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Abstract

This manuscript presents a novel finite difference method to solve cardiac bidomain equa-

tions in anatomical models of the heart. The proposed method employs a smoothed bound-

ary approach that represents the boundaries between the heart and the surrounding

medium as a spatially diffuse interface of finite thickness. The bidomain boundary conditions

are implicitly implemented in the smoothed boundary bidomain equations presented in the

manuscript without the need of a structured mesh that explicitly tracks the heart-torso

boundaries. We reported some significant examples assessing the method’s accuracy

using nontrivial test geometries and demonstrating the applicability of the method to com-

plex anatomically detailed human cardiac geometries. In particular, we showed that our

approach could be employed to simulate cardiac defibrillation in a human left ventricle com-

prising fiber architecture. The main advantage of the proposed method is the possibility of

implementing bidomain boundary conditions directly on voxel structures, which makes it

attractive for three dimensional, patient specific simulations based on medical images.

Moreover, given the ease of implementation, we believe that the proposed method could

provide an interesting and feasible alternative to finite element methods, and could find

application in future cardiac research guiding electrotherapy with computational models.

Introduction

Heart diseases remain the leading cause of death worldwide and still cause millions of victims

every year. According to the 2022 statistics from the American Heart Association [1], sudden

cardiac death appeared on 13.0% of death certificates in 2019 in the USA. Sudden cardiac

arrest is thought to be due to ventricular arrhythmias, particularly fibrillation episodes. Car-

diac fibrillation is the disruption of the organized cardiac electrical activity into disorganized,

self-sustained electrical activation patterns. Cardiac defibrillation proved to be the most effec-

tive therapy in preventing sudden cardiac death [2], however the discharge of high electric

shocks remains a painful experience associated with severe psychological distress [3, 4].
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Therefore, cardiac defibrillation, especially at low energy, remains an interesting research

topic. In the last decades, cardiac research recognized computer models as fundamental tools

in understanding both cardiac function and its response to external stimulation. Indeed, sev-

eral recent computational studies focus on the development of carefully designed, low-energy

stimulation strategy [5–8].

To date, the bidomain formulation [9] is the gold standard for the representation of cardiac

tissue. In the bidomain framework, the heart tissue is represented as the coupling of the intra-

cellular and extracellular spaces through the cell membrane. If the intracellular and extracellu-

lar anisotropy ratios are the same, the bidomain model reduces to the much simpler

monodomain model [10]. This approximation is often made in large 3D cardiac models to still

gain valuable insights while simplifying the problem considerably (see e.g, [11–14]). However,

modelling extracardiac stimulation requires that the heart tissue is represented with the more

complex, but more accurate, bidomain model [11, 15]. For example, Sepulveda et al. [16] dem-

onstrated that the tissue response in the vicinity of a strong unipolar stimulus results in the

simultaneous occurrence of both depolarizing and hyperpolarizing effects, only if the anisot-

ropy ratios between intracellular and extracellular spaces are unequal. This phenomenon,

known as virtual electrode polarization, has been well documented in animal experiments

[17–19].

Previous works showed that the complex shape of the heart plays an important role in

determining the spatiotemporal evolution of the transmembrane potential [20, 21]. Thus, the

use of anatomically detailed heart geometries improves the reliability of simulation results.

Moreover, patient-specific computational cardiac models have the potentiality to dramatically

improve diagnosis and treatment of cardiac pathologies [22]. Recent studies employed high-

resolution magnetic resonance imaging not only to characterize cardiac morphology to use in

computational models but also to identify altered cardiac functions [14, 23, 24]. The use of

anatomical models of the heart requires the accurate solution of bidomain boundary condi-

tions on the voltage along complex boundary shapes dividing the heart tissue and the sur-

rounding medium. This issue is not easily addressable in finite difference (FD) algorithms,

especially to model the effect of currents applied in the extracellular space. Jagged boundaries,

which inevitably form along complex surfaces when structured grids are employed, cause spu-

rious polarization upon delivery of a defibrillation-strength shock [15]. Although some

attempts to solve bidomain equations in human anatomical geometries with FD algorithms

were made [25, 26], jagged boundaries have severely limited the applicability of FD methods

for solving bidomain equations. Bidomain equations are commonly solved by means of finite

element [20, 27, 28] or finite volume [14, 29, 30] methods that employ unstructured grids.

Indeed, the use of unstructured grids allows smooth representation of complex surfaces. How-

ever, the construction of high-quality finite element meshes is a complex task [15, 23].

The aim of this work is to introduce a new FD approach that accurately implements the

bidomain boundary conditions in arbitrary geometries. The proposed method is a generaliza-

tion of the phase field approach that has already been successfully employed in monodomain

models [31–33] and a wide variety of other problems, such as solidification dynamics [34],

crack propagation [35], and vesicle dynamics [36]. Smoothed boundary methods (SBMs) have

the important advantage to circumvents the need of a structured mesh that explicitly tracks

the interfaces. Indeed, SBMs introduce an auxiliary field (i.e., the phase field) that spatially dis-

tributes the zero-thickness boundaries into a finite thickness diffuse interface. Therefore,

boundary conditions are automatically distributed among the grid points residing within the

regions of interface in which the phase field varies smoothly. The major contribution of this

work is to provide a pipeline for the application of the SBM to the bidomain problem for the

first time. We believe that the method proposed here could be especially useful for three-
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dimensional, patient-specific simulations based on medical images because of its efficiency

and flexibility in handling voxel structures. Indeed, the method can be directly applied on seg-

mented, eventually resized, images without performing additional time-consuming operations

associated with the construction of structural meshes.

Materials and methods

Governing equations

The bidomain model provides a strategy for understanding larger-scale attributes of the car-

diac structure, with its huge number of individual cells, without having to describe that struc-

ture in cellular detail. The bidomain model was first proposed and qualitatively described by

Schmitt in 1969 [37]. Subsequently, Miller and Geselowitz [38], and Tung [39] proposed a rig-

orous mathematical formulation of the isotropic bidomain model. Cardiac muscle cells are

cylindrical, tend to be arranged in parallel arrays in local regions, and are electrically intercon-

nected in a complex fashion through the gap junctions. These connections between cells

exhibit a low resistance in the normal state. Therefore despite its cellular nature, the heart mus-

cle electrically acts in many respects as a syncytium. Thus, the intracellular space can be seen

as a continuous domain, or syncytium, with a resistivity which is an appropriate average of the

contribution of the cell interior (i.e., the cytoplasm) and that of the gap junctions. A second

domain is the fluid matrix which forms a continuous extracellular, or interstitial, outer space.

In the bidomain model, the heart tissue is represented by the coupling of the intracellular

space and the extracellular space. Both intracellular and extracellular spaces take up the entire

heart volume H (Fig 1). Consequently, the intracellular potential (ϕi), and extracellular poten-

tial (ϕo) are defined in each point of the cardiac domain H and the membrane potential can be

defined as:

Vm ¼ �i � �o ð1Þ

Moreover, ϕi and ϕo are spatially averaged continuous electric potential fields, thus their

behaviour can be described by the following partial differential equations coupled with an

appropriate set of boundary conditions [40, 41]:

@Vm

@t
� r � Dir Vm þ �oð Þð Þ ¼ � Iion Vm;wð Þ ð2Þ

r � ððDi þ DoÞr�oÞ þ r � ðDirVmÞ þ Iext ¼ 0 ð3Þ

@w
@t
¼ f Vm;wð Þ ð4Þ

where Di, Do are the diffusivity tensors of the intracellular and extracellular space. Iext is the

external applied current source, whereas Iion represents the ionic transmembrane current. The

ionic term is related to the state of the cellular membrane, described by a set of variables w,

through an ionic model. In this work, we employed our previously published phenomenologi-

cal model of cardiac cells [42] to describe the ionic current. The components of the diffusivity

tensor are determined by the tissue conductivities and local orientation of cardiac fibers. If the

fiber direction is given by the vector f, a diffusion tensor can be written as:

D ¼ D?I þ ðDk � D?Þff T ð5Þ
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where D? and Dk are the diffusivity values in the transverse and longitudinal directions of the

fibers, respectively. The definition of Eq (5) applies for both Di and Do. In this work, the longi-

tudinal and transverse diffusivity values for intracellular and extracellular space are set to: Dki
= 2.4 cm2/s, Dko = 2.4 cm2/s, D?i = 0.35 cm2/s, D?o = 2 cm2/s. They are obtained from the con-

ductivity values reported in [43] considering a membrane capacitance of 1 uF/cm2 and a sur-

face to volume ratio equal to 1000 cm−1.

In the general case, the cardiac tissue is surrounded by a passive external conductor T (i.e.,

the torso). Typical boundary conditions between heart and torso (i.e., on @H in Fig 1) impose

electrical continuity between the external conductor and the extracellular medium, and electri-

cal insulation between the external conductor and the intracellular medium [40, 41, 44]:

nh � Dor�o ¼ nh � Dtr�t ð6Þ

�t ¼ �o ð7Þ

nh � DirVm ¼ � nh � Dir�o ð8Þ

where Dt is the diffusivity tensor in the torso. In all the simulations, we considered the external

conductor isotropic with Dt = 4 cm2/s. Note that the external electric potential ϕt can be treated

as an extension of the extracellular potential ϕo [41]. Thus, the governing equation in the pas-

sive external conductor can be expressed as:

r � ðDtr�oÞ ¼ Iext ð9Þ

where ϕo is now defined in the whole space indicating the extracellular potential in the heart,

and the external potential in the torso. An additional boundary condition imposing zero

Fig 1. Schematic diagram of the considered geometry. ϕi and Vm are defined in the heart domain H, whereas ϕo is

defined both in H and in the external conductor T. @H indicates the boundary between the heart and torso domains.

The phase field ψ introduces a smooth interface between the heart domain (where ψ = 1) and the external conductor

(where ψ = 0).

https://doi.org/10.1371/journal.pone.0286577.g001
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current flux outside the torso geometry is also required:

nt � Dtr�o ¼ 0 ð10Þ

Eqs (1)–(9) provide a complete formulation of the bidomain model.

The phase field approach

For simplified geometries, such as two-dimensional sheets and three dimensional slabs of tis-

sue, the implementation of the boundary conditions (6), (7), (8), (10) is straightforward, even

when including tissue anisotropy (e.g., [45, 46]). However, when considering more compli-

cated geometries with curved boundaries and complex fiber orientations, the aforementioned

boundary conditions are not easy to implement in a FD scheme. In this work, we employed

the SBM [31, 47] to implicitly implement bidomain boundary conditions in irregular geome-

tries. In SBMs, the internal domain boundaries are described by an auxiliary field ψ which

takes a value of 1 inside the domain of interest and 0 outside. Therefore, the sharp domain

boundary is smoothed to yield a finite thickness interface, where ψ varies smoothly between 0

and 1. Additionally,rψ/|rψ| provides an approximation of the inward normal vector in the

zero-thickness limit. Notably, the precise shape of the phase field profile in the thin interface

region is not critical for SBMs, as shown in previous works [31, 32, 47, 48]. We generated ψ by

integrating an auxiliary diffusion equation until a steady state is achieved [31, 32]:

@c

@t
¼ x

2
r2cþ

ð2c � 1Þ

2
�
ð2c � 1Þ

3

2
ð11Þ

with initial conditions ψ = 1 in the heart domain, and ψ = 0 outside (Fig 1). The parameter ξ
controls the width of the diffusive interface, which is approximately 4ξ [31]. In this work, we

used a value of ξ equal to 0.025 cm, if not otherwise stated. The auxiliary diffusion Eq (11) was

integrated with a second order central FD scheme and the forward Euler method. Considering

a generic partial differential equation, the phase field approach consists of extending the prob-

lem to the entire computational domain by multiplying each term by the phase field. Then, by

using the product rule and by exploitingrψ/|rψ| as an approximation of the inward normal

vector, the equation can be rewritten in terms of the imposed flux at the domain boundary

(see [47] for further details). The partial differential equation obtained is defined in the entire

computational domain and implicitly implements Neumann boundary conditions. A similar

procedure also allows to implement Dirichlet or mixed boundary conditions [47].

Smoothed boundary bidomain model

In this work, we applied the phase field approach to the bidomain equations to obtain a

Smoothed Boundary Bidomain (SBB) formulation. Following the approach described in [47],

the Eq (2) can be extended to the entire computational domain by multiplying all the terms of

the equation by ψ. Then, by applying the product rule, the following expression is obtained:

c
@Vm

@t
� r � cDir Vm þ �oð Þð Þ þ rc � Dir Vm þ �oð Þð Þ ¼ � cIion Vm;wð Þ ð12Þ

Because the inward unit normal of the boundary is given byrψ/|rψ|, the boundary condi-

tion (8) impliesrψ � (Dir (Vm + ϕo)) = 0. Thus, we obtain:

c
@Vm

@t
� r � cDir Vm þ �oð Þð Þ ¼ � cIion Vm;wð Þ ð13Þ
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This equation implicitly implements the boundary condition (8) (see S1 Appendix for a

simple proof in the 1D case). Notably, Eq (13) does not have to be solved for the entire compu-

tational domain, but only for nodes associated to values of ψ greater than a threshold (i.e.,

internal nodes). As in [31], we fixed this threshold to 10−4. Similarly, we can extend Eq (3) to

the whole computational domain by multiplying each term by ψ. Instead, Eq (9) is defined

only outside the heart domain, thus it should be multiplied by (1 − ψ). At this point, the two

equations are summed to provide a single equation instantaneously relating Vm and ϕo in the

whole computational domain:

cr � ðDirVmÞ þ cr � ððDi þ DoÞr�oÞ þ ð1 � cÞr � ðDtr�oÞ ¼ Iext ð14Þ

Again, by using the product rule and the fact that the inward unit normal of the boundary

is given byrψ/|rψ| the equation can be rewritten as:

r � ðcDirVmÞ þ r � ððcðDi þ DoÞ þ ð1 � cÞDtÞr�oÞ ¼ Iext ð15Þ

which implicitly satisfies the sum of boundary conditions (6) and (8) (see S1 Appendix. for a

proof in 1D case). Thus, Eqs (13) and (15) allow for the computation of Vm and ϕo automati-

cally implementing bidomain boundary conditions (6), (7), (8) between the heart and the

torso. As shown in S1 Appendix, and similarly to previous works [31, 47], the principal source

of error in the boundary conditions is related to the spatial integral of c
@Vm
@t þ Iion Vm;wð Þ
� �

across the interfacial region. To reduce as much as possible the error, we modified Eq (13) in

such a way that in the interfacial region the time derivative and ionic terms are not considered,

partially recovering a sharp interface:

Y c � cthrð Þ
@Vm

@t
� r � cDir Vm þ �oð Þð Þ ¼ � Y c � cthrð ÞIion Vm;wð Þ ð16Þ

where Θ is the Heaviside step function and ψthr = 0.99 is a threshold on the value of ψ. Basi-

cally, if ψ< ψthr then we are in the interfacial region and the equation reduces tor � (ψDir

(Vm + ϕo)) = 0, which allows for instantaneous and accurate implementation of bidomain

boundary conditions. The major drawback is that the equation is not always parabolic, thus its

solution requires solving a linear system also when using splitting techniques and explicit inte-

gration methods. Notably, such a modification could also be applied on the smoothed bound-

ary monodomain formulation. Nevertheless, it could not be convenient because, as shown in

[31], the small error introduced in no flux boundary conditions is not critical for monodomain

simulations, whereas it is for bidomain simulations, especially when strong external stimuli are

present.

Note that Eq (15) implicitly implements bidomain boundary conditions at heart-torso

boundaries @H, but does not consider arbitrary shaped external conductors. Nevertheless,

with a procedure similar to those described above, Eq (15) can be easily generalized to account

also for no-flux boundary conditions at the torso external boundaries:

ctr � ðcDirVmÞ þ r � ðctðcðDi þ DoÞ þ ð1 � cÞDtÞr�oÞ ¼ ctIext ð17Þ

where ψt is an additional phase field that defines the torso domain inside a larger computa-

tional box. Again, (17) does not need to be solved in the whole computational domain but

only for values of ψt higher than a threshold. As for ψ, we fixed the threshold for ψt to 10−4.

Numerical integration schemes

All the numerical implementation is carried out in MATLAB and runs on a single AMD

Ryzen Threadripper 3960X. The SBB Eqs (15) and (16) can be discretized in space and time
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with any numerical scheme while implicitly implementing the bidomain boundary conditions

between the heart and the torso. In this work, we adopted the second-order central FD method

with uniform spacing dx = 0.025 cm for spatial discretization and a semi-implicit time integra-

tion scheme [44, 49] with dt = 0.02 ms (if not otherwise stated). Thus, for a generic timestep k,

we obtained the following linear system:

ðΘψ � dtAsÞV
kþ1

m � dtAsoϕ
kþ1
o ¼ ΘψV

k
m � dtΘψIionðV

k
m;w

kÞ ð18Þ

AsvV
kþ1

m þ Bsϕ
kþ1
o ¼ � Iext ð19Þ

As is ther � (ψDir) operator, and it is a Nin × Nin matrix, where Nin is the number of inter-

nal nodes (i.e., where ψ> 10−4). Aso is a Nin × Ntot matrix, where Ntot is the total number of

nodes, and it is obtained by replicating the columns of As in the column indices corresponding

to internal nodes. Similarly, Asv is a Ntot × Nin matrix, which is built by replicating the rows of

As in the row indices corresponding to internal nodes. Θψ is a diagonal matrix, whose diagonal

elements corresponds to the element values of Θ(ψ − ψthr). Bs is a Ntot × Ntot matrix imple-

menting ther � ((ψ(Di + Do) + (1 − ψ)Dt)r) operator. The matrices construction is based on

standard second-order central FD scheme [50]. Further details about matrices construction

are provided in S1 Appendix. The state variables of the ionic model were updated with the for-

ward Euler method. The coupling of Eqs (18) and (19) provides a system of linear equations

which allows to update Vm and ϕo at each time step. Vm and ϕo can be computed by solving the

system in its full form or dividing it into two subproblems by exploiting the operator splitting

technique. In this work, we solved the full system for 1D and 2D simulations, whereas we

exploited the operator splitting technique for 3D simulations. The operator splitting approach

we employed consists of the following 3 steps [41]:

1. Compute Vkþ1=2
m by solving the following system:

ðΘψ � dtAsÞV
kþ1=2
m ¼ ΘψV

k
m þ dtAsoϕ

k
o ð20Þ

2. Compute Vkþ1
m

Vkþ1
m ¼ Vkþ1=2

m � dtΘψIionðV
kþ1=2
m ;wkÞ ð21Þ

3. Compute ϕkþ1
o by solving the following system:

Bsϕ
kþ1
o ¼ � AsvV

kþ1
m � Iext ð22Þ

In both the approaches, the most demanding operation is the solution of the large linear

systems {(18), (19)}, (20), and (22). When the systems are relatively small (e.g., for 1D and

small 2D models), they can be easily solved with standard routines (e.g., the mldivide function

of MATLAB). However, when the systems are large preconditioned iterative methods must be

used. Therefore, we used a biconjugate gradient stabilized solver with ILU preconditioning

(bicgstab MATLAB function). To accelerate convergence, the solver uses initial guesses for

Vkþ1
m and ϕkþ1

o . In the case of the full coupled system, Vk
m and ϕk

o were used as initial guesses for

Vkþ1
m and ϕkþ1

o , respectively. When using the operator splitting, the initial guess for ϕkþ1
o was

ϕk
o þ ðV

kþ1

m � Vk
mÞd, where Δ = D?i/(D?i + D?o) [25]. Iteration of the solver for the full system
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was terminated when the relative norm of the residual became smaller than 10−5. Iteration of

the solver for the system (20) was terminated when the relative norm of the residual became

smaller than 10−6. Notably, the solver takes only a handful of iterations to converge. Finally,

iteration of the solver for the system (22) was terminated when either the relative norm of the

residual became smaller than 10−4 or the norm of the residual became smaller than 10−4((dx/

0.02 cm)3Ntot)
1/2, as in [25]. It is worth mentioning that, beyond the standard and well estab-

lished ILU preconditioner used in this study, several other more efficient choices are possible.

In particular, multigrid preconditioners demonstrated to be very powerful and well-suited for

large bidomain problems, especially when executed in parallel clusters [26, 41, 51, 52].

We tested the SBB method in three sample geometries. First, we considered a 1D cable 6

cm long with the heart domain placed in the middle (4 cm long). We compared the results

obtained with the SBB method with those obtained by solving standard bidomain equations.

Second, we employed the smoothed boundary approach in a 2D annular geometry (both iso-

tropic and anisotropic) and we compared the results with those obtained with a standard FD

scheme. Indeed, bidomain equations in an annular geometry can be solved easily using finite

differences after transforming the equations to polar coordinates. Finally, we tested the SBB

method in an anatomically detailed geometry. We considered a left human ventricle with fiber

anisotropy [53] immersed in a conductive bath. The cardiac tissue was stimulated through a

couple of electrodes placed at the opposite boundaries of the bath. Note that the fiber orienta-

tion is only defined inside the heart domain, whereas solving the SBB equations requires fiber

orientation also in the interfacial region. Thus, we extrapolated the orientation of the fibers in

the interfacial region with a nearest neighbour approach [31].

Results

1D cable model

We first applied the SBB method on a simple cable geometry 6 cm long. The heart domain was

placed in the center of the cable and was 4 cm long. We stimulated the cable with a defibrilla-

tory shock delivered between the two ends of the cable. The cathode was placed on the left

edge of the cable, whereas the anode was placed on the right edge. The stimulation starts at

t = 10 ms and terminates after 2 ms. The whole simulation lasts for 400 ms. Fig 2A and 2B

show the resulting cardiac action potential and the corresponding extracellular potential,

which propagate along the cable. For comparison, we also report the results obtained by solv-

ing bidomain equations with the standard FD method (filled markers in Fig 2). We observed

almost complete agreement between the SBB solution and the reference solution. The mean

absolute error (MAE) in the computation of Vm is always lower than 0.01 mV, as shown in Fig

2C. The maximum error occurs when the action potential reaches the right end of the cable.

Indeed, the largest errors in phase field methods are observed when the derivative of the mem-

brane potential and the ionic current are maximum in the interfacial region [31]. The MAE in

the extracellular potential can achieve up to 6 mV during the defibrillatory shock (Fig 2D),

when ϕo varies between about ±3000 mV. The MAE also increased significantly when the

action potential achieves the right end of the cable. However, excluded these two short time

intervals, the MAE in ϕo is always lower than 0.6 mV. Indeed, as shown in Fig 2E, the extracel-

lular potential deviates from the reference solution only for a short time interval of about 1 ms
(i.e., the duration of the upstroke). Notably, this discrepancy does not affect the rest of the sim-

ulation, as long as it is quickly recovered. Additionaly, the membrane potential does not devi-

ate significantly from the reference solution, even when considering the right end of the cable,

where the errors are largest (Fig 2F). Additionally, in the right end of the cable, the relative
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error in the action potential duration is lower than 10−4, whereas the relative error in the maxi-

mum upstroke velocity is lower than 10−3.

To assess the influence of the spatial discretization and interfacial width on the SBB

method, we carried out a grid convergence test for different values of ξ (Fig 3A). In particular,

we simulated the cable model with the SBB method for dx varying from 0.01 to 0.045, and ξ

Fig 2. Comparison between SBB solution (colored lines) and the reference solution (filled markers) in a 1D cable

model. A) Membrane potential along the cable in three distinct time instants. B) Extracellular potential along the cable

in three distinct time instants. C) Mean absolute error in the membrane potential at each time step. D) Mean absolute

error in the extracellular potential at each time step. E) Extracellular potential along the cable in three different time

instants corresponding to the arrival of the action potential at the right end of the cable. F) Membrane potential in the

right end of the cable. The inset zooms on the upstroke phase.

https://doi.org/10.1371/journal.pone.0286577.g002
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from 0.015 to 0.1, both in steps of 0.005. For each pair (dx, ξ), we compared the SBB solution

with a reference solution obtained by solving bidomain equations with the standard FD

method (dx = 0.01 cm). We evaluated the discrepancy between two simulations by averaging

the MAE in time for both Vm and ϕo. Since the SBB grid and the reference grid have different

resolutions, we interpolated the SBB solution on the reference grid to compute the MAE at

each time instant. The grid convergence test showed that the SBB method converges to the ref-

erence solution when dx and ξ approach to 0. Whereas the effect of the spatial discretization is

predictable, the role of the interfacial thickness is worth to be investigated. First, when ξ is

small with respect to the dx the algorithm do not converge (missing elements in Fig 3A). This

is an expected behaviour already reported in [31]. Similarly, when the value of ξ is large the

stimulation of the tissue is delayed, and thus the MAE increases in both Vm and ϕo. To ensure

that the operator splitting approach is not affecting the convergence of the algorithm, we per-

formed the same analysis by using the SBB method exploiting operator splitting (Fig 3B). As

expected, the discrepancy with the reference solution is slightly higher in this case, but the SBB

algorithm is still converging. Surprisingly, for large ξ and small dx the MAE is lower for the

operator splitting approach. This unexpected behaviour is explained as a compensation of

errors due to the higher conduction velocity observed with the operator splitting approach

that compensate the error due to the delayed stimulation of the tissue. Additionally, for all the

Fig 3. Grid convergence tests of the SBB method for different values of ξ with and without operator splitting. A) Time-

averaged mean absolute error in membrane potential and extracellular potential obtained with the SBB method without operator

splitting for different values of ξ and dx. Missing elements indicate that the SBB algorithm without operator splitting did not

achieve a solution. B) Time-averaged mean absolute error in membrane potential and extracellular potential obtained with the SBB

method exploiting operator splitting for different values of ξ and dx.

https://doi.org/10.1371/journal.pone.0286577.g003
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tested value of ξ and dx the SBB method with operator splitting can always achieve a solution.

It is worth mentioning that averaged MAE is a good indicator to test the convergence of the

algorithm but it is not sufficient to establish the best choice for the value of ξ, a procedure that

should consider also other error estimates.

2D annular model

We first tested the SBB method in a 2D isotropic annular geometry. The tissue was stimulated

with an extracellular unipolar cathodic point source (i.e., Iext< 0). We compared the results

with those obtained with a standard FD scheme in polar coordinates. Note that, the polar coor-

dinate discretization leads to a nonuniform grid spacing relative to the cartesian grid used for

the SBB method. Thus, to minimize the effect of the different discretization and quantify the

discrepancy only between the two approaches, we used smaller grid spacings (i.e., dx = 0.1

mm, ξ = 0.2 mm, for the Cartesian grid; dr = 0.1 mm, dθ = 0.0029, for the polar grid). Fig 4A

compares the contour Vm = −40 mV of the wavefront at different times for the SBB and the

polar FD methods. We observed almost complete agreement between wavefront velocity in

the two methods. The relative difference between the wavefront velocity obtained with the two

methods is everywhere smaller than 1%. Similarly, excellent agreement was observed in the

extracellular potential field, as shown in Fig 4B.

Since the cardiac tissue is highly anisotropic, it is important to test the accuracy of the SBB

formulation also in anisotropic domains. We considered a 2D annular model with fibers ori-

ented tangentially, which can be simulated easily with the standard FD method in polar coor-

dinates. Again, we observed no significant discrepancy between the proposed SBB formulation

and the polar FD method, when the tissue was stimulated with an extracellular cathodic point

source (Fig 5). Wavefront velocity is perfectly matched in the fiber direction (Fig 5A). How-

ever, in the direction orthogonal to the fibers SBB method results in a slightly larger conduc-

tion velocity. The discrepancy is mainly due to different grids (i.e., polar and cartesian) used in

the two simulations, and is more evident when the conduction velocity is low. Nevertheless,

the relative difference between the wavefront velocity obtained with the two methods is every-

where smaller than 5%.

To assess the accuracy of the SBB method in simulating more complex scenarios, we also

stimulated the annular anisotropic tissue with a strong unipolar anodic point source to induce

virtual electrode polarization. Again, we observed a good agreement in wavefront velocity (Fig

6A). Additionally, Fig 6B shows the membrane potential and the extracellular potential during

the anodic stimulation obtained with the SBB and the polar FD methods. The SBB method

demonstrated to accurately reproduce the virtual electrode polarization phenomenon.

To ensure the convergence of the numerical method, we carried out an additional conver-

gence test in the 2D annular geometry (Fig 7). We repeated the simulation showed in Fig 5

with the SBB method for dx varying from 0.01 to 0.045, and ξ from 0.015 to 0.1, both in steps

of 0.005. For each pair (dx, ξ), we compared the SBB solution with a reference solution

obtained by solving bidomain equations with the standard FD method in polar coordinates

(dr = 0.1 mm, dθ = 0.0029). Similarly to the 1D case, the grid convergence test showed that the

SBB method converges to the reference solution when dx and ξ approach to 0 (Fig 7A). Note

that the MAE values are lower with respect to the 1D case, probably due to the lower intensity

of the stimulation, which is applied in the center of the annular model. Furthermore, we per-

formed the same analysis by using the SBB method exploiting operator splitting (Fig 7B). The

results showed that the operator splitting technique does not introduce additional significant

source of errors, even if the discrepancy with the reference solution is slightly higher in this

case.
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3D anatomically detailed model

We tested the SBB method in a human left ventricle geometry with fiber anisotropy. We

applied a square waveform defibrillation shock between two electrode plates located at two

opposite boundaries of the bath (the anode was placed in the plane x = 0). We applied two

shocks of different intensity: a weak shock (i.e., 1.5 A) and a strong shock (i.e., 6 A). Fig 8

Fig 4. Comparison between SBB and polar FD methods in a 2D isotropic annular geometry with cathodic

extracellular stimulation. A) Contour plots of membrane potential (Vm = −40 mV) at different times for the SBB and

polar FD methods. B) Comparison of extracellular potential field obtained with SBB and polar FD methods at two

different time instants. Dashed black lines indicate the boundary between the cardiac tissue and the external conductor.

https://doi.org/10.1371/journal.pone.0286577.g004
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shows the membrane potential in the cardiac tissue at 1 ms after the weak (top) or strong (bot-

tom) stimulation. The weak shock induces membrane depolarization at the cardiac surfaces

(endocardial and epicardial), which then propagates in the rest of the myocardium. The depo-

larized regions are larger in the epicardial surface. Additionally, virtual electrodes were gener-

ated around aortic and mitral valve openings, and contributed to the depolarization of the

cardiac tissue. The strong shock induces larger depolarized areas both in the epicardial and

Fig 5. Comparison between SBB and polar FD methods in a 2D anisotropic annular geometry with cathodic

extracellular stimulation. A) Contour plots of membrane potential (Vm = −40 mV) at different times for the SBB and

polar FD methods. B) Comparison of extracellular potential field obtained with SBB and polar FD methods at two

different time instants. Dashed black lines indicate the boundary between the cardiac tissue and the external conductor.

https://doi.org/10.1371/journal.pone.0286577.g005

PLOS ONE A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries

PLOS ONE | https://doi.org/10.1371/journal.pone.0286577 June 9, 2023 13 / 20

https://doi.org/10.1371/journal.pone.0286577.g005
https://doi.org/10.1371/journal.pone.0286577


endocardial regions. Additionally, virtual electrodes around valve openings extend over a

larger area and are more than those induced by the weak shock. Furthermore, additional vir-

tual electrodes were generated inside the ventricular wall, far from cardiac surfaces. This phe-

nomenon, known as bulk virtual electrode polarization, has been already reported in previous

cardiac models based on animal geometries [15, 54, 55]. Indeed, previous works reported that

Fig 6. Comparison between SBB and polar FD methods in a 2D anisotropic annular geometry with anodic

extracellular stimulation. A) Contour plots of membrane potential (Vm = −40 mV) at different times for the SBB and

polar FD methods. B) Comparison of extracellular potential field (first line) and membrane potential (second line)

obtained with SBB and polar FD methods at two different time instants. Dashed black lines indicate the boundary

between the cardiac tissue and the external conductor. Membrane potential is zoomed at the stimulation region.

https://doi.org/10.1371/journal.pone.0286577.g006
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unequal anisotropy ratios is a necessary condition for the generation of bulk virtual electrode

polarization in the myocardial wall [15].

Conclusion

In this manuscript, we describe a novel FD method for cardiac bidomain simulations. The pro-

posed method employs a smoothed boundary representation of the cardiac geometries to

accurately implement the bidomain boundary conditions without the need of a structured

mesh that explicitly tracks the heart-torso interfaces. Indeed, the main advantage of the SBB

method is the accurate implementation of bidomain equations directly on voxel structures

acquired with imaging techniques. Additionally, the employment of a cartesian grid facilitates

the implementation and parallelization of numerical schemes [56]. We reported some signifi-

cant examples assessing the method’s accuracy using nontrivial test geometries and demon-

strating the applicability of the method to complex anatomically detailed human cardiac

geometries. In particular, we showed that the SBB method could be employed to simulate car-

diac defibrillation in a human left ventricle. It is worth mentioning that accurate modelling of

cardiac defibrillation requires additional details we have not considered in our proof-of-con-

cept simulations, whose scope was only to provide evidence of the feasibility of the SBB

Fig 7. Grid convergence tests of the SBB method for different values of ξ with and without operator splitting in the 2D

annular geometry. A) Time-averaged mean absolute error in membrane potential and extracellular potential obtained with the

SBB method without operator splitting for different values of ξ and dx. Missing elements indicate that the SBB algorithm without

operator splitting did not achieve a solution. B) Time-averaged mean absolute error in membrane potential and extracellular

potential obtained with the SBB method exploiting operator splitting for different values of ξ and dx.

https://doi.org/10.1371/journal.pone.0286577.g007
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method in large anatomically detailed geometries. First, the ionic model we used does not

include an electroporation current, which is important in cardiac defibrillation [27]. Second,

the vascular structure may play an important role in the defibrillation process, especially for

large cardiac vessels [54]. However, accurate implementation of physiological details is beyond

the scope of this work. Despite the advantages of the SBB method, a smoothed boundary repre-

sentation of fine anatomical structures (e.g., small blood vessels) may be challenging due to the

use of a regular grid. Nevertheless, the role of fine and isolated anatomical structures is likely

to be negligible [54]. Additionally, it would be possible to better represent fine anatomical

structures by employing a grid refinement procedure [56]. In this work, we employed a simple

FD scheme for spatial discretization, however the SBB approach is independent of the numeri-

cal scheme used. Indeed, other choices that better deal with anisotropic diffusion are likely to

be more accurate (see e.g., [31]). Similarly, we employed the standard ILU preconditioner,

whereas other more efficient solutions exist. In this regard, it is worth mentioning that, by

using regular grids, the SBB method can be easily coupled with a geometric multigrid precon-

ditioner, significantly improving computational speed [41]. Alternatively, algebraic multigrid

preconditioners (e.g., [51]) could be used to speed up numerical convergence. Thanks to the

Fig 8. 3D anatomically detailed human cardiac simulation with a weak (top) and strong (bottom) defibrillation shock. A

slice of the left ventricle (z = 2.25 cm) is shown on the right side. The weak shock induces membrane depolarization at

cardiac surfaces, mainly on the epicardial site. Virtual electrodes were generated around the large valve openings. The strong

shock induces larger depolarized regions with virtual electrodes located also inside the myocardium.

https://doi.org/10.1371/journal.pone.0286577.g008
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employment of regular grids, the SBB method could also be combined with adaptive mesh

refinement algorithms avoiding the construction of a new unstructured mesh at each iteration

[56]. We believe that the SBB method offers a simple solution for solving bidomain equations

in anatomical models without the need of unstructured grids. Given the ease of implementa-

tion, the SBB method provides an attractive and feasible alternative to finite element methods,

and could find application in future research guiding electrotherapy with computational mod-

els (e.g., [57, 58]).

Supporting information

S1 Appendix. Proof of the convergence and numerical implementation of the SBB model.

The appendix reports a simple proof of the convergence of the SBB model to the bidomain

boundary conditions in the 1D case and provides additional details regarding the numerical

scheme used in this work.
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