Figure S1.

3.4. Correlations between Emotions and Themes Discussed

The correlation between the frequency of themes identified and the percentage of
tweets expressing a specific emotion on a weekly base (Supplementary Table S3) revealed a
significant negative correlation between “preventive measures” and both joy (rho = −0.724,
p-value = 0.018) and trust (rho = −0.879, p-value = 0.002). The weekly percentage of tweets
expressing surprise correlated positively with the tweeting of bigrams related to “medical
support”. Combinations of words related to “information seeking” correlated positively
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with joy (rho = 0.669, p-value = 0.034), while they showed a negative correlation with fear
(rho = −0.650, p-value = 0.042).

Correlations between emotions, epidemiological data, and reported violations. The cross-
correlation functions between the daily time-series referring to the percentage of tweets
expressing specific emotions and those related to variations in the number of new cases
was derived. With regard to negative time lags, as the number of new cases increased,
the percentage of tweets expressing trust significantly decreased. Anticipation followed
a similar trend, and the correlation was significant for both positive and negative lags
(Supplementary Figure S2).

On the other hand, for positive lags, a significant positive correlation was found
between the variations in the number of new cases and the percentage of tweets express-
ing sadness.

With respect to the cross-correlation function between the percentage of tweets as-
sociated with the different emotions and the percentage of subjects fined for violation of
restrictions, a significant positive correlation was found with anger (both positive and
negative lags), fear (positive lags), and sadness (positive lags), while there was a significant
negative correlation with trust (Supplementary Figure S3).

4. Discussion

The overall aim of this study was to understand how Twitter users in Italy reacted
to the COVID-19 outbreak and how the control measures implemented in the country to
combat the spread of the virus triggered specific emotions.

The hypothesis motivating the present study was that during emergency situations
Twitter might be a valuable “social awareness stream” for policymakers as a proxy for
people’s emotions (e.g., reaction to control measures) and reactions (e.g., adherence to
restrictive norms). Indeed, the initial phase of a public health emergency is one of the most
critical from a communication perspective, and that motivated the choice of the time frame
for the analysis.

Given the current widespread use of SM [36], the appearance of COVID-19-related
posts on SM platforms was much higher than in previous epidemics [37], and many
public health departments and authorities used SM platforms to communicate and share
information about the emergency [38].

For those reasons, these digital platforms and the general web-based activity related
to COVID-19 have been investigated to define risk communication strategies and assess
the public response [39,40]. Despite that, studies on Western countries have been limited,
and only a few have provided a comprehensive overview of the potential of exploiting SM
data to understand public reactions, considering an adequate time frame across the various
phases of the epidemic [41,42].

The main results of the present study are that (1) the volume of conversations on
Twitter is essentially related to key events (i.e., the beginning of the lockdown) occurring at
a national level, rather than to the epidemiological trend; (2) emotions and themes expressed
in tweets changed during the study period; (3) emotions and themes were intertwined; and
(4) the dynamics of the emotions correlated with the national epidemiological trend and
the number of subjects violating the restrictive measures imposed.

The epidemic initially impacted on activities on SM platforms [6], stimulating a large
volume of discussion about COVID-19. Previous evidence shows diverging results on the
relationship between the volume of activity on Twitter, which is probably related also to
the difference in Twitter usage in diverse contexts, and epidemiological trend. Indeed,
while a branch of evidence showed that differences in the volume of Twitter posts between
countries reflected differences in the incidence of COVID-19 cases [7], other studies found
that people’s interest in infectious diseases on SM was rather associated with the latest
news and key events [6,43]. The latter findings are in line with results from the present
study showing the number of tweets about COVID-19 within the Italian Twitter community
was essentially driven by key events (i.e., the announcement of the national lockdown, the
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WHO’s declaration of pandemic) and by the posts published by verified users (i.e., public
institutions or popular accounts), rather than by the epidemiologic course of the pandemic.

Different results with respect to the relationship between epidemiological data and the
volume of activity on Twitter may be partly explained by a diverse use of this platform in
different contexts (i.e., in some countries, Twitter is widely used in the general population;
in other countries, it is mostly used for professional reasons) but also its use by public
bodies for communication about the emergency.

Differently from the volume of posts, findings from the present study show that
emotions were related to the epidemiological trend, hence providing useful insights into
the coping strategies possibly adopted by the community to deal with the challenging and
changeable situations, and their interplay with the communication strategy implemented.
Fear and trust were the prevailing emotions detected.

Recent studies conducted in other countries found a prevalence of negative senti-
ments during the first phase of the pandemic, which then shifted from negative to neutral
sentiments, and even to positive attitudes once the community began to cope with the
emergency [6,27]. Results from the present study confirm that trust increases while fear
decreases over time.

Fear is a typical sign of psychological distress arising as the first response to disaster
and emergency situations that have been well-documented in the literature [44,45], and it
is related to the uncertainty about the emerging health threat, the risk of contagion, and
the impact of the outbreak on everyday life. A general sense of feeling lost is usually
reflected in the frantic search for information, as a recent study demonstrated using SM
analysis [6]. This feeling was very evident in the present study given the high volume
of conversations about “virus and Pandemic impact” found. Fear might also have been
amplified by the imposition of unprecedented restrictive measures [46], as demonstrated
by peaks in tweets expressing fear at the beginning of the outbreak and when the national
lockdown was declared.

Properly addressing the widespread panic and fear is of paramount importance during
a health emergency, as a preventive measure to mitigate the negative effects on mental
health or the propensity towards risky behaviours.

Indeed, a significant negative correlation was found between the percentage of tweets
expressing fear and the frequency of bigrams related to “information seeking”. Informa-
tion avoidance may mean that the public does not seek information on how to adapt to
challenging situations. Policymakers would certainly benefit from real-time monitoring
of information avoidance, (non) adherence to recommendations, and the dissemination of
misleading or dangerous misinformation [47,48], as they may immediately plan counteract-
ing strategies.

Again, from emotion analysis, this study also highlights that although the level of
trust gradually increased, it decreased when quarantine was introduced, when it was
extended, and when it was nearing the end. This confirms previous evidence that trust is
generally much more influenced by key events and people’s reactions since it is closely
connected to the perception of risk [49]. Moreover, during the first phase of the epidemic,
trust negatively correlated with tweets about “Preventive measures”, perhaps reflecting
the degree of disappointment towards the restrictive measures themselves, in line with
findings from previous emergency situations [28,50]. Again, like in market research, having
real-time knowledge about feelings associated with a specific theme may help develop
strategies to reverse the perception with respect to a specific theme.

Some studies exploring web-based and SM activities linked to resilience and prepared-
ness for COVID-19 and the preventive measures adopted have already been published,
mostly reporting findings from China [6,51,52], while evidence from western countries
is still limited. Supporting the initial hypothesis about the potential of tweets to reveal
insights into people’s behaviour, in the present study a significant correlation was found
between low levels of trust and the percentage of people who were found to violate the
restrictions imposed by the law.
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While the present study does not provide definite conclusions about that specific
finding, possible explanations could be the occurrence of shocking events or events with a
high content of uncertainty, which lead to a decrease in the level of general trust (reflected
also in the Twitter community), pushing people directly to a lower level of adherence to
norms, or also indirectly impacting compliance with restrictive measures, through a higher
propensity to share “fake news”.

Limitations and future research. We are aware that the Twitter community is not repre-
sentative of the general population, and thus linking information gathered from Twitter to
objective behavioural measures (e.g., the number of violations reported) is not sufficient to
generalize these findings to those outside the Twitter community.

Secondly, the authors assumed that tweets posted in Italian described reactions to the
COVID-19 epidemic in Italy; however, some of those who tweeted may not have been actual
residents in Italy, although there is a relatively limited proportion of people speaking Italian
outside the country [53]. The language criteria were chosen rather than the extraction of
geo-tagged tweets because of the limited availability and reliability of information about
the location from tweets or metadata from other accounts.

Thirdly, the study lacked an analysis accounting for geographical variability. Indeed,
since the impact of the epidemic largely varied over regions, behaviours and social reactions
were also likely to have varied as well. Further studies are needed to address this issue.

Finally, the main themes were selected based on a semantic analysis rather than
on topic modelling, and comparisons between the two approaches are warranted in fu-
ture studies.

Future research should address the dynamics within the network of users’ community,
also considering the role of influencers and their impact on the informational flow. Further
studies could also explore the variability of the context in order to identify which variables
are more strictly correlated to resilience and virtuous behaviours [42,54], to compare differ-
ent settings, and even the various restrictive measures applied. Comparisons with similar
data from subsequent waves of the COVID-19 pandemic are of paramount importance
to understand the usefulness of data gathered from SM during different phases of health
emergencies. Finally, a deeper analysis of the dynamics related to accounts of public interest
(i.e., verified) and influencers is warranted in order to understand who plays the key role
in the flow of information shared.

5. Conclusions

The present study contributes to the understanding of the reactions of communities
during the COVID-19 pandemic on the basis of Twitter data and focused on the initial
phase of the public health emergency when most of the reactions to the health emergency
are spread and at the most critical time from a communication perspective.

As in the previous context [55], results from the present study may aid in disclosing
public response to inform government action and health policies. Adding to previous
evidence, the study also highlights correlations between data retrieved from SM with
Italian national data both related to the epidemiological curve and reports on the violation
of restrictions, thus emphasizing the utility of integrating data from SM within existing
pandemic management plans aimed at monitoring citizens’ resilience and awareness during
prolonged emergency situations.

Results from the present study offer insights into using data from SM to help develop
decision-supporting systems and communication of public policymakers.

In particular, findings support the use of SM to detect emerging themes and associated
emotions, offering real-time knowledge that can be used to plan managerial changes
according to trending themes but also to implement actions to create a positive outlook.

The development of a decision support system based on real-time surveillance of
themes and emotions shared on SM offers knowledge for a prompt understanding of reac-
tions and thus various behaviours. Such a system can help identify trending topic and those
around which the discourse is declining, enable planning actions and organize services.
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Similarly, understanding emotions associated with the topics discussed helps promoting
communication accordingly; this would increase the effectiveness of the messages and
improve communication strategies for public health purposes.

Indeed, such a surveillance system may support real-time management in the case of
future emergency situations as well, even minor ones (e.g., recent monkeypox cases or the
hepatitis cases).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19137785/s1. Table S1: selection of themes for the se-
mantic analysis; Table S2: mean daily frequency of tweet posted by week, 25 February–4 May
2020; Table S3: Spearman rho correlation between frequency of tweets expressing emotions and
frequency of mentions of bigrams related to the different themes identified with the semantic anal-
ysis. Figure S1: pairwise correlation between themes identified through the semantic analysis;
Figure S2: the cross-correlation function between each emotion and variations in newly confirmed
cases; Figure S3: the cross-correlation function between each emotion and daily number of subjects
fined for specific violations of restrictions.
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