
Bounding Memory Access Times in
Multi-Accelerator Architectures on FPGA SoCs

Francesco Restuccia , Marco Pagani, Alessandro Biondi,

Mauro Marinoni , and Giorgio Buttazzo , Fellow, IEEE

Abstract—Modern FPGA System-on-Chips (SoCs) embed large FPGA logics capable of hosting multiple hardware accelerators.

Typically, hardware accelerators require direct access to the shared DRAMmemory for reaching the high performance demanded by

modern applications. In commercial FPGA SoCs, this goal is achieved by interconnecting the hardware accelerators on an interconnect

based on AMBA AXI, which is the de-facto industrial standard for on-chip communications. The AXI standard provides great flexibility in

the definition of the network topology. Nevertheless, such flexibility generates a significant unpredictability when attempting to bound

the hardware accelerators’ response time when executing under contention. This work focus on bounding the worst-case memory

access time of hardware accelerators deployed on commercial FPGA SoCs. We propose a modeling and analysis technique to bound

the response time of the hardware accelerators and evaluate the schedulability of a system applicable to arbitrary AXI-based bus

structures deployed on FPGA SoCs. Our results are validated on real execution traces collected on two popular FPGA SoCs belonging

to the Xilinx ZYNQ-7000 and Zynq-Ultrascale+ families and by simulated results.

Index Terms—On-chip communications, cyber-physical systems, timing analysis, real-time systems, safety-critical systems

Ç

1 INTRODUCTION

EMBEDDED computing platforms evolved toward heteroge-
neous architectures to support the increasing computa-

tional workload generated by modern cyber-physical systems
(CPS), as self-driving cars, autonomous robots, smart pro-
duction plants. Such systems must process a huge amount
of sensory data in real-time to meet stringent timing con-
straints imposed by the interaction with the physical envi-
ronment. A significant amount of processing is performed
by deep learning algorithms, which can be efficiently acceler-
ated in Field Programmable Gate Arrays platforms (FPGAs)
or General Purpose Graphical Processing Unit platforms
(GPGPUs). Today, such hardware accelerators (HAs) are avail-
able in commercial heterogeneous computing platforms, as
the Zynq Ultrascale+ by Xilinx, which integrates in the same
chip different types of multicore processors and a large
FPGA fabric, or the Xavier from Nvidia, which includes a
GPGPU and specialized accelerators for machine learning
algorithms.

When developing safety-critical software for CPS, a cru-
cial issue is to guarantee timing constraints for the application
tasks. This problem is particularly challenging when hard-
ware acceleration is involved, especially when no internal

architecture details are publicly available, as for Nvidia GPU
platforms. This is particularly relevant when multiple HAs
perform memory-intensive operations that cause several
contentions in accessing shared resources, as buses and
memory controllers.

FPGA-based acceleration represents a promising solution
for coping with these problems since it provides a powerful
and energy-efficient computation with a very regular clock-
level timing behavior [3], [20]. As a result, the execution time
of a HA that runs in isolation has very low fluctuations and
hence is quite predictable. One of the major threats to
predictability for hardware accelerators deployed on FPGA
SoC platforms is due to contentions that may occur while
accessing the bus and the memory controller. This issue can
properly be addressed since FPGAs expose a precise control
on the bus structure to the system integrator designers,
which can organize the bus hierarchy to match timing con-
straints and deploy custom arbitration modules to dispatch
memory transactions to thememory controller [1].

A common approach used for FPGA accelerators in
COTS SoCs consists of having a set of HAs that act as man-
agers in accessing the bus during transactions to the princi-
pal DRAM off-chip memory shared with the multiple
processors [10], [28], [34]. Since the number of ports to
access the shared memory is limited, a common solution is
to multiplex multiple managers on a single port using the
interconnect available in the IP library offered by the FPGA
vendor. Multiple interconnects can be interconnected to cre-
ate a hierarchical bus network. Fig. 1 illustrates a sample
network of interconnects including three hardware accelera-
tors ðt1; t2; and t3) and two interconnects (I1 and I2).

It is worth observing that the frequency at which the
FPGA fabric operates in commercial FPGA SoCs is much less
than the one used by the on-chip memory controller (this lat-
ter is realized in hard silicon and placed outside of the FPGA

� Francesco Restuccia is with the University of California San Diego, La
Jolla, CA 92093 USA. E-mail: frestuccia@ucsd.edu.

� Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo
are with Scuola Superiore Sant’Anna, 56127 Pisa, Italy.
E-mail: {marco.pagani, alessandro.biondi, mauro.marinoni, giorgio.buttazzo}
@santannapisa.it.

Manuscript received 11 February 2022; revised 22 September 2022; accepted 2
October 2022. Date of publication 12 October 2022; date of current version 13
December 2022.
(Corresponding author: Francesco Restuccia.)
Recommended for acceptance by B. Childers.
Digital Object Identifier no. 10.1109/TC.2022.3214117

154 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

0018-9340 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6955-1888
https://orcid.org/0000-0001-6955-1888
https://orcid.org/0000-0001-6955-1888
https://orcid.org/0000-0001-6955-1888
https://orcid.org/0000-0001-6955-1888
https://orcid.org/0000-0002-7041-9777
https://orcid.org/0000-0002-7041-9777
https://orcid.org/0000-0002-7041-9777
https://orcid.org/0000-0002-7041-9777
https://orcid.org/0000-0002-7041-9777
https://orcid.org/0000-0003-4959-4017
https://orcid.org/0000-0003-4959-4017
https://orcid.org/0000-0003-4959-4017
https://orcid.org/0000-0003-4959-4017
https://orcid.org/0000-0003-4959-4017
mailto:frestuccia@ucsd.edu
mailto:marco.pagani@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:mauro.marinoni@santannapisa.it
mailto:giorgio.buttazzo@santannapisa.it

fabric) and the memory itself. To make an example, the
default operating frequency of the FPGA in a Xilinx Zynq-
7000 is 100MHz. Differently, the frequency of the Processing
System (including the memory controller) is 650 MHz. As a
consequence, the delays originating from the bus infrastruc-
ture implemented on the FPGA are comparable to the ones
required by memory accesses, and thus cannot be neglected
when computing the response times of HAs.

Contributions. This work investigates the major sources of
delay in HAs memory access time and presents a worst-case
response time analysis for hardware accelerators deployed on
FPGA SoC platforms. We considered the AXI standard [2] for
three main reasons: (1) AXI is the most widely adopted stan-
dard for communication on commercial FPGA SoCs [32] [13];
(2) AXI is the default option in well-established design tools
for FPGA platforms, as Xilinx Vivado [31] and Intel Quartus
Prime [14]; (3)AXI is the default interface leveraged by several
commercial hardware accelerator modules for bus communi-
cations. The rest of the paper is organized as following
described: Section 2 proposes a detailedmodel of the AXI bus
and AXI interconnects. The proposed model accounts for the
behavior of commercial AXI interconnects and the delays
experienced by bus transactions. Section 3 proposes a worst-
case response-time analysis bounding the response time of
recurrent hardware accelerators concurrently accessing the
shared memory in PS through hierarchical networks of AXI
interconnects. Finally, Section 4 reports our experimental vali-
dation, split into three sets of experiments. The first set of
experiments validates the proposed model on real hardware
waveform tracks obtained from two modern FPGA SoC plat-
forms from Xilinx. The second set presents a case study
deployed and running on the same platforms and compares
real executionmeasurementswith two bounds built out of the
proposed analysis. At last, the third set presents the experi-
mental results obtainedwith a syntheticworkload.

This work extends the results of [26] by providing the fol-
lowing new contributions: (i) An extended system model
considering the pipelining structure of AXI interconnects
and hierarchical interconnections; (ii) A reformulated
worst-case analysis including new lemmas that copes with
the limits of realistic HW-tasks and the pipelining of AXI
interconnects; (iii) An updated overall recursive bound on
the maximum amount of interfering transactions, computed
by combining the results of the new proposed lemmas; (iv)
A less pessimistic algorithm for bounding the response
times of the HW-tasks and checking the system schedulabil-
ity, considering all the proposed improvements; (v) An
extended experimental evaluation, showing the benefits of
the proposed improvements. The comparison shows a con-
siderable reduction of pessimism with respect to [26] thanks
to the novel contributions provided in this paper.

2 SYSTEM MODEL

This work considers systems involving multiple manager
hardware accelerators implemented on an FPGA SoC plat-
form and leveraging the AXI standard for communication.
These hardware accelerators can autonomously access a
sharedDRAMmemory through amemory controller located
on the PS side of the FPGA SoC platform.

2.1 HW-Task Model

Each hardware accelerator is supposed to implement a dis-
tinct functionality. In the rest of the paper, the name hardware
tasks (or HW-tasks for short) will also be used to indicate
them. Each HW-task relies on an AXI manager interface to
autonomously read and write from/to the shared DRAM
memory. The generic HW-task ti is periodically executed
every Ti clock cycles. Thus, it generates a periodic sequence of
instances referred to as jobs. For each job, ti: (1) issuesN

R
i read

transactions andNW
i write transactions. The transactions have

burst length B; (2) has at most fi outstanding transactions per
channel. In other words, at any time ti have at most fi pending read
transactions and fi pending write transactions; (3) computes for
at mostCi clock cycles; and (4) has a relative deadline equal to
Ti. Thus, each job of ti must complete before the release of the
next one.Weassume that read andwrite transactions are inde-
pendent of each other. According to the AXI standard, read
transactions and write transactions are propagated through
separated channels. Thus, they do not influence each other in
data propagation. It is important to note that no assumptions
aremade onmemory access patterns for theHW-tasks to keep
the paper general and robust regarding the behavior of HW-
tasks. Hence, an arbitrary temporal distribution of memory
transactions across the jobs must be considered. At the same
time, this assumption limits the exploitation of the parallelism
provided by the AXI standard. In the worst-case scenario,
HW-tasks cannot fully exploit parallelism since transactions
can be sufficiently spread far apart.

2.2 AXI Interconnect Model

The system includes multiple AXI interconnects joined one
on top of the other in a hierarchical fashion, creating a net-
work of interconnects. The generic interconnect in the net-
work Ij exports Sj subordinate ports and a single manager
port. Since each interconnect exports a single manager port,
the incoming traffic (at the manager port and) directed to the
subordinate ports does not experience any conflict. Differ-
ently, conflicts can be encountered by requests for transac-
tions of the same kind (read or write) issued by distinct HW-
tasks. Such conflicts are typically solved by independent,
per-channel, arbiters (see [33], [36]). Round-robin arbiters
have a granularity of fI requests, meaning that the manager
port grants at most fI read requests (or respectively, write
requests) to each HW-task at each round-robin cycle. In this
work, all interconnects have the same parameter fI . This
allows easing the notation in the analysis presented in Sec-
tion 3 (the case of distinct round-robin granularities for each
interconnect can be easily incorporated in the analysis). Each
interconnect delays address and data propagation introduc-
ing a propagation delay, denoted as: (i) daddrInt as the propaga-
tion delay on address requests, (ii) ddataInt as the propagation
delay of a data word (read or write), and (iii) dbrespInt as the

Fig. 1. A typical bus architecture with three HAs connected by two
interconnects.

RESTUCCIA ETAL.: BOUNDING MEMORYACCESS TIMES IN MULTI-ACCELERATOR ARCHITECTURES ON FPGA SOCS 155

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

propagation delay of write response. Such delays are
inferred from the documentation of the AXI interconnect
under analysis (whenever such documentation is provided
by the vendor) or by means of specific experimental profil-
ing. Propagation delays are the consequence of multiple
operations operated by the AXI interconnect on requests,
data, and write responses. For each channel, such operations
are performed by a corresponding pipeline composed of a
series of internal stages, such as input buffering, decoding,
optional resizing, routing, output buffering, etc. The sum of
the maximum execution times of all of the stages traversed
by an address request while propagating through the AXI
interconnect is equal to daddrInt . In a similar way, the sum of all
of the maximum execution times of the stages traversed by
data and write responses are equal to ddataInt and dbrespInt , respec-
tively. Each pipeline stage in a chain is managed in parallel
by the AXI interconnect. It is important to note that this
implies that multiple address requests, data, and write
responses can be propagated in parallel along a network of
interconnects. This observation is leveraged in Section 3 to
reduce the pessimism of our worst-case analysis. In the fol-
lowing, we assume that the pipeline of the interconnects
never gets full. Note that the main cause for the pipeline to
get full is the presence of one ormultipleHAs stalling the bus
(i.e., hanging on the data phase). In this work, this situation is
considered a misbehavior of HAs and hence not addressed
in the following. Our results can however be extended to
cope with misbehaving HAs by considering the results
of [22]: this is left as futurework.

The hold times are the numbers of clock cycles for which
some information must remain on the bus to be correctly
sampled by a module connected to the bus (i.e., interconnect
or HW-task). They are denoted by the following terms: (i)
taddr is the hold time of an address request, (ii) tdata is the
hold time of a word of data, and (iii) tbresp is the hold time of
a write response. The hold times are assumed not to be
lower than the maximum execution time of the stages of the
corresponding interconnect pipeline. According to the AXI
standard, requests, data, and write responses are propa-
gated on separated channels. Thus, they do not interfere
with each other in propagation.

2.3 Processing System and Memory Controller
Model

In a typical FPGA SoC architecture, the FPGA fabric is com-
bined with a Processing System (PS), which generally includes
multiple processors and peripherals. The DRAM memory
controller is placed in PS and is shared among the HW-tasks
deployed in the FPGA fabric and the devices embedded in the
PS. The HW-tasks deployed in the FPGA fabric access the
DRAM memory through the FPGA-PS interface. In modern
FPGA SoC platforms, the FPGA-PS interface exports a set of
secondary ports based on theARMAdvancedMicrocontroller
Bus Architecture Advanced eXtensible Interface (AMBA AXI
standard). Each HW-task is an active entity exporting an AXI
manager port through which it can generate requests for
memory transactions. Such requests are submitted to the
sharedDRAMmemory controller through the FPGA-PS inter-
face. We assume that each HW-task has a private memory
buffer inDRAM to load and store data. This is a typical setting
for applications leveraging hardware acceleration. We

consider the scenario in which all hardware accelerators share
a single AXI port at the FPGA-PS interface for accessing their
memory buffers in DRAM–this is the scenario keeping all the
contention of the HW-tasks at the FPGA interconnect. We
made this choice as leveraging multiple ports at the FPGA-PS
interface moves the contention generated by the HW-tasks
from the FPGA fabric to the PS interconnect andDRAMmem-
ory controller. Our investigation in this paper is mainly
focused on the worst-case effect generated at the FPGA inter-
connect rather than the contention generated at the PS inter-
connect and DRAM memory controller (which depends on
strategic information typically not released by the vendor).
Investigating the contention in PS goes beyond the purpose of
this paper–we are planning for such an investigation in future
work, aspiring for the provisioning of more detailed informa-
tion on the internals of the PS interconnect and DRAM mem-
ory controller from the vendor. In commercial FPGA SoC
platforms, the shared DRAM memory controller included in
the PS is split in two modules: (1) an AXI interface module
and (2) a physical core module, directly accessing the physical
DDR memory [29], [32]. The AXI interface block receives and
arbitrates theAXI transactions from theAXI subordinate ports
of the memory controller. The DDR physical core schedules
and issues the requests to the physical layer and generates
control and data signals for theDRAMmemory.

Commonly, the internal architecture of the DDR physical
core is based on multi-level queues, where throughput and
efficiency are maximized by applying dedicated scheduling
policies to reorder transactions [11]. The internals of the DDR
physical core block on many commercial platforms are not
publicly revealed or not well documented, including the
queues structure and the scheduling policies. Hence, a fine-
grained model of the DDR physical core block is beyond the
scope of this paper. Being our focus on analyzing the system
interconnect, a coarse-grained modeling of the DRAM-
related delays is adopted. It is worth mentioning that our
results could be refined if the internals of the DDR controller
are known (e.g., by adopting the results from [11]).

The DRAMMemory Controller AXI Interface block guar-
antees that the requests directed to the shared DRAM are
served in order (see [29], p. 297, and [32], p. 440). This means
that, from the point of view of the HW-tasks, the order of
the data read responses follows the order of address read
requests granted at the FPGA-PS interface. Likewise, write
address requests are handled in order. It is worth mention-
ing that this feature does not depend on the scheduling poli-
cies implemented by the DDR Physical core block, which
may affect the worst-case service time of a request due to
internal reordering.

From previous considerations, this paper takes into
account the following (cumulative) delays introduced by
the PS and the memory controller:

� dreadPS is the maximum time elapsed between the sam-
ple of a read transaction at the FPGA-PS interface
and the availability of the first word of the corre-
sponding data at the FPGA-PS interface; and

� dwritePS is the maximum time elapsed between the sam-
ple of the last word of data of a write transaction at
the FPGA-PS interface and the availability of the cor-
responding write response at the FPGA-PS interface.

156 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

By definition, these delays incorporate the propagation
times due to the PS internal logic and the overall service time
at the memory controller. Such parameters derive from the
internals of the PS and can be obtained from the official docu-
mentation furnished by the vendor (if publicly available) or
quantified through experimental profiling and over-provi-
sioning. Accurate bounds on the delays introduced by the
memory controller can be computed with state-of-the-art
techniques [4], [11] provided that its internal architectural
details are available.

2.4 Overall Architecture

The system under analysis is formally composed of a set
G ¼ ft1; . . . ; tng of n HW-tasks, a set H ¼ fI1; . . . ; Isg of s
AXI interconnects, and a shared DRAM memory controller
M in PS. The HW-tasks 2 G are deployed on a network of
AXI interconnects (in the set H) and organized as follows.
Each subordinate port of an interconnect is connected to the
manager port of a HW-task or to the manager port of
another interconnect (in a hierarchical manner). The set of
the HW-tasks connected to the interconnect Ij is denoted by
GðIjÞ. In a similar way, the set of interconnects connected to
the subordinate ports of Ij (i.e., in input) is denoted with
HðIjÞ. The set of HW-tasks that are directly or transitively
connected to Ij is denoted by GþðIjÞ (i.e., whose transactions
traverse Ij). The manager port of the interconnect placed at
the very bottom of such a hierarchy is connected to the sub-
ordinate port of the FPGA-PS interface. We referred to this
latter interconnect as the root interconnect Iroot – the transac-
tions released by all of the HW-tasks pass through this inter-
connect to reach the memory controller in PS. Each
interconnect has one manager port. The manager port of the
generic interconnect Ij 6¼ Iroot is connected to a subordinate
port of another interconnect, denoted by bðIjÞ. For consis-
tency, bðIrootÞ ¼ ;. Overall, the system topology is a tree
where: (i) the root node is represented by Iroot, (ii) the leaves
are represented by the HW-tasks in G, and (iii) the intercon-
nects in H n fIrootg represents the intermediate nodes (see
Fig. 2b). We say that an interconnect I is placed at the hier-
archical level LI when a HW-task connected to I must tra-
verse LI interconnects to reach the FPGA-PS interface (Iroot
is at first level, i.e., LIroot ¼ 1). Table 1 summarizes the sym-
bols used in this paper.

3 RESPONSE-TIME ANALYSIS

This section presents a worst-case analysis bounding the
worst-case response times of HW-tasks deployed on a hier-
archical interconnect network.

We structured the analysis in a set of incremental lemmas:
at first, we bound the worst-case response time of one read
or write transaction assuming no contention at the intercon-
nects (Section 3.1). Following, we propose three methodolo-
gies for bounding the maximum number of interfering
transactions affecting the execution of a job of a HW-task
under analysis (Sections 3.2, 3.3, and 3.4). The three proposed
bounds are then combined in Section 3.5. Finally, Section 3.7
proposes an algorithm leveraging the results of the preced-
ing sections to bound the maximum response time of the
HW-tasks and check system schedulability.

The bounds derived in this section can be applied to both
read and write transactions. To keep a compact notation,
this section uses the simplified symbol Ni in place of NR

i or
NW

i to represent the number of transactions issued by ti.

3.1 No Contention at the Interconnects

The following lemmas bound the memory access time of
one transaction issued by a generic HW-task ti under evalu-
ation that is connected to the interconnect I placed at an
arbitrary hierarchical level L. The lemmas presented in this
section consider the cases in which no bus contention is gen-
erated by the other HW-tasks in the system1. Two lemmas
are provided, one for read and one for write transactions.

Lemma 1. Let ti 2 G be the HW-task under analysis and con-
nected to interconnect Ij 2 H placed at the Lth hierarchical
level. If all the HW-tasks in G n ftig are not active, i.e., they do
not generate interference to ti, the worst-case response time of a
single read transaction R issued by ti is upper bounded by

Fig. 2. (a) A set of HW-tasks directly connected to Iroot. (b) A sample
hierarchical network of interconnects and HW-tasks with two hierarchical
levels. Circles are HW-tasks (only the ones mentioned in the text are
assigned a name).

TABLE 1
Symbols Used in This Paper

Ni Number of transactions issued by ti (can have superscript R or

W)

fi Number of maximum outstanding transactions for ti
fI Transactions granted per round-robin cycle by interconnects

B Burst length of a transaction

taddr Single address request hold time

tdata Single data word hold time

tbresp Single write response hold time

dreadPS Maximum delay introduced by the PS on a read transaction

dwritePS Maximumdelay introduced by the PS on awrite transaction

ddataInt Data word interconnect propagation latency

daddrInt Address request interconnect propagation latency

dbrespInt Write response interconnect propagation latency

GðIiÞ Set of the HW-task connected to Ij

HðIjÞ Set of the interconnects connected to subordinate ports of Ij
bðIjÞ Interconnect connected to the manager port of Ij
GþðIjÞ Set of HW-tasks whose transactions pass through Ij

1. Note that the contention-free bounds provided by the two lemmas
do not pertain to the cases in which the transaction is served in isola-
tion, but rather to cases in which no contention is experienced at the
interconnects. This is because the delays introduced in Section 2.3
already cope with conditions of maximum contention at the PS and the
memory controller.

RESTUCCIA ETAL.: BOUNDING MEMORYACCESS TIMES IN MULTI-ACCELERATOR ARCHITECTURES ON FPGA SOCS 157

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

dNoCont;readðIjÞ ¼ taddr þ L � daddrInt þ dreadPS

þL � ddataInt þB � tdata:

Proof. As from the official AXI standard documentation [2],
a read transaction R begins with the issue of the address
read request Raddr, which is then sampled by Ij. The
address time is constant and equal to taddr. The latency
cost for Raddr to traverse the interconnect Ij is bounded by
daddrInt . At this point, Raddr goes through the interconnect
network tree, traversing the remaining L� 1 intercon-
nects. As argue for Ij, each of such interconnects introdu-
ces a latency bounded by daddrInt . Therefore, Raddr is
available at the manager port of the root interconnect Iroot
after a total propagation delay of taddr þ L � daddrInt , where it
is sampled from the subordinate port of the FPGA-PS
interface. The PS routes Raddr to the Memory Controller
and provides to the FPGA-PS interface the first word of
data after at most dreadPS time units (see Section 2.3). At this
point, the data words Rdata corresponding to R traverse
the L levels of the network of interconnects, in reverse
order with respect to Raddr, until finally reaching ti. Due
to pipelining, being the data words propagated in
sequence within the network of interconnects, the propa-
gation latency experienced during the data phase is paid
just once for the whole data burst. Hence, given tdata as
the data time for each word and that ddataInt is the maximum
latency introduced by any interconnect on data words,
the overall latency paid to propagate the data burst along
the interconnect network is L � ddataInt þB � tdata. The lemma
follows by summing up the delay contributions men-
tioned above. tu

Lemma 2.
Under the same hypotheses of Lemma 1, the response time

for a write transactionW issued by HW-task ti is bounded by

dNoCont;writeðIjÞ ¼ taddr þ L �maxfdaddrInt ; ddataInt g þB � tdataþ
þdwritePS þ tbresp þ L � dbrespInt :

Proof. As from the official AXI standard documentation [2],
the write transaction W begins with the issue of the
address write request Waddr by ti, which lasts taddr time
units. As mandated by the AXI standard, once Waddr is
granted at the interconnect Ij, the HW-task ti is granted
to provide the corresponding data words Wdata on the
write channel. Waddr and Wdata are propagated through
the interconnect network tree on the two corresponding
channels, eventually reaching the FPGA-PS interface.
Note that data can be propagated only after the corre-
sponding address. Therefore, the latency experienced by
Waddr and Wdata when traversing an interconnect is no
larger than the maximum between daddrInt and ddataInt . Overall,
considering all the interconnects up to the FPGA-PS inter-
face, the latency introduced on Waddr and the entire burst
Wdata is given by taddr þ L �maxfdaddrInt ; ddataInt g, which must
be summed to the time to transmit the data themselves,
i.e., B � tdata. At this point, the PS routesWaddr andWdata to
the memory controller. Following Section 2.3, after at most
dwritePS time units the write response Wresp is available at the
FPGA-PS interface. Finally, Wresp is propagated through

the interconnect tree, until reaching ti, experiencing a
latency of tbresp þ L � dbrespInt . The lemma follows by sum-
ming up the delay contributionsmentioned above. tu
Observe that the bounds provided by the two lemmas

above just depend on the hierarchical level L at which inter-
connect Ij is placed, i.e., the one to which the HW-task
under analysis is directly connected.

3.2 First Bound on the Number of Interfering
Transactions

In this lemma, we proceed incrementally starting consid-
ering the interference generated at a single interconnect, for
instance Iroot in the most simple case (see Fig. 2a). The
lemma bounds the maximum number of interfering transac-
tions that a transaction issued by the HW-task under analy-
sis can suffer.

Lemma 3. Consider the interconnect Iroot and let ti 2 GðIrootÞ be
the HW-task under analysis. In the worst-case, each address
request for transaction issued by ti grants the access to the
manager port of Iroot after at mostX

tj2GðIrootÞnftig
minðfj;fIÞ; (1)

transactions.

Proof. By the model presented in Section 2, the intercon-
nects solve conflicts on address requests issued by differ-
ent HW-tasks by round-robin. In the worst-case scenario,
ti is the last HW-task to be served in the round-robin arbi-
tration cycle, i.e., after all the other HW-tasks in GðIrootÞ.
By Section 2.1, the maximum number of transactions
issued by each HW-task tj that can be pending at the
same time is fj. At the same time, by Section 2.2, the max-
imum number of transactions that an interconnect can
grant to each HW-task for each round-robin cycle is fI .
Therefore, Iroot grants at most minðfj;fIÞ transactions for
each interfering HW-task tj 2 G n ftig per round-robin
cycle. The lemma follows by summing up this contribu-
tion for each interfering HW-tasks. tu
Once defined Lemma 3, it is possible to proceed with

bounding the maximum number of interfering requests in a
generic interconnects network. We first observe that a HW-
task ti can suffer two types of interference: (1) direct interfer-
ence, which is the interference suffered by the transactions
issued by ti at the interconnect to which ti is directly con-
nected to; and (2) indirect interference, being the interference
suffered by the transactions issued by ti, or other transac-
tions that generate direct interference to ti, in other inter-
connects at shallower hierarchical levels on their way
towards the FPGA-PS interface. Following, we provide fur-
ther details on both kinds of interference.

Direct Interference. The reasoning introduced in Lemma 3
can be extended to consider a hierarchical network of inter-
connects, as the one illustrated in Fig. 2b. It is worth noting
that, in this case, a HW-task can also experience contention
at an interconnect due to transactions issued by HW-tasks
connected at higher hierarchical levels. To make an exam-
ple, ti in Fig. 2b (directly connected to Iroot) can be interfered
by transactions issued by the HW-task tz connected to I1.

158 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

Lemma 4.
Consider an arbitrary interconnect Ij. Also, let ti 2 GðIjÞ

be the HW-task under analysis. In the worst-case, each address
request for transaction issued by ti reaches the manager port of
Ij after at most

Y directðti; IjÞ ¼
X

tj2GðIjÞnftig
minðfj;fIÞ þ jHðIjÞj � fI ;

(2)
transactions.

Proof. Following the model presented in Section 2.2, at each
round-robin cycle, Ij serves at most fI transactions per its
subordinate port. Note that this also holds when another
interconnect Ih is connected to a subordinate port of Ij.
Therefore, from the perspective of ti, any bus traffic com-
ing from Ih can interfere by at most fI transactions per
round-robin cycle, independently of the actual configura-
tion of the sub-network connected to Ih. Overall, this
means that all interconnects that are directly connected to
Ij can interfere with each transaction issued by ti with at
most jHðIjÞj � fI transactions. Finally, the first term of
Equation (2) follows due to the same considerations done
in the proofs of Lemma 3. Hence the lemma follows. tu
Indirect Interference. A request issued by the HW-task

under analysis can also incur contention at shallower hierar-
chical levels while it is propagated through the network of
interconnects. To make an example, in Fig. 2b a transaction
issued by tz can incur contention at Iroot due to transactions
issued by ti or tx. Moreover, indirect interference can also
affect transactions generating direct interference to a request
issued by a HW-task under analysis. This effect leads to a
transitive interference phenomenon. Making an example, in
Fig. 2b a transaction issued by tk delaying tz in I1 can expe-
rience contention at Iroot due to a transaction issued by tx,
hence in turn delaying tz too. In such scenario, the transac-
tion of tx is transitively delaying tz.

Following, we introduce a set of lemmas to account for
indirect interference. As done previously, we proceed incre-
mentally, starting considering just two adjacent hierarchical
levels.

Lemma 5. Consider an arbitrary interconnect Ij, placed at hier-
archical level L � 2, that issues D transactions in output to its
manager port. The D transactions can be indirectly interfered
by at most

Y indirect
2�level ðD; IjÞ ¼ D�

�
X

ti2GðbðIjÞÞ
minðfi;fIÞ þ jHðbðIjÞÞ n fIjgj � fI

0
@

1
A; (3)

transactions at bðIjÞ (i.e., at hierarchical level L� 1).

Proof. Let r one of the D transactions issued by Ij. As
addressed by Lemma 4, r can incur direct interference at
bðIjÞ, i.e., the only interconnect directly connected to Ij at
the lower hierarchical level L� 1. Hence, the interference
at bðIjÞ can be bounded as done for Lemma 4. The only
differences here are the following ones: (i) Being r coming
from another interconnect Ij, the transaction is not origi-
nated by a HW-task that is directly connected to bðIjÞ.

Therefore, no HW-task needs to be excluded from those
that generate interfering transactions (first term in the
sum of Eq. (2)). (ii) Interconnect Ij, being the one from
which the transaction r under analysis is coming from,
has instead to be excluded from the set of interconnects
that can generate interfering transactions (second term in
the sum Eq. (2)). hence the actual set of interconnects to
consider is HðbðIjÞÞ n fIjg. The lemma follows by
accounting for the bound implied by the above reasoning
for each of the D transactions issued by Ij. tu
After introducing the above lemma, we can generalize

the bound on the contribution of indirect interference for an
arbitrary hierarchical structure having L > 2 levels.

Lemma 6. Let tz be the HW-task under analysis directly con-
nected to interconnect Ij at the hierarchical level L � 2. The
total number of transactions that interfere with those issued by
tz up to the lth hierarchical level, with l 2 ½1; L�, is bounded by
Y l
z , which is recursively defined as follows for l < L:

Y l
z ¼ Y indirect

2�level ðNz þ Y lþ1
z ; Ilþ1Þ þ Y lþ1

z

Il ¼ bðIlþ1Þ;

(

and as follows for l ¼ L (base case):

Y L
z ¼ Nz � Y directðtz; IjÞ

IL ¼ Ij:

(

Proof. The proof is by induction on the hierarchical level l 2
½1; L�. The proof also shows that the interconnect tra-
versed by tz’s transactions at the lth hierarchical level is
Il, which is defined as in the above equations.

Base Case. HW-task tz is directly connected to Ij at the
Lth hierarchical level: hence, IL ¼ Ij and, at this intercon-
nect, tz suffers direct interference only. By Lemma 4, for
each of the Nz transactions issued by tz, the number of
interfering transactions up to the Lth hierarchical level is
bounded by Y directðtz; IjÞ.

Inductive Case. The induction hypotheses are that Y lþ1
z

safely bounds the number of transactions that interfere
with tz up to the ðlþ 1Þth hierarchical level and that Ilþ1

is the interconnect traversed by tz’s transactions at the
ðlþ 1Þth level. We proceed by showing that Y l

z is a safe
bound for the lth hierarchical level. First of all, by defini-
tion, observe that Il ¼ bðIlþ1Þ is the only interconnect tra-
versed by the tz’s transactions at the lth hierarchical
level. Second, note that the transactions that enter in Il

and that impact on the execution of tz must be (i) those
issued by tz itself and (ii) those interfering with the ones
issued by tz at the interconnects traversed by tz’s transac-
tions at higher hierarchical levels. By the HW-task model,
the ones of case (i) are no more than Nz. By the induction
hypotheses, the ones of case (ii) are bounded by Y lþ1

z .
Observe that such requests are coming from Ilþ1 and can
incur indirect interference at Il: by Lemma 3, such an
interference can be bounded by Y indirect

2�level ðNz þ Y lþ1
z ; Ilþ1Þ.

Now, it remains to account for all the interference, either
direct or indirect, that tz’s transactions can collect at the
higher levels to bound the overall number of interfering
requests up to the lth hierarchical level, Again, by the

RESTUCCIA ETAL.: BOUNDING MEMORYACCESS TIMES IN MULTI-ACCELERATOR ARCHITECTURES ON FPGA SOCS 159

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

induction hypotheses, such interference is bounded by
Y lþ1
z . Hence the lemma follows. tu

3.3 Second Bound on the Number of Interfering
Transactions

We propose here an alternative approach to bound the max-
imum number of interfering transactions. From the model
proposed in Section 2.1, we observe that the HW-tasks are
executed periodically. Thus, the number of transactions
generated by each HW-task in a given time window is lim-
ited and quantifiable.

Lemma 7. Let ti be the HW-task under analysis and let Il the
interconnect traversed by ti’s transactions at the lth hierarchi-
cal level. In a schedulable2 system, the number of transactions
that can interfere with ti up to Il is bounded by

Y timeðti; IlÞ ¼
X

tj2GþðIlÞnftig
hi;j;

where hi;j ¼
Ti þ Tj

Tj

� �
�Nj:

Proof.Without loss of generality, consider a periodic instance
of ti that starts at time 0. Note that, to generate transactions
that interfere with those issued by ti, a job of another HW-
task tj must be released no earlier than time �Tj. Other-
wise, such a job would be already completed when ti is
released. Similarly, note that a job of tj that generates inter-
fering transactions must be released before time Ti, other-
wise ti would already be completed and no interference
would hence be possible. It then follows that the time win-
dow of interest to analyze the contention suffered by ti and
generated by tj is ð�Tj; Ti�. Its length is clearly Tj þ Ti.
Observe that in such a time window tj can release at most
dðTi þ TjÞ=Tje jobs. Each of them can issue atmostNj trans-
actions. Therefore, there are at most dðTi þ TjÞ=Tje �Nj

transactions that can interfere with ti. The total number of
transactions that can interfere with ti is hence bounded by
the sum of such terms computed for eachHW-task that can
interfere with ti. Note that only the HW-tasks whose trans-
actions traverse Il can interfere at Il, i.e., those in the set
GþðIlÞ. Clearly, ti has to be excluded from GþðIlÞ as it can-
not interfere with itself. Hence the lemma follows. tu

3.4 Third Bound on the Number of Interfering
Transactions

This section proposes a third and last bound on the maxi-
mum number of interfering transactions. As introduced in
Section 2.1, each HW-task can issue a limited amount of out-
standing transactions. This means that at any moment of
time the number of interfering transactions issued by an
interfering HW-task in the network is limited.

Lemma 8. Let ti the HW-task under analysis and let Il be the
interconnect traversed by ti’s transactions at the lth hierarchi-
cal level. The number of transactions that can interfere with the
execution of a job of ti up to Il is bounded by

Y outsðti; IlÞ ¼ Ni �
X

tj2GþðIlÞnftig
fj:

Proof. From the model in Section 2.1, each interfering HW-
task tj 2 GþðIlÞ can have at most fj pending transactions
in the network at any moment in time. By definition of set
GþðIlÞ, the transactions issued by HW-tasks tj 2 GþðIlÞ
are those that pass through interconnect Il. Whenever a
transaction issued by ti reaches Il, each HW-task tj 2
GþðIlÞ n ftig can have at most fj pending transactions,
each of which may be propagated before the one of ti.
Hence

P
tj2GþðIlÞnftig fj bounds the number of transac-

tions that can interfere with ti up to Il. The lemma follows
by recalling that ti issues at mostNi transactions per job.tu

3.5 Combining the Bounds

The following lemma combines the three bounds proposed
in Sections 3.2, 3.3, and 3.4 to propose an improved (less
pessimistic) bound for the overall maximum number of
interfering transactions for an arbitrary HW-task set and
interconnect network architecture. The formula proposed in
the lemma is iterative – iterating the formula for each inter-
connect in the path between a HW-task under analysis and
until reaching the FPGA-PS interface it is possible to com-
pute the number of interfering transactions suffered by a
request under analysis.

Lemma 9. In a schedulable system, the same claim of Lemma 6
still holds if Y l

z is recursively defined as follows for l < L:

Y l
z ¼ min Y indirect

2�level ðNz þ Y lþ1
z ; Ilþ1Þ þ Y lþ1

z ; Y timeðtz; IlÞ
�

Il ¼ bðIlþ1Þ

(

and as follows for l ¼ L (base case):

Y L
z ¼ min Nz � Idirectðtz; IjÞ; Y timeðtz; ILÞ; Y outsðtz; ILÞ

� �
IL ¼ Ij:

(

Proof. The lemma follows as for Lemma 6 after recalling
that Lemmas 6, 7, and 8 provide a safe bound on the num-
ber of transactions that can interfere with tz. Hence, the
minimum of the three bounds is still a safe bound. tu

3.6 Delay Introduced by an Interfering Transaction

As explained in Section 2, when building a network, inter-
connects and HAs are stacked one on top of the other so
that the whole network behaves as a pipeline that propa-
gates requests and data. Due to pipelining, the propagation
of interfering transactions through each interconnect of the
network does not affect the service time of a transaction
under analysis, i.e., the contention delay introduced by an
interfering transaction is limited to its service time and its
data propagation time, as formalized by the following
lemma.

Lemma 10. Let ti be the HW-task under analysis connected to
interconnect I at the Lth hierarchical level. Supposing that ti
issues a request for transaction, the worst-case delay contribu-
tion of an interfering transaction issued by HW-task tj placed
at an arbitrary hierarchical level is bounded by

2. When bounding response times of real-time tasks, it is common to
assume that the interfering tasks complete by their deadlines to get rid of
circular dependencies that arise in response-time equations. Please refer
to [19] (Sec. VI.C) for further details about the validity of this approach.

160 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

dPipe;readðIÞ ¼ taddr þ dreadPS þB � tdata;
dPipe;writeðIÞ ¼ taddr þB � tdata þ dwritePS þ tbresp;

for read and write transactions, respectively. This result is
independent of the hierarchical level of tj.

Proof. A network of AXI interconnects and HAs manages
addresses, data, and write responses as a pipeline. As the
pipeline is assumed not to get full (see Section 2.2), multi-
ple address requests can both be issued and propagated
in parallel into the network. Hence, the delay an interfer-
ing address request traversing the corresponding net-
work pipeline (i.e., the one composed by all the stages of
the interconnects related to the AR/AW channel) can
generate to another request is bounded by the maximum
execution time of the pipeline stages. By Section 2.2, this
delay is bounded by the hold time taddr. Now, consider
read interfering transactions. It remains to bound the
delay they generate to ti’s transactions due to the data in
response of address requests. By Section 2.3, data read
responses follow the order of address read requests:
hence, each interfering transaction can delay ti up to dreadPS

time units, waiting for the PS to respond. The data propa-
gation phase of interfering transactions is also subject to
pipelining. This means that each of the B words of data
can delay a ti’s transaction by at most the maximum exe-
cution time of the data read pipeline stages (R channel).
By Section 2.2, this delay is less then tdata. Hence, the over-
all delay is bounded by B � tdata. Finally, consider write
interfering transactions. By Section 2.3, the write data fol-
low the address requests in order, hence each interfering
transaction can delay ti up to dwritePS þB � tdata time units
for the same reason mentioned above for read transac-
tions. Write responses are then propagated back through
the network of interconnect. Again, analogously to
address requests and data, due to pipelining, for each
interconnect they can contribute to the delay suffered by
each ti’s transaction by at most the maximum execution
time of the pipeline stages for handling write responses
(B channel). By Section 2.2, this delay is bounded by the
hold time tbresp. The lemma follows. tu

3.7 Response-Time Analysis Algorithm

In this section, we present the proposed algorithm bounding
the response time of a HW-task connected at an arbitrary
hierarchical levels of a generic network of interconnects.
Differently from the lemmas already presented (whose
bound only the number of interfering transactions), the
following algorithm derives the temporal interference
assigning a contention cost to interfering transactions. It is
worth mentioning that, set a HW-task tz under analysis, a
safe bound can be derived by computing Y 1

z from
Lemma 9, which is able to bound the total number of inter-
fering transactions across the entire hierarchical network
of interconnects (until reaching Iroot), and then multiplying
Y 1
z by the largest contention cost, that is, the one related to

the highest hierarchical level. Nevertheless, a more accu-
rate bound can be derived accounting for level-specific
contention cost for each interfering transaction, by identi-
fying the corresponding highest hierarchical level it can
interfere with.

Algorithm 1. The proposed algorithm providing a tem-
poral bound on the maximum contention delay experi-
enced by tz and caused by the interfering transactions
propagated across the entire hierarchical network of
interconnects

Input:HW-task tz 2 G directly connected to Ij at level L
Output: dinterfz

IL ¼ Ij
Nacc 0
for l ¼ L;L� 1; . . . ; 1 do
Nl Y l

z from Lemma 9
dinterfz dinterfz þ ðNl �NaccÞ � dPipeðIlÞ
Il�1 ¼ bðIlÞ
Nacc Nacc þNl

end
return dinterfz

Such strategy is implemented by Algorithm 1. As intro-
duced in Section 3, read and write transactions are managed
and propagated through separated channels by AXI-based
interconnects. Thus, they can be treated separately. As for all
of the lemmas presented in this Section, Algorithm 1 holds
for both read and write transactions. To avoid duplicating its
definition, the algorithm considers a contention cost gener-
ated by an interfering transaction dPipeðIjÞ that has to be
replaced with dPipe;readðIjÞ or dPipe;writeðIjÞ depending on the
type of transactions that are studied. Consequently, the algo-
rithm can be used to produce two outputs, respectively one
of read and one for write transactions, which to keep a com-
patible notation are named dinterf;readz and dinterf;writez . Essen-
tially, the algorithm iterates over all hierarchical levels
interested by the HW-task tz under analysis, starting from
l ¼ L down to l ¼ 1, and considers the maximum number of
interfering transactions collected up to each interconnect tra-
versed by the transactions issued by tz. At each interconnect
Il traversed at the lth hierarchical level, it is accounted the
contention delay of the interfering transactions insisting on
Il that have not already been accounted at a higher hierarchi-
cal level.

The presented algorithm allows to finally bound the
worst-case response time of each HW-task, which is com-
posed of (i) its worst-case execution time, (ii) the time spent
in performing its transactions (read and write), and (iii) its
maximum experienced contention delay. Hence, the
response time of each HW-task tz connected to interconnect
Ij is bounded by the following:

Rz ¼ Cz þNR
z � dNoCont;readðIjÞ þNW

z � dNoCont;writeðIjÞþ
þ dinterf;readz þ dinterf;writez : (4)

Finally, a system is deemed schedulable if all HW-tasks
meet their deadlines, i.e., ifRz � Tz; 8tz 2 G.

4 EXPERIMENTAL VALIDATION

This section describes an experimental evaluation performed
to validate the systemmodel and the effectiveness of the pro-
posed analysis in providing safe timing bounds. All experi-
ments described in this section have been performed on two
modern, commercial Xilinx FPGA SoC platforms: the Zynq

RESTUCCIA ETAL.: BOUNDING MEMORYACCESS TIMES IN MULTI-ACCELERATOR ARCHITECTURES ON FPGA SOCS 161

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

7020 (on the PYNQ board) and the Zynq UltraScale+
XCZU9EG (on the ZCU102 board). In the experimental
setup, the system DRAM memory is accessed through the
high-performance (HP) ports of the FPGA-PS interface on
both platforms. This route is used inmost real-world designs
since it provides the maximum possible throughput to the
DRAMmemory. Our evaluation showed that both platforms
(Zynq 7020 and ZynqUltraScale+ XCZU9EG) present a simi-
lar behavior for the scope of this paper. Hence, for the sake of
brevity, only the experiments performed on the more recent
Zynq UltraScale+ XCZU9EG platform are reported. Finally,
this Section concluded by presenting the experimental
results obtained in simulationwith a synthetic workload.

4.1 Experimental Setup

For this experimental evaluation, we developed two custom
modules in order to perform accurate, clock-level measure-
ments: (i) a traffic generator module, named greedy HW-task
(also called GHW-task), and (ii) a multi-channel timer mod-
ule. The GHW-tasks are used to model any possible bus
behavior of HW-tasks in a controllable manner. In this way,
GHW-tasks can mimic any transactions pattern issued by
real-world HW-tasks to stress bus contention. Each GHW-
task can be programmed to generate accurate patterns of
transactions compliant with the AXI standard. The transac-
tions can have custom burst lengths and offsets. The multi-
channel timer is leveraged to retrieve clock-level accurate
measurements of the response times of the GHW-tasks,
without interfering with their execution. Both of the mod-
ules have been synthesized and implemented leveraging
Xilinx Vivado 2020.2. In this evaluation, we keep the FPGA
clock set to its default value (100 MHz) in both of the plat-
forms (Zynq 7020 and Zynq UltraScale+ XCZU9EG).

4.2 Platform Profiling

This first set of experiments aims at characterizing propaga-
tion delays and hold times introduced in Section 2.2 for the
AXI SmartConnect, a state-of-the-art interconnect devel-
oped by Xilinx. To this end, we developed a test setup com-
posed of three GHW-tasks connected to the HP0 port of the
FPGA-PS interface through an AXI SmartConnect. The test
setup also includes an Integrated Logic Analyzer (ILA) [35]
used for storing the execution traces of AXI links connecting
the GHW-tasks to the AXI interconnect (AXI SmartConnect
in this evaluation) and the AXI link connecting the AXI
interconnect to the HP0 port. The traces provided by the
ILA have been measured to estimate the delays experienced
by address and data transactions while traversing the AXI
SmartConnect. The propagation delay observed for address
read and write transactions is daddrInt ¼ 12 clock cycles, while
the delay observed for read and write data transactions is
ddataInt ¼ 11 clock cycles. Finally, the delay observed for write
response has been observed is dbrespInt ¼ 9 clock cycles. The
hold times taddr, tdata, and tbresp have been observed to be
constant and equal to one clock cycle. It is worth noting that
such constant delays can be larger in other settings, e.g.,
when the HW-tasks can delay data sampling (this scenario
is not considered in this paper). As introduced in Section 2.3,
the delays experienced by read and write data transactions
(dreadPS and dwritePS) while accessing the DRAM memory in the

FPGA-PS interface are highly dependent on the DRAM
memory controller and its internal policies. As the main
focus of this work is on the contention generated at the
FPGA subsystem, in the proposed experimentation no
memory-intensive workload from the processors was stim-
ulated.3 Instead, we estimated experimentally that perform-
ing a read transaction requires dreadPS ¼ 50 clock cycles, while
committing a write transaction takes dwritePS ¼ 40 clock cycles.

4.3 Validation of the Model

In these experiments, we aim at validating the assumptions
proposed in Section 3 for modeling the maximum interfer-
ence experienced by a HW-task due to transactions issued
by interferingHW-tasks. The outcomeswill be used as build-
ing blocks for assembling and simulating complex hierar-
chies that are impossible to evaluate on current-generation
FPGA SoCs due to excessive resource requirements. To this
end, we first consider a flat architecture and then proceed by
characterizing the base cases of hierarchical networks.

Interference in a Flat Network Architecture. This experiment
evaluates the behavior of the AXI SmartConnect when arbi-
trating the transactions concurrently issued by multiple
GHW-tasks in a flat network. In particular, it aims at estimat-
ing the worst-case response time of a transaction, occurring
when the transaction loses the entire arbitration cycle of the
interconnect. To this end, we configured all of theGHW-tasks
for issuing a single request with a burst length of sixteen 4 B
words. The GHW-tasks are activated at the same clock cycle,
using a single start signal. The test setup under analysis in
these experiments includes four GHW-tasks t0; . . . ; t3. Each
of the GHW-task is connected to one of the subordinate ports
of one AXI interconnect I. The manager port of the intercon-
nect is connected to the HP0 port of the FPGA-PS interface
(as shown in Fig. 2a). In this architecture, all of the transac-
tions issued by the GHW-tasks are subject to a single arbitra-
tion cycle of the AXI interconnect to reach the HP0 port. We
measured the activation and finishing times of the GHW-
tasks using the custom timer module deployed on the FPGA
fabric. The maximum response time observed for GHW-
tasks, compared with two analytical upper-bounds (Upper
Bound A andUpper Bound B) derived from the analysis pro-
posed in Section 3.7 for the flat architecture under analysis,
are reported in Fig. 3. Upper-bound A does not consider the
results on pipelining proposed in Lemma 10, so that the delay
introduced by each interfering transaction is accounted for as
a full transaction cost (i.e., in Algorithm 1, dPipeðIlÞ ¼

Fig. 3. Maximum measured response times for read and write transac-
tions compared with the two upper bounds proposed in Section 3 (results
are reported in clock cycles).

3. The extension of our analysis to consider diverse workloads gen-
erated from the processors in PS is left as future work to holistically
analyze the PS subsystem.

162 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

dNoContðIlÞ, see Lemmas 1 and 2. This correspond to the origi-
nal bound proposed in [26]). Differently,Upper Bound B lever-
ages the results of Lemma 10 for setting the terms dPipeðIlÞ in
Algorithm 1, which allow reducing the delay impact of each
interfering transaction by leveraging pipelining.

Fig. 3 shows that when a HW-task loses an entire arbitra-
tion cycle (i.e., in the worst-case scenario), the observed
response times are safely bounded by the analysis presented
in Section 3. The result provided by Lemma 10 allows reduc-
ing the pessimism of the analysis considerably. Indeed,
Upper Bound B provides a 20% improvement for both read
andwrite transactions with respect to Upper BoundA.

Interference in a Hierarchical Network. This second group of
experiments validates the assumptions proposed in Sec-
tion 3 to characterize the interference caused by the multiple
interfering HW-tasks in a hierarchical network of intercon-
nects. To this end, the test setup developed for these experi-
ments comprises four GHW-tasks, t0, t1, t2, and t3, and
three interconnects, I0; I1; I2, organized as pictured in Fig. 4.
The GHW-tasks are configured and released as in the previ-
ous experiment.

In this architecture, the address requests issued by t0
pass a single arbitration phase, which occurs at the intercon-
nect I0. Differently, the requests issued by t1 must traverse
two arbitration phases: the first one at I1, and then at I0.
Finally, the requests issued by the GHW-tasks t2 and t3
must traverse three interconnect steps, respectively, I2, I1,
and I0. The first experiment aims at validating the model
for (i) the interference caused by interfering HW-tasks con-
nected to the same interconnect (direct interference), and
(ii) the interference generated by HW-tasks connected to the
lower-level interconnects (indirect interference). In this
experiment, t3 is the HW-task under investigation. It has
been configured for issuing a single request for transaction
AR3 (read and write). At the same time, the interfering
tasks, t2; t1; t0, have been configured to issue eight consecu-
tive interfering transaction requests of the same type as
AR3. In order to generate maximum contention at the inter-
connects, t1 is released with an offset equal to the intercon-
nect propagation delay daddrInt . Differently, t0 is released with
a delay equal to 2daddrInt (the reported offsets are considered
with respect to the release time of AR3 by t3). Similar to pre-
vious experiments, an ILA module is used to monitor AXI
links between the GHW-tasks and the AXI interconnect,
and the single link between the AXI interconnect and the
HP0 port. Likewise, we use our custom timer to measure
the response times of the GHW-tasks.

Fig. 5 reports an ILA trace for read transactions issued by
all of the GHW-tasks. It can be observed that all GHW-tasks

are simultaneously released at time 15. Then, t3 issues its
address read request AR3 (time 16). At the same clock cycle,
t2 starts issuing its first transaction request, AR0

2, causing
contention at the interconnect I2. The arbitration round is
won by t2. Thus, I2 propagates first AR

0
2 to I1 and then AR3.

At this level, the interference is compatible with the direct
interference described by Lemma 4. After the propagation
delay of the interconnect, I2 issues the requests at the corre-
sponding subordinate port of I1. At the same clock cycle
instant, t1 releases its first transaction request, AR0

1. Thus,
another contention happens, and the arbitration round at I1
is won by t1. Consequently, I1 forwards to I0 the transaction
requests in the following order: AR0

1; AR
0
2; AR

1
1; AR3, hence

according to round-robin arbitration as assumed in our model. It
is worth noting also that the amount of interfering requests
observed on AR3 at this level is compatible with the one
found in Lemma 5 for indirect interference. When I1 propa-
gates this sequence of requests to I0, t0 starts issuing its
transaction requests, hence again causing contention. The
arbitration round is won by t0. Hence, the transaction
requests are issued by I0 to the HP0 port in the following
order: AR0

0; AR
0
1; AR

1
0; AR

0
2; AR

3
0; AR

1
1; AR

3
0; AR3.

4

Thus, in the worst-case scenario, AR3 (issued by the
GHW-task under analysis) is interfered by seven requests
issued by the interfering GHW-tasks, as by the direct and indi-
rect interference described by the analysis proposed in Section 3.
As the FPGA-PS interface serves the requests in-order, t3
receives its corresponding data after all of the interfering
requests have been served. At time 274, the first word of
data corresponding to AR3 reaches t3. At time 292 the trans-
action is completed. Fig. 5 also confirms that the AXI Smart-
Connect complies with the model proposed in Section 2.2
and is characterized by fI ¼ 1.

Fig. 6 reports the maximummeasured response times for
read and write transactions for the architecture under analy-
sis, compared against the two proposed upper bounds com-
puted using the results of our analysis. As in the previous
experiment, Upper Bound A is the original bound proposed
in [26] while Upper Bound B accounts for the new results
proposed in Lemma 10. Again, such results confirm that the
delay is safely bounded by both the Upper Bounds. Never-
theless, Upper Bound B shows even more improved
(reduced) pessimism in hierarchical architecture with
respect to Upper Bound A for both read and write (improve-
ment around 30%).

Propagation pipelining Fig. 5 also shows the effect of pipe-
lining on address requests and data propagation captured
by Lemma 10. Given the arbitration policy of the intercon-
nects and the corresponding analytical understanding
matured in the above sections, the case reported in the
figure leads to the worst-case interference for t3, which
issues a single transaction AR3 released at time 16. As
explained in the previous example, AR3 can be interfered at
most by seven transactions issued by t2, t1, and t0 at the
three crossed levels of interconnects. To reach the FPGA-PS
interface, the transactions issued by t2 need to traverse three
interconnects. The ones issued by t1 have to traverse two

Fig. 4. Hierarchical network architecture considered in the model
validation.

4. We obtained such a result by randomly generating multiple hard-
ware execution tracks and collecting the one of interest in which the
round-robin arbitration is lost at any traversed interconnect.

RESTUCCIA ETAL.: BOUNDING MEMORYACCESS TIMES IN MULTI-ACCELERATOR ARCHITECTURES ON FPGA SOCS 163

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

interconnects, while the transactions issued by t0 traverse
one interconnect. Accounting for the propagation of AR3

and the interfering transactions as sequential operations
(i.e., without considering the results of Lemma 10) would
provide a safe bound for the propagation time equal to 2 �
ðtaddr þ 3 � daddrInt Þ (i.e., AR3 and AR0

2 traversing three inter-
connects) + 2 � ðtaddr þ 2 � daddrInt Þ (i.e., AR0

1 and AR1
1 traversing

two interconnects) + 4 � ðtaddr þ 1 � daddrInt Þ (i.e., AR0
0, AR1

0,
AR2

0, and AR3
0 traversing one interconnect) = 176 clock

cycles. However, note that AR3 is available to be sampled at
the FPGA-PS interface at time 60. Indeed, by the effects of
pipelining, its overall propagation time is only 44 clock
cycles. This delay is determined by the time required to tra-
verse three levels of interconnects and the hold time.
Clearly, considering all such operations as sequential is way
too pessimistic. Thanks to the highly predictable behavior
of the hardware, Lemma 10 allows bounding the propaga-
tion time of the request exactly to 44 clock cycles. This corre-
sponds to an improvement of 75% with respect to the
previous bound. The same pipelining effect just described
also holds in the propagation of data and write responses.

A considerable amount of the remaining pessimism is
ascribable to the coarse-grained model assumed for the
DDR controller, whose internal details are mostly not pub-
licly available. However, where a more fine-grained model
is provided, the proposed algorithm could exploit it to
diminish pessimism and provide a tighter bound.

4.4 Synthetic Workload Experiments

This section presents an experimental study aimed at evaluat-
ing the analysis presented in Section 3 with synthetic work-
loads. Moreover, this study aims at assessing the impact of

the outstanding transactions limit (Lemma 8) and the effects
of transaction pipelining (Lemma 10) on the timing feasibility
of the system. To this end, this evaluation compares two
implementations of the analysis presented in Section 3. The
first implementation, named (A), was originally presented
in [26] and considers the interference bounds of Sections 3.2
and 3.3 only. The second implementation, named (B), extends
the first implementation (A) by incorporating the interference
bound based on the number of outstanding transactions (Sec-
tion 3.4) and the effects of transactions pipelining (Section 3.6).
As such, implementation (B) is a refinement of (A).

The AXI system considered in this experiment includes
N HW-tasks ðt1; . . . ; tNÞ connected through a binary tree of
M interconnects ðI1; . . . ; IMÞ. The following methodology
has been used for generating the task sets: the period Ti and
the computation time Ci of the generic HW-task ti have
been generated using the fixedrandsum algorithm [7]
(Tmin ¼ 10 ms <¼ Ti <¼ Tmax ¼ 100 ms, using log-nor-
mal distribution). As a reference, the task set utilization has
been kept equal to 1. Please note that execution times of the
HW-tasks are not relevant for bus contention. The number
of transactions issued by the HW-tasks have been generated
by first computing the maximum number of transactions
that the generic HW-task ti can perform in isolation
(Nmax

i ¼ ðTi � CiÞ=maxðdNoCont;read; dNoCont;writeÞ). Following,
the total number of transactions NRþW

i ¼ NR
i þNW

i is com-
puted by multiplying Nmax

i with a transaction density factor
r 2 ð0; 1� such that NRþW

i ¼ r �Nmax
i . The transaction den-

sity factor r regulates the transaction load that HW-task
generates on the system. Finally, the NRþW

i transactions are
split in reads and writes using a random uniformly-gener-
ated ratio (range n 2 ½0:4; 0:6�), such that NR

i ¼ n �NRþW
i and

NW
i ¼ ð1� nÞ �NRþW

i . All of the HW-tasks have been config-
ured with fi ¼ 6 (a typical value we found from experimen-
tal profiling of HAs in the Xilinx IP library) and Bi ¼ 16,
while all interconnects have fI ¼ 1. For the purpose of test-
ing realistic configurations, we assume that each intercon-
nect cannot have more than 16 input ports (as in the case of
the Xilinx SmartConnect [36]).

This evaluation considers 16 topological configurations gen-
erated by varying combinations of parameters N and M such
that N 2 f4; 8; 16; 24g and M 2 f1; 2; 4; 8g. Configurations
where at least one interconnect hosts only a single HW-task are

Fig. 5. Waveform track captured using the Integrated Logic Analyzer on a Xilinx Zynq Ultrascale+ platform.

Fig. 6. Maximum measured response times for read and write transac-
tions compared with the upper bounds proposed in Section 3 (in clock
cycles).

164 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

discarded since the interconnect would only increase the
latencywithout performing any arbitration. For each valid con-
figuration ðN;MÞ, 100 random values for the bus load factor r
are uniformly chosen in the range ½0:1; 1:0Þ. Then, for each
value of bus load r, K ¼ 50000 synthetic task sets have been
generated. Each task set comprisesN HW-tasks evenly distrib-
uted overM interconnects (i.e., each generic interconnect can
connect at most dN=Me HW-tasks). We distributed the
HW-tasks on the network of interconnects in accordance
with their slack times Si ¼ Ti � Ci – the tasks having
shorter slacks are collocated closer to the root interconnect.
Fig. 7 reports the results of such an experimental study. It
is worth remembering that each interconnect cannot con-
nect more than 16 tasks – the topologically unfeasible con-
figurations are not considered in the experimentation. The
experimental results show that analysis (B) outperforms
analysis (A) by a significant margin. The gap between the
two approaches becomes larger as the bus load factor r

increases. These results confirm that the analysis presented
in [26] can be significantly improved by considering the
effects of transactions pipelining (Lemma 10) and the
bound on the number of outstanding transactions
(Lemma 8). Moreover, it is still worth noting that increas-
ing the number of interconnects enables connecting more
HW-tasks. Also, it can improve the system schedulability
ratio by moving HW-tasks showing longer slack time at
higher hierarchical levels of the network. Following this
methodology, it is possible to reduce the interference on
time-constrained HW-tasks (i.e., the ones showing shorter
slack times). Nevertheless, it is worth mentioning that
moving HW-tasks to higher hierarchical levels increases
the worst-case contention experienced by its transactions.
Exploring such trade-off requires the investigation of allo-
cation strategies for HW-tasks – we leave this task as
future works.

5 RELATED WORK

The issue of improving the predictability of response times in

SoCs has been deeply addressed, examining different aspects.

HW prefetch and arbitration received novel mechanisms and

policies to bring improvements from the architectural side

[12], [15], [27]. Some authors presented solutions for task allo-

cation that include thememory interface [16], [17].

Enhancing schedulability analysis with the integration of
memory interference has been widely investigated, exploiting
COTS solutions and proposing ad-hoc ones. Each contribution
typically focused on a defined element of the memory tree,
such as caches [9], [18], busses [6], [8], and memory control-
lers [4], [11]. Some authors [5] investigated the effect that mem-
ory interference produces on the performance of control
applications. The possibility of allotting multiple independent
HW-tasks has favorably increased interest in FPGA-based
SoCs. However, the access to a shared buffer to perform such
allocations implies that these platforms also suffer the effect of
memory interference. The de-facto standard in this architecture
is the AXI bus [2] whose design focused on performance and
flexibility, overlooking time predicability. It allows only the
evaluation of the interference exploiting through hardware
monitors [30] provided to observe the performance of HW-
tasks. A critical aspect for time predictability consists in the
decision of excluding several design details from the stan-
dard [33] with the implicit assumption that the specific imple-
mentations adhere to the guidelines in the standard. Recently,
some authors addressed increasing predictability by present-
ing several novel mechanisms. A bandwidth reservation tech-
nique for memory access of HW-tasks has been proposed by
Pagani et al. [21]. Restuccia et al. presented several solutions to
enforce a fair bandwidth distribution among HW-tasks [25]
and avoid that bus transaction suffers anunboundeddelay [23].
They also designed a predictable AXI interconnect handled at

Fig. 7. Experimental results with synthetic workload (each interconnect cannot connect more than 16 tasks).

RESTUCCIA ETAL.: BOUNDING MEMORYACCESS TIMES IN MULTI-ACCELERATOR ARCHITECTURES ON FPGA SOCS 165

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

hypervisor-level [24]. However, the focus of theseworks is lim-
ited to a single interconnect. Thus, they do not address the
need for fine-grained timing analysis of bus transactions tra-
versingmultiple interconnects.

6 CONCLUSION

This paper focused on multi-accelerators architectures
deployed on FPGA SoC platforms and proposed a detailed
model and analysis for interconnects based on the AXI stan-
dard. The pessimism of the analysis is reduced by proposing
an accurate model capturing the effects of the pipelining in
AXI-based interconnects and the features of commercial hard-
ware accelerators. We validated our model and analysis with
experimental results involving real designs running on com-
mercial FPGA SoCs from the ZYNQ-7000 and the ZYNQ-
Ultrascale+ families fromXilinx. Futurework should focus on
providing advanced allocation strategies and bus network
synthesis tools leveraging the proposed analysis to allocate a
given set of hardware accelerators in a bus structure.

REFERENCES

[1] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A predict-
able SDRAM memory controller,” in Proc. IEEE/ACM 5th Int.
Conf. Hardware/Softw. Codesign Syst. Synth., 2007, pp. 251–256.

[2] ARM. AMBA AXI and ACE Protocol Specification, 2011.
[3] A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G.

Buttazzo, “A framework for supporting real-time applications on
dynamic reconfigurable FPGAs,” in Proc. IEEE Real-Time Syst.
Symp., 2016, pp. 1–12.

[4] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “A holistic
memory contention analysis for parallel real-time tasks under par-
titioned scheduling,” in Proc. IEEE 26th Real-Time Embedded Tech-
nol. Appl. Symp., 2020, pp. 239–252.

[5] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and S.
Andalam, “Memory-aware embedded control systems design,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 4,
pp. 586–599, Apr. 2017, doi:10.1109/TCAD.2016.2613933.

[6] S. Chattopadhyay, L. K. Chong, A. Roychoudhury, T. Kelter, P.
Marwedel, and H. Falk, “A unified WCET analysis framework for
multicore platforms,” ACM Trans. Embedded Comput. Syst., vol. 13,
no. 4s, pp. 1–29, 2014.

[7] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the syn-
thesis of multiprocessor tasksets,” in Proc. 1st Int. Workshop Anal.
Tools Methodol. Embedded Real-Time Syst., 2010, pp. 6–11.

[8] G. Fernandez, J. Jalle, J. Abella, E. Qui~nones, T. Vardanega, and F.
J. Cazorla, “Increasing confidence on measurement-based conten-
tion bounds for real-time round-robin buses,” in Proc. 52nd Annu.
Des. Autom. Conf., 2015, pp. 1–6, doi:10.1145/2744769.2744858.

[9] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling
and analysis for multicores,” in Proc. 7th ACM Int. Conf. Embedded
Softw., 2009, pp. 245–254.

[10] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-
based neural network inference accelerators,” ACM Trans. Recon-
figurable Technol. Syst., vol. 12, no. 1, 2019, Art. no. 2.

[11] M. Hassan and R. Pellizzoni, “Bounding DRAM interference in
COTS heterogeneous MPSoCs for mixed criticality systems,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 11,
pp. 2323–2336, Nov. 2018.

[12] F. Hebbache, F. Brandner, J. Mathieu, and L. Pautet, “Work-conserv-
ing dynamic time-divisionmultiplexing formulti-criticality systems,”
Real-Time Syst., vol. 56, pp. 124–170, Apr. 2020, doi:10.1007/s11241–
019-09336-w.

[13] Intel. Stratix 10 GX/SX Device Overview, Oct. 2017.
[14] FPGA Intel. Custom IP Development Using Avalon� and Arm

AMBAAXI Interfaces. OQSYS3000.
[15] J. Jalle, L. Kosmidis, J. Abella, E. Qui~nones, and F. J. Cazorla, “Bus

designs for time-probabilistic multicore processors,” in Proc. Des.
Autom. Test Europe Conf. Exhib., 2014, pp. 1–6, doi:10.7873/
DATE.2014.063.

[16] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Raj-
kumar, “Bounding memory interference delay in COTS-based
multi-core systems,” in Proc. IEEE 19th Real-Time Embedded Tech-
nol. Appl. Symp., 2014, pp. 145–154.

[17] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Raj-
kumar, “Bounding and reducing memory interference in COTS-
based multi-core systems,” Real-Time Syst., vol. 52, no. 3, pp. 356–395,
May 2016.

[18] M. Lv, N. Guan, J. Reineke, R. Wilhelm, and W. Yi, “A survey on
static cache analysis for real-time systems,” Leibniz Trans. Embed-
ded Syst., vol. 3, no. 1, pp. 05:1–05:48, 2016, doi:10.4230/LITES-
v003-i001-a005.

[19] G. Nelissen and A. Biondi, “The SRP resource sharing protocol for
self-suspending tasks,” in Proc. IEEE Real-Time Syst. Symp., 2018,
pp. 361–372.

[20] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, “A
linux-based support for developing real-time applications on het-
erogeneous platforms with dynamic FPGA reconfiguration,” in
Proc. IEEE 30th Int. Syst.-on-Chip Conf., 2017, pp. 96–101.

[21] M. Pagani, E. Rossi, A. Biondi, M. Marinoni, G. Lipari, and G. But-
tazzo, “A bandwidth reservation mechanism for AXI-Based hard-
ware accelerators on FPGAs,” in Proc. 31st Euromicro Conf. Real-
Time Syst., 2019, pp. 24:1–24:24.

[22] F. Restuccia, A. Biondi, M. Marinoni, and G. Buttazzo, “Safely pre-
venting unbounded delays during bus transactions in FPGA-
based SoC,” in Proc. IEEE 28th Annu. Int. Symp. Field-Programmable
Custom Comput. Machines, 2020, pp. 129–137.

[23] F. Restuccia and R. Kastner,, “Cut and forward: Safe and secure
communication for FPGA system on chips,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., to be published, doi: 10.1109/
TCAD.2022.3197343.

[24] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo,
“AXI HyperConnect: A predictable, hypervisor-level AXI inter-
connect for hardware accelerators in FPGA SoC,” in Proc. ACM/
IEEE 57th Des. Automat. Conf., 2020, pp. 1–6.

[25] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Is your bus arbiter really fair? Restoring fairness in AXI intercon-
nects for FPGA SoCs,” ACM Trans. Embedded Comput. Syst.,
vol. 18, no. 5s, pp. 51:1–51:22, Oct. 2019.

[26] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Modeling and analysis of bus contention for hardware accelera-
tors in FPGA SOCs,” in Proc. 32nd Euromicro Conf. Real-Time Syst.,
2020, pp. 12:1–12:23.

[27] M. Slijepcevic, C. Hernandez, J. Abella, and F. J. Cazorla, “Design
and implementation of a fair credit-based bandwidth sharing
scheme for buses,” in Proc. Des. Autom. Test Europe Conf. Exhib.,
2017, pp. 926–929, doi:10.23919/DATE.2017.7927122.

[28] Y. Umuroglu et al., “FINN: A framework for fast, scalable binar-
ized neural network inference,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2017, pp. 65–74.

[29] Xilinx. Zynq-7000 All Programmable SoC - Reference Manual,
Sep. 2016. UG585.

[30] Xilinx. AXI Performance Monitor v5.0, 2017. PG037.
[31] Xilinx. Vivado Design Suite: AXI Reference Guide, Jul., 2017.

UG1037.
[32] Xilinx. Zynq UltraScale Device - Reference Manual, Dec. 2017.

UG1085.
[33] Xilinx. AXI Interconnect, LogiCORE IP Product Guide, 2018. PG059.
[34] Xilinx Inc. The CHaiDNN official Github website, Oct. 2022.

[Online]. Available: https://github.com/Xilinx/chaidnn
[35] Xilinx Inc. Integrated Logic Analyzer, LogiCORE IP Product

Guide, 2016. PG172.
[36] Xilinx Inc. SmartConnect, LogiCORE IPProductGuide, 2018. PG247.

Francesco Restuccia received the PhD degree in
computer engineering (cum laude) from Scuola
Superiore Sant’Anna Pisa, in 2021. He is a post-
doctoral researcher with the University of Califor-
nia, San Diego. His main research interests include
hardware security, on-chip communications, timing
analysis for heterogeneous platforms, cyber-physi-
cal systems, and time predictable hardware accel-
eration of deep neural networks on commercial
FPGASoCplatforms.

166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 1, JANUARY 2023

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2016.2613933
http://dx.doi.org/10.1145/2744769.2744858
http://dx.doi.org/10.1007/s11241--019-09336-w
http://dx.doi.org/10.1007/s11241--019-09336-w
http://dx.doi.org/10.7873/DATE.2014.063
http://dx.doi.org/10.7873/DATE.2014.063
http://dx.doi.org/10.4230/LITES-v003-i001-a005
http://dx.doi.org/10.4230/LITES-v003-i001-a005
http://dx.doi.org/10.1109/TCAD.2022.3197343
http://dx.doi.org/10.1109/TCAD.2022.3197343
http://dx.doi.org/10.23919/DATE.2017.7927122
https://github.com/Xilinx/chaidnn

Marco Pagani received the MSc degree in
embedded computing systems from the Univer-
sity of Pisa and Scuola Superiore Sant’Anna, in
2016, and the PhD degree in computer engineer-
ing in a cotutelle program between Scuola Supe-
riore Sant’Anna and Universit�e de Lille, in 2020,
under the supervision of Prof. Giorgio Buttazzo
and Prof. Giuseppe Lipari. He is a postdoctoral
researcher with the Real-Time Systems (ReTiS)
Laboratory of Scuola Superiore Sant’Anna. His
main research interests include predictable hard-

ware acceleration on heterogeneous platforms and system-level soft-
ware for real-time systems.

Alessandro Biondi received the graduated
degree (cum laude) in computer engineering from
the University of Pisa, Italy, within the excellence
program, and the PhD degree in computer engi-
neering from the Scuola Superiore Sant’Anna
under the supervision of Prof. Giorgio Buttazzo
and Prof. Marco Di Natale. He is an assistant pro-
fessor with the Real-Time Systems (ReTiS) Labo-
ratory of the Scuola Superiore Sant’Anna. In
2016, he has been visiting scholar with the Max
Planck Institute for Software Systems, Germany.

His research interests include design and implementation of real-time
operating systems and hypervisors, schedulability analysis, cyber-physi-
cal systems, synchronization protocols, and safe and secure machine
learning. He was the recipient of six best paper awards, one Outstanding
Paper Award, the ACMSIGBEDEarly Career Award 2019, and the EDAA
Dissertation Award 2017.

Mauro Marinoni received the MS degree in com-
puter engineering from the University of Pavia,
Italy, in 2003, where he also received the PhD
degree in computer engineering, in 2007. He is
working since 2007 with the Real-Time Systems
Laboratory (ReTiS), where he has been an assis-
tant professor from 2009 to 2020. He has been
local coordinator of the FP7 JUNIPER project,
the Eurostars RETINA project, and several indus-
trial projects exploiting the ReTiS Lab research
outcomes in different application fields, from e-

Health devices to autonomous and distributed systems.

Giorgio Buttazzo (Fellow, IEEE) received the
graduated degree in electronic engineering from
the University of Pisa, the MS degree in computer
science from the University of Pennsylvania, and
the PhD degree in computer engineering from the
Scuola Superiore Sant’Anna of Pisa. He is full pro-
fessor of computer engineering with the Scuola
Superiore Sant’Anna of Pisa. He is the editor-in-
chief of Real-Time Systems, the associate editor
of the ACM Transactions on Cyber-Physical Sys-
tems. He has authored 7 books on real-time sys-

tems and more than 300 papers in the field of real-time systems, robotics,
and neural networks, and received 13 best paper awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

RESTUCCIA ETAL.: BOUNDING MEMORYACCESS TIMES IN MULTI-ACCELERATOR ARCHITECTURES ON FPGA SOCS 167

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:30:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

