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Background: Scar burden with late gadolinium enhancement (LGE) cardiac MRI (CMR) predicts arrhythmic events in patients with 
postinfarction in single-center studies. However, LGE analysis requires experienced human observers, is time consuming, and introduces 
variability.

Purpose: To test whether postinfarct scar with LGE CMR can be quantified fully automatically by machines and to compare the ability 
of LGE CMR scar analyzed by humans and machines to predict arrhythmic events.

Materials and Methods: This study is a retrospective analysis of the multicenter, multivendor CarDiac MagnEtic Resonance for Primary 
Prevention Implantable CardioVerter DebrillAtor ThErapy (DERIVATE) registry. Patients with chronic heart failure, echocardiographic 
left ventricular ejection fraction (LVEF) of less than 50%, and LGE CMR were recruited (from January 2015 through December 2020). 
In the current study, only patients with ischemic cardiomyopathy were included. Quantification of total, dense, and nondense scars was 
carried out by two experienced readers or a Ternaus network, trained and tested with LGE images of 515 and 246 patients, respectively. 
Univariable and multivariable Cox analyses were used to assess patient and cardiac characteristics associated with a major adverse cardiac 
event (MACE). Area under the receiver operating characteristic curve (AUC) was used to compare model performances.

Results: In 761 patients (mean age, 65 years ± 11, 671 men), 83 MACEs occurred. With use of the testing group, univariable Cox-
analysis found New York Heart Association class, left ventricle volume and/or function parameters (by echocardiography or CMR), 
guideline criterion (LVEF of ≤35% and New York Heart Association class II or III), and LGE scar analyzed by humans or the machine-
learning algorithm as predictors of MACE. Machine-based dense or total scar conferred incremental value over the guideline criterion 
for the association with MACE (AUC: 0.68 vs 0.63, P = .02 and AUC: 0.67 vs 0.63, P = .01, respectively). Modeling with competing 
risks yielded for dense and total scar (AUC: 0.67 vs 0.61, P = .01 and AUC: 0.66 vs 0.61, P = .005, respectively).

Conclusion: In this analysis of the multicenter CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter 
DebrillAtor ThErapy (DERIVATE) registry, fully automatic machine learning–based late gadolinium enhancement analysis reliably 
quantifies myocardial scar mass and improves the current prediction model that uses guideline-based risk criteria for implantable 
cardioverter defibrillator implantation.
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class 1 indication for ICD implantation in patients with coronary 
artery disease with left ventricle ejection fraction (LVEF) of 35% 
or smaller and New York Heart Association class II or III dys-
pnea (11–13). In absolute numbers, however, about two-thirds 
of SCDs occur in patients with a LVEF greater than 35% (14), 
indicating the need to identify additional risk factors for arrhyth-
mic events beyond LVEF and symptoms. Therefore, DERIVATE 
included patients with LVEF up to 50%.

Currently, LGE scar is quantified by humans, which is time 
consuming, adds variability to the results, and ultimately limits 
its generalizability. Recently, artificial intelligence approaches 
have emerged for MRI analyses (15,16). Thus, in this study, we 
developed a machine learning algorithm on the DERIVATE 
LGE image data. We tested whether the algorithm could fully, 
automatically quantify postinfarct scar with LGE images to 
yield total, dense, and nondense scar mass and compare the 
ability of LGE CMR scar analyzed by humans and machines 
to predict arrhythmic events.

Materials and Methods

Study Participants
In DERIVATE, an international, multicenter, multivendor,  
observational registry (Clinicaltrials.gov registration no.: NCT 

Cardiac diseases, including myocardial 
infarction, are associated with a high 

mortality rate accounting for approxi-
mately 30% of all deaths in industrial-
ized countries (1), with sudden cardiac 
death (SCD) causing approximately half 
of the postmyocardial infarction deaths 
(2). In patients with coronary artery dis-
ease, myocardial scar mass can be deter-
mined precisely with late gadolinium en-
hancement (LGE) cardiac MRI (CMR) 
(3,4). Scar burden with LGE CMR has 
been shown to predict all-cause mortality 
(5), appropriate implantable cardioverter 
defibrillator (ICD) shocks (6), SCD, 
and a combined arrhythmic end point 
(7). Two meta-analyses also found posi-
tive correlations between LGE scar mass 
and arrhythmic outcomes (8,9). These 
findings warrant testing in larger multi-
center data sets to address whether the 
prediction of postmyocardial infarction 
arrhythmic events by LGE scar quan-
tification can be generalized to a broad 
patient population across centers with 
different MR scanners, protocols, and 
personnel. With this in mind, the Car-
Diac MagnEtic Resonance for Primary 
Prevention Implantable CardioVerter 
DebrillAtor ThErapy (DERIVATE) co-
hort recruited patients from 21 centers 
in Europe and the United States for this 
study (10). Current guidelines assign a 

Abbreviations
AUC = area under the receiver operating characteristic curve, 
CMR = cardiac MRI, DERIVATE = CarDiac MagnEtic Resonance 
for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy, 
ICD = implantable cardioverter defibrillator, LGE = late gadolinium 
enhancement, LVEF = left ventricular ejection fraction, MACE = 
major adverse cardiac event, SCD = sudden cardiac death, TTA = 
test-time augmentation

Summary
A fully automatic machine learning–based analysis of late gado-
linium enhancement cardiac MRI quantified myocardial scar and 
improved prediction of major adverse cardiac events compared with 
current guidelines.

Key Results
■ In a retrospective analysis of 761 patients with chronic heart failure 

from the multicenter, multivendor CarDiac MagnEtic Resonance for 
Primary Prevention Implantable CardioVerter DebrillAtor ThErapy 
(DERIVATE) study, a machine learning algorithm quantified the 
mass of late gadolinium enhancement cardiac MRI comparable to 
humans (median absolute error, 2.9 g for dense scar).

■ Dense scar quantification by machine learning was superior to  
prediction of major adverse cardiac events by current guidelines 
(area under the receiver operating characteristic curve: 0.68 vs 
0.63, respectively; P = .02).

Figure 1: Participant flow diagram shows exclusion criteria and the learning (two-thirds of data set) and testing 
(one-third of data set) groups used for the machine learning algorithm. CM = contrast medium, DERIVATE = CarDiac 
MagnEtic Resonance for Primary Prevention Implantable CardioVerter DebrillAtor ThErapy, GT = ground truth, ICM 
= ischemic cardiomyopathy, LGE = late gadolinium enhancement, MACE = major adverse cardiac event, TI = 
inversion time, 3D = three dimensional, 2D = two dimensional.
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03352648), patients (age, ≥18 years) from 21 centers across 
Europe and the United States were recruited from January 
2015 through December 2020, if they fulfilled the following 
criteria: (a) had established diagnosis of chronic heart failure 
(17), (b) had LVEF of less than 50% with transthoracic echo-
cardiography, and (c) had undergone a LGE CMR examina-
tion for scar detection. For the presented retrospective analysis, 

only DERIVATE patients with chronic heart failure of isch-
emic origin were included (Fig 1, Table S1) (10). Demograph-
ics, transthoracic echocardiography, CMR, and outcome data 
were collected by each local institution up to December 2021. 
In case of missing data, centers were contacted to revise and 
complete their database inputs. The study protocol complies 
with the Declaration of Helsinki and was approved by the lo-

Figure 2: Charts show Ternaus network architecture. (A) Late gadolinium enhancement (LGE) images were used as input. Images in A cover the left ventricle from base to 
apex of one patient. The Ternaus network used in this study features a U-Net architecture in which the down-sampling path is initialized with VGG16 weights. As VGG16 expects 
RGB (ie, three-channel) images, we prepend a single convolutional layer of three 1 × 1 kernels. VGG16 refers to a convolutional neural network with a depth of 16 layers that was 
pretrained with more than a million images from the ImageNet database (www.image-net.org). ReLu denotes rectified linear units; max pooling calculates the maximum value of 
the feature maps; skip connections feed the output of layers of the down-sampling path as input to the up-sampling paths without further convolutions; sigmoid activation converts the 
input to values between 0 and 1 based on a sigmoid function. (B) Rows 1–4 show the outputs produced from images in A by the machine learning algorithm: prediction (Pred) is 
the output of the Ternaus network (yielding total left ventricular mass, dense scar, and total scar); test-time augmentation (TTA) predicts the total left ventricular mass, dense scar, and 
total scar with a set of eight images created of a single LGE image (by rotations, reflections, zooms, and shears) where the eight outputs (after having undergone the reverse rota-
tions, reflections, zooms, and shears) are averaged to yield the final TTA output; the threshold-based (TB) output is the result of the Ternaus network to define normal myocardium 
(MYO) and the standard reference regions of normal myocardium, from which then dense and total scar are derived by the SD method; and finally, row 4 illustrates the result of 
a combination of the TTA and the threshold-based approach (TTA+TB). Green represents normal remote myocardium, red represents total-2SD-scar (SD2), and blue represents 
dense-5SD-scar (SD5). For comparison, the bottom row shows the ground truth (GT) analysis as performed by an experienced observer. Dice versus ground truth refers to the Dice 
similarity coefficients, where 0 means no overlapping of the machine-generated contours with the ground truth contours and 1 means 100% overlap.
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cal ethics committees, and all patients gave written informed 
consent before study participation.

The primary end point in the DERIVATE registry was de-
fined as all-cause mortality. Secondary end points were cardio-
vascular death, SCD, aborted SCD (ie, appropriate ICD shock 
or antitachycardia pacing), and sustained ventricular tachycardia 
lasting at least 30 seconds or causing hemodynamic collapse in 
less than 30 seconds. The main end point of this retrospective 

analysis was a major adverse cardiac event (MACE), which was 
defined as the combination of SCD, aborted SCD, and sus-
tained ventricular tachycardia.

The scar quantification machine algorithm can be used 
upon request. A prior article used the entire DERIVATE cohort  
(n = 2449), thereby including the 761 participants of the 
current study. This prior analysis dealt with the predictive 
power of right ventricular functional parameters for all-cause 

Table 1: Demographics, Medical History, and Clinical Cardiovascular Characteristics of Participants

Characteristic All Patients (n = 761) Learning Group (n = 515) Testing Group (n = 246) P Value*
Age (y) 65 ± 11 65 ± 11 57 ± 12 .47
Sex (M)† 88.2 85.8 93.1 .004
Weight (kg) 79.3 ± 15.3 79.5 ± 16.0 78.8 ± 13.8 .55
Height (m) 1.71 ± 0.08 1.72 ± 0.09 1.71 ± 0.08 .98
BMI (kg/m2) 26.9 ± 4.4 26.9 ± 4.6 26.7 ± 3.9 .54
BSA (m2) 1.92 ± 0.20 1.92 ± 0.21 1.91 ± 0.19 .37
NYHA class
 NYHA class I 251 (33) 160 (31) 91 (37) .10
 NYHA class II 314 (41) 212 (41) 102 (42) .93
 NYHA class III 152 (20) 109 (21) 43 (17) .23
 NYHA class IV 44 (6) 34 (7) 10 (4) .16
Risk factor
 Family history 233 (31) 155 (30) 78 (32) .65
 Hyperlipidemia 470 (62) 318 (62) 153 (62) .90
 Hypertension 501 (66) 335 (65) 165 (67) .57
 Smoking† 341 (45) 246 (48) 96 (39) .03
 Diabetes† 244 (32) 180 (35) 66 (27) .02
Treatment
 ICD implantation 371 (49) 250 (49) 121 (49) .86
 Betablockers 677 (89) 458 (89) 216 (88) .82
 Ivabradine 61 (8) 46 (9) 17 (7) .61
 ACE/AT1 blockers 632 (83) 422 (82) 209 (85) .35
 Diuretics 556 (73) 386 (75) 170 (69) .09
 Calcium blockers 61 (8) 41 (8) 25 (10) .28
 Antithrombotics 654 (86) 438 (85) 212 (86) .67
 Anticoagulation 198 (26) 134 (26) 62 (25) .67
 Nitrates 122 (16) 88 (17) 34 (14) .24
 Statins 586 (77) 397 (77) 185 (75) .48
 Other antiarrhythmics 53 (7) 36 (7) 17 (7) .95
Endpoint
 MACE endpoint 83 (11) 56 (11) 27 (13) .53
 SCD 8 (1) 5 (1) 3 (1) .75
 Aborted SCD‡ 42 (6) 28 (5) 14 (7) .88
 Sustained VT 52 (7) 33 (6) 19 (9) .49
 All-cause death 94 (12.4) 67 (13) 27 (11) >.99
Human-determined imaging parameter
 LVEF-echo (%) 34.1 ± 9.8 33.7 ± 9.7 34.9 ± 9.9 .08
 LVEF CMR (%) 31.1 ± 9.6 31.1 ± 9.5 31.4 ± 9.9 .60
 Total scar (g) 44.9 ± 20.5 45.0 ± 20.0 44.6 ± 21.6 .80
 Dense scar (g) 24.1 ± 15.8 24.0 ± 15.3 24.2 ± 16.9 .87
 Nondense scar (g) 20.8 ± 9.5 21.0 ± 9.6 20.3 ± 9.5 .41
 Total scar (%LV) 40.2 ± 13.9 40.1 ± 13.7 40.3 ± 14.3 .84
 Dense scar (%LV) 21.6 ± 12.9 21.6 ± 12.7 21.8 ± 13.4 .81
 Nondense scar (%LV) 18.5 ± 0.1 18.6 ± 0.1 18.5 ± 0.1 .97

(Table 1 continues )
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mortality and a composite of heart failure hospitalization 
and/or all-cause mortality (18).

CMR Examinations and Human Image Evaluation
All studies were acquired with 1.5-T machines (General Elec-
tric, Philips, Siemens Healthineers). CMR parameters and 
contrast media are presented in Table S2. Table S3 and Fig-
ure S1 describe how LGE image quality was graded. With 
the short-axis stack of LGE images, ground truth was deter-
mined in the core laboratory by two authors (F.G. and J.S., 
with 1 year and over 20 years of experience, respectively) 
for total left ventricle mass, dense scar (scar signal: >5 SDs 
above the reference mean of remote normal myocardium), 
total scar (scar signal: >2 SDs above the reference mean), and 
nondense scar (2 SDs ≤ scar signal ≤ 5 SDs of the reference 
mean) with use of GTvolume software (GyroTools, version 
2.2.7). In difficult cases (typically with poor-sufficient LGE 
image quality), ground truth was generated in consensus (by 
F.G. and J.S.). The ground truth results were then used for 
the machine comparison (see also Appendix S1). Intra- and 
interobserver variabilities (F.G. vs F.G. and F.G. vs A.G.P., 
with over 5 years of experience) were also assessed. All observ-
ers were blinded to the demographics and outcome data. The 
thresholds of over 5 SDs and over 2 SDs were chosen as they 
were already successfully applied by others (5,7,19).

Machine Learning Algorithm
For our segmentation task, we implemented a fully convolutional 
neural network (20)—specifically, a Ternaus network (21,22)  
(Fig 2). For details of the network, data preprocessing, and net-
work training, see Appendix S1.

After ground truth production, the study sample was ran-
domly divided into a learning group (n = 515) and a testing 
group (n = 246). The network was trained with the LGE images 
of the learning group, with the other third kept separate (off 
site) until the final evaluation. During training, the learning 
group was split into training (n = 413) and validation (n = 102) 
sets. The network was trained only on the training portion of 
the learning group, and its performance was evaluated on the 
validation portion to guide design decision (see also Appendix 
S1). Only when the final network was trained did we evaluate 
the network performance with use of the testing group.

To improve the final predictions of the trained network, 
we made use of a test-time augmentation (TTA) approach. 
For details of the TTA approach and the four prediction out-
puts, see Appendix S1. As the TTA output performed best 
(Fig S2), only these outputs were used for further outcome 
prediction analyses.

Statistical Analyses
Regarding sample size calculations, we want to refer the 
reader to Guaricci et  al (10), which defined one variable 
per 10 events to include, thus, allowing the inclusion of a 
maximum of three variables in the multivariable Cox pro-
portional hazard models (see later section). Patient demo-
graphic data exhibited a normal distribution as determined 
by the Kolmogorov-Smirnov test. The Student independent 
t, χ2, or Fisher exact tests were used as appropriate to compare 
variables between groups. For comparisons of human intra- 
and interobserver performances as well as the performance 
of human versus machine analysis, the median absolute er-
ror, IQR, and outliers were calculated. Dice metrics were also 

Characteristic All Patients (n = 761) Learning Group (n = 515) Testing Group (n = 246) P Value*
Machine-determined imaging parameter
 Total scar (g)† 45.0 ± 19.0 45.9 ± 19.6 43.4 ± 18.0 .01
 Dense scar (g) 23.2 ± 15.4 23.7 ± 15.6 22.2 ± 14.8 .28
 Nondense scar (g) 21.9 ± 9.5 22.2 ± 9.9 21.1 ± 8.6 .16
 Total scar (%LV) 37.8 ± 13.3 38.0 ± 13.5 37.4 ± 12.9 .56
 Dense scar (%LV) 19.5 ± 12.2 19.7 ± 12.3 19.1 ± 12.0 .68
 Nondense scar (%LV) 18.2 ± 6.5 18.2 ± 6.7 18.3 ± 6.3 .91
Quality LGE CMR
 Good 328 (43) 211 (41) 116 (47) .08
 Acceptable† 263 (35) 191 (37) 73 (30) .04
 Sufficient 75 (10) 49 (10) 26 (10) .72
 Borderline 50 (7) 34 (7) 16 (7) >.99
 Poor 45 (6) 30 (6) 15 (6) .93

Note.—Data are numbers of patients, with percentages in parentheses. For continuous data, means ± SDs are presented. ACE/AT1 = 
angiotensin-converting enzyme/angiotensin receptor, BMI = body mass index, BSA = body surface area, CMR = cardiac MRI, ICD = 
implantable cardioverter defibrillator, LGE = late gadolinium enhancement, LVEF = left ventricular ejection fraction, LVEF-echo = left 
ventricular ejection fraction with echocardiography, MACE = major adverse cardiac event, NYHA = New York Heart Association, %LV = 
percentage of left ventricle, SCD = sudden cardiac death, VT = ventricular tachycardia.
* P values were determined by comparing the learning versus testing groups with use of Student independent t test.
† Denotes a significant P < .05.
‡ Defined as appropriate ICD intervention.

Table 1 (continued): Demographics, Medical History, and Clinical Cardiovascular Characteristics of Participants
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Figure 3: Examples of short-axis late gadolinium enhancement (LGE) cardiac MRI scans with scar mass quantification by humans (ground truth [GT]) 
and the machine algorithm (test-time augmented [TTA]). For all images, green represents normal remote myocardium, red represents total-2SD-scar, and blue 
represents dense-5SD-scar. TTA dice represents Dice similarity coefficients, where 0 means no overlapping of the machine-generated contours with the ground 
truth contours and 1 means 100% overlap. (A) Images in a 68-year-old man show a left ventricular ejection fraction (LVEF) with echocardiography of 37% and 
a machine-quantified (TTA) dense scar greater than 20.3 g (36 g). This participant had no implantable cardioverter defibrillator (ICD), and sudden cardiac 
death (SCD) occurred 1 month after cardiac MRI. (B) Images in a 57-year-old man show a LVEF with echocardiography of 20% and machine-quantified 
dense scar mass of 64 g. SCD occurred 2.2 years after cardiac MRI. If no normal reference myocardium was present in a section (white points), the reference 
myocardium of the next available section was used for threshold calculations. The lack of reference myocardium in several sections may explain the difference in 
scar mass as determined by human versus machine in this case. (C) Images in a 55-year-old man show a LVEF with echocardiography of 35% and a machine-
determined dense scar mass of 65 g. Participant had sustained ventricular tachycardia and an appropriate ICD shock 11 months after cardiac MRI. (D) Images 
in a 64-year-old man show a LVEF withby echocardiography of 31% and a machine-determined dense scar mass of 3 g. No major adverse cardiac event 
(MACE) was reported. ICD implantation and nonsustained ventricular tachycardia occurred 3.7 years after cardiac MRI. Image includes a ghosting artifact 
(arrow), which was “corrected” by the human observer in the ground truth analysis but falsely identified as a scar by the machine algorithm. (E) Images in a 
78-year-old man show a LVEF with echocardiography of 47% and a machine-determined dense scar mass of 2 g. No MACE was reported over 1.6 years 
after cardiac MRI. (F) Images in a 67-year-old man show false-negative machine algorithm assessment. Both human and machine scar quantification yield 
low scar burden below thresholds for MACE (20 g and 16 g, respectively) in this patient with a low LVEF with echocardiography of 15%. The participant suffers 
from coronary artery disease with a small subendocardial inferior scar (arrowheads). The LGE images also show a midline sign (arrows), a feature known to be 
associated with MACE (35), that was detected by both human and machine analysis, and which may represent an arrhythmic substrate. Participant had ICD 
implantation at 0.5 years and MACE (sustained ventricular tachycardia) at 1.7 years after cardiac MRI.
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Figure 4: Box and whisker plots show median absolute error of dense 
scar, total scar, and nondense scar mass as determined by humans (intrao-
bserver in blue [n = 40] and interobserver in red [n = 40]) as well as for the 
human versus machine comparison (green [n = 246]). The median absolute er-
rors of the novel machine algorithm are not different versus errors of the intrao-
bserver comparison, with medians of 3.54 versus 2.57 (P = .08), 6.41 versus 
4.37 (P = .09), and 3.23 versus 3.62 (P = .63) for dense, total, and nondense 
scar (gram), respectively, but are lower compared with the interobserver er-
rors, with medians of 3.54 versus 7.54, 6.41 versus 11.14, and 3.23 versus 
4.56 for dense, total, and nondense scar, respectively. * P < .001. † P < .02 
(Mann-Whitney test). Whiskers on box plots represent the 1.5 quartile boundar-
ies, and the horizontal line in the box plot represents the median. Circles out-
side the box plots represent outliers. If the intraobserver and interobserver errors 
were compared with errors of the machine algorithm of the same 40 patients 
(data not shown), no differences were found versus intraobserver (P = .73,  
P = .66, and P = .18 for dense, total, and nondense scar, respectively) and errors 
were significantly lower versus interobserver (P < .001, P < .001, and P < .005, 
respectively) (Mann-Whitney test).

calculated. Comparisons between groups were performed by 
means of the nonparametric Mann-Whitney test.

End of follow-up or censoring event-free survival was es-
timated with use of the Kaplan–Meier method, and survival 
curves were compared with use of the log-rank test.

Univariable and multivariable Cox proportional hazard 
models were used to assess the association of demographic 
and imaging data with the risk of MACE. Different multivari-
able models were adapted to evaluate whether human-based 
or machine-based scar measures improve the currently estab-
lished guideline criterion (LVEF of ≤35% and dyspnea New 
York Heart Association II or III, model 0). Model 1 included 
guideline criterion and human-determined dense scar quan-
tification, model 2 included guideline criterion and machine-
determined dense scar quantification, and model 3 included 
guideline criterion and human- and machine-determined 
dense scar quantification. Models 1a, 2a, and 3a include the 
same groups but use total scar quantification. To assess the 
performance of the multivariable models, estimated areas un-
der the receiver operating characteristic curve (AUCs) for the 
time-dependent receiver operator characteristic curves were 
derived. Univariable and multivariable Cox models were also 
calculated considering noncardiovascular death as competing 
risk. For details, see Appendix S2.

Two-sided P < .05 was considered significant for statistical 
tests, and Bonferroni correction was used when appropriate. 
All the analyses were performed by an author (V.L., with over 
10 years of experience) with use of STATA version 14 and R 
version 3.6.2 (R Core Team, 2019) (23).

Results

Patient Characteristics and LGE Data Quality
The study population consisted of 761 patients (671 men) with a 
mean age ± SD of 65 years ± 11. Further demographics are given 
in Table 1. Over a mean follow-up of 2.9 years ± 1.9, MACE oc-
curred in 83 of the 761 participants, 56 from the learning group 
and 27 from the testing group (P = .53). Of the patients formally 
fulfilling the guidelines criteria for primary ICD implantation 
(11–13), 67% were treated by ICD implantation in both the 
learning and testing group.

Inadequate LGE quality led to the exclusion of five partici-
pants from statistical analysis (Fig 1). In the total population 
of 761 patients, good or acceptable quality was found in 591 
patients (77.7%) (Table 1). Distribution of LGE quality grades 
was similar in the participants stratified by learning and testing 
groups; only one difference was found for acceptable quality 
(191 artbitrary units [37%] vs 73 arbitrary units [30%], respec-
tively; P = .04) (Table 1). For interobserver reproducibility of 
quality grading, see Table S4.

Comparison of Scar Quantification by Humans and by the 
TTA Machine Algorithm
The TTA output demonstrated the best performance com-
pared with humans (Fig S2). Representative examples of LGE 
images with human results and TTA machine outputs are 
given in Figure 3.
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With use of the testing data set (n = 246), the comparison 
of machine versus core laboratory-determined human perfor-
mance of scar quantification yielded median absolute error of 
2.9 g (IQR, 1.1–5.5 g) for dense scar and 4.2 g (IQR, 1.8–7.3 g)  
for total scar (Fig 4, Table S5). For the interobserver (Fig 4) 
and intraobserver (Fig 4) analyses, the median absolute error is 
11.1 g (IQR, 8.1–22.8 g) and 4.4 g (IQR, 2.2–8.5 g) for total 
scar, respectively, and 7.5 g (IQR, 3.0–17.1 g) and 2.5 g (IQR, 
1.0–4.1 g) for dense scar, respectively. As shown in Figure 4, the 
quantification performance of the developed machine algorithm 

is comparable to the intraobserver performance (difference of  
median absolute errors for intraobserver vs machine: P = .08, 
P = .09, P = .63, for dense, total, and nondense scar, respec-
tively) and is superior to the interobserver performance with 
significantly lower median absolute errors (difference of median 
absolute errors for interobserver vs machine: P < .001, P < .001, 
P < .02, for dense, total, and nondense scar, respectively). For 
Bland-Altman analyses and scar quantification performance of 
the machine algorithm in the learning group, see Figures S3–S6.

In comparing the machine algorithm versus humans, the 
Dice similarity coefficients were 80.0% ± 5.5 for normal 
myocardium, 62.0% ± 11.4 for total scar, 56.8% ± 17.2 for 
dense scar, and 64.7% ± 12.0 for nondense scar (analysis of 
variance, P < .001).

Subgroup analyses demonstrated similar performance of the 
machine algorithm versus humans independent of LGE image 
quality, as median absolute errors between the machine algo-
rithm versus humans were similar in the group of participants 
with good quality LGE images (best grading [n = 116]) versus 
the composite group of acceptable, sufficient, borderline, and 
poor quality (ie, “non-good” quality [n = 130]) for total, dense, 
and nondense scar (Fig S7A) (P = .051, P = .13, P = .052, 
respectively) (Mann-Whitney test). Similarly, no differences 
were found for machine performance versus humans based on 

Table 2: Univariable Cox Analysis for Participant 
Demographics and Clinical Cardiac Characteristics 
Associated with Major Adverse Cardiac Event

Characteristic HR P Value 95% CI
Demographics
 Age (y) 1.02 .16 0.99, 1.05
 Sex (M) 2.14 .06 0.96, 4.81
 BMI (kg/m2) 0.97 .67 0.85, 1.11
 BSA (m2) 1.14 .87 0.23, 5.72
 Family history 1.33 .33 0.75, 2.35
 Smoking 0.59 .09 0.32, 1.08
 Hyperlipidemia 0.60 .07 0.35, 1.04
 Diabetes 1.21 .53 0.67, 2.22
 Hypertension 0.95 .86 0.55, 1.64
 NYHA class* 1.39 .02 1.05, 1.85
 Left bundle branch block 0.78 .47 0.40, 1.53
Echocardiography
 LVEDVI (mL/m2)* 1.01 .001 1.01, 1.02
 LVESVI (mL/m2)* 1.02 <.001 1.01, 1.03
 LVEF-echo (%)* 0.94 <.001 0.91, 0.97
 LVEF-echo (threshold 

 ≤35%)*
4.68 <.001 2.19, 9.98

 LVEF-echo (≤35%) and 
 NYHA class II or III*†

3.99 <.001 2.24, 7.13

CMR function and volume
 LVEDVI (mL/m2)* 1.01 .005 1.00, 1.01
 LVESVI (mL/m2)* 1.01 .003 1.00, 1.01
 LVSVI (mL/m2) 0.99 .12 0.98, 1.00
 LVEF (%)* 0.95 <.001 0.92, 0.97
 RVEDVI (mL/m2)* 1.01 .04 1.00, 1.03
 RVESVI (mL/m2)* 1.02 .002 1.01, 1.03
 RVSVI (mL/m2) 0.99 .20 0.98, 1.01
 RVEF (%)* 0.97 .003 0.95, 0.99
LGE CMR quality
 Acceptable versus good 0.62 .15 0.32, 1.19
 Sufficient versus good 0.65 .41 0.23, 1.19
 Borderline versus good 0.61 .50 0.15, 2.54
 Poor versus good 0.91 .90 0.22, 3.82
CMR scar, human (GT)
 LVmass (g) 1.01 .12 1.00, 1.02
 totalScar%hum (%LV)* 9.20 .03 1.22, 69.57
 denseScar%hum (%LV)* 9.58 .03 1.24, 73.78
 nondenseScar%hum (%LV) 1.02 .25 0.99, 1.05
 totalScarhum (g)* 1.02 .01 1.00, 1.03
 denseScarhum (g)* 1.02 .01 1.00, 1.03
 nondenseScarhum (g) 1.87 .80 0.02, 266.99

(Table 2 continues )

Characteristic HR P Value 95% CI
CMR scar, machine (TTA)
 LVmassmach (g)* 1.01 .04 1.00, 1.02
 totalScar%mach (%LV)* 12.57 .02 1.65, 95.90
 denseScar%mach (%LV)* 17.78 .008 2.09, 151.16
 nondenseScar%mach (%LV) 1.02 .14 0.99, 1.06
 totalScarmach (g)* 1.02 .002 1.01, 1.04
 denseScarmach (g)* 1.06 .002 1.01, 1.04
 nondenseScarmach (g) 1.22 .93 0.01, 130.49
Threshold (machine)
 Total scar (>30.7 g)*‡ 3.61 .002 1.63, 8.02
 Dense scar (>20.3 g)*‡ 2.35 .003 1.33, 4.15

Note.—Table shows results for testing group two-dimensional 
late gadolinium enhancement (LGE) images (n = 216). BMI 
= body mass index, BSA = body surface area, CMR = cardiac 
MRI, GT = ground truth, HR = hazard ratio, LV = left ventricle, 
LVEDVI = left ventricular end-diastolic volume index, LVEF = 
left ventricular ejection fraction, LVEF-echo = left ventricular 
ejection fraction with echocardiography, LVESVI = left 
ventricular end-systolic volume index, LVSVI = left ventricular 
stroke volume index, NYHA = New York Heart Association, 
%LV = percentage of left ventricle, RVEDVI = right ventricular 
end-diastolic volume index, RVEF = right ventricular ejection 
fraction, RVESVI = right ventricular end-systolic volume index, 
RVSVI = right ventricular stroke volume index, TTA = test-time 
augmentation.
* Denotes a significant P < .05.
† Criterion for implantable cardioverter defibrillator 
implantation, according to international guidelines (11–13).
‡ Data are areas under the receiver operator characteristic curve.

Table 2 (continued): Univariable Cox Analysis for Participant 
Demographics and Clinical Cardiac Characteristics 
Associated with Major Adverse Cardiac Event
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Figure 5: Graphs show major adverse cardiac event (MACE) risk prediction by absolute late gadolinium enhancement scar mass in human versus machine analysis. 
Kaplan–Meier curves show the MACE prediction for the thresholds of machine-determined (A) dense scar and (B) total scar mass and human-determined (C) dense scar  
and (D) total scar mass. The log-rank P values were P = .002, P = .001, P = .047, and P = .08, for A, B, C, and D, respectively. Cum. = cumulative.

participant sex (Fig S7B) (P = .15, P = .21, P = .09, for total, 
dense, and nondense scar, respectively) (Mann-Whitney test) 
or age (Fig S7C) (P = .67, P = .18, P = .69, for total, dense, and 
nondense scar, respectively) (Mann-Whitney test).

In the testing group (n = 246) (Fig 1), the three-dimensional 
LGE images were inferior in quality versus two-dimensional  
LGE images (good or acceptable quality in 61% vs 80%,  
respectively, P < .001). Therefore, for MACE prediction mod-
eling, the two-dimensional LGE data were used (final testing 
group [n = 216]) (Fig 1).

MACE Prediction Based on Demographic, 
Echocardiographic, and CMR Parameters
With use of univariable Cox analysis, New York Heart Asso-
ciation class showed a significant association with the risk of 
MACE (hazard ratio, 1.39; 95% CI: 1.05, 1.85; P = .02) (Table 
2). The guideline criterion correlated significantly with the risk 
of MACE (hazard ratio, 3.99; 95% CI: 2.24, 7.13; P < .001) 
as did most echocardiographic and CMR-derived parameters 
(LVEF echo: hazard ratio = 0.94; 95% CI: 0.91, 0.97, P < .001; 
LVEF CMR: hazard ratio = 0.95, 95% CI: 0.92, 0.97, P < .001) 
(Table 2). In addition, all CMR scar parameters analyzed by hu-
mans or by the machine algorithm were found to be predictors 

of MACE except nondense scar mass (human: hazard ratio = 
1.87, 95% CI: 0.02, 266.99, P = .80; machine: hazard ratio = 
1.22, 95% CI: 0.01, 130.49, P = .93) (Table 2). Univariable Cox 
analyses with competitive risk assessment are given in Table S6.

Event-free survival curves for the thresholds of total scar and 
dense scar as determined by humans and the machine algorithm 
showed that the machine-based results are associated with event-
free survival for dense scar (P = .002) and total scar (P = .001) 
(Fig 5). Human analysis was also associated with the threshold of 
dense scar (P = .047) (Fig 5).

Age, LVEF (echocardiography and CMR), and the thresh-
olds for total scar determined by both humans and the machine 
algorithm were predictive of all-cause mortality, the primary end 
point of the DERIVATE study (Table S7).

Dense scar threshold determined by machine (model 2) or 
total scar threshold determined by machine (model 2b) con-
ferred incremental value over the guideline criterion (model 
0) for the association with MACE (AUC, 0.63 vs 0.68; P = 
.02 and AUC, 0.63 vs 0.67; P = .01, respectively) (Table 3). 
This superiority was not observed for dense scar threshold de-
termined by human (model 1) nor for total scar threshold de-
termined by human (model 1b) versus the guideline criterion 
(model 0 with AUC, 0.63 vs 0.65, P = .36 and AUC, 0.63 vs 
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0.65, P = .09, respectively) (Table 3). For illustration of the 
model 2 performance, the Kaplan–Meier curves in Figure 6 
show that the combination of the guideline criterion with 
dense scar determined by machine discriminates different risk 
groups (log-rank test, P < .001). Model 3 included both the 
human- and machine-determined dense scar threshold and 
performed better than the guideline criterion alone (model 
0) with AUC of model 0 of 0.63 versus AUC of model 3 of 
0.69, P = .02 (Table 3). This model 3 did not perform better 
than model 1 (guideline criterion and dense scar threshold 
determined by human) (AUC of 0.69 for model 3 vs AUC 
of 0.65 for model 1, P = .18). The same lack of superiority 
was observed for total scar mass (model 3b) versus model 1b 
(AUC, 0.67 vs 0.65; P = .64). Modeling with consideration 
of competing risks confirmed these results (Table S8).

Discussion
The goals of the study were to test whether postinfarct scar with 
late gadolinium enhancement (LGE) cardiac MRI (CMR) can 
be quantified fully automatically by machines and compare the 

ability of LGE CMR scar analyzed by humans and machines 
to predict arrhythmic events. To this end, a machine learning–
based algorithm was developed that quantifies myocardial scars 
without any user interaction, and no endo- and epicardial con-
tours are needed. The algorithm yields a small median absolute 
error versus the ground truth of 2.9 g (IQR, 1.1–5.3 g) for dense 
scar and 4.2 g (IQR, 1.8–7.3 g) for total scar.

The machine-based results of dense and total scar mass in 
grams were both associated with the risk of MACE (hazard 
ratio, 1.03 and 1.02, respectively; P = .002 for both). Kaplan–
Meier curves demonstrate the ability to stratify survival for 
the thresholds of 20.3 g and 30.7 g for machine-determined 
dense scar and total scar, respectively (P < .001) (log-rank test). 
The human analysis yielded scar quantification that was also 
associated with the risk of MACE (hazard ratio, 1.02; P = .01 
for both, total and dense scar). Interestingly, in multivariable 
Cox regression analyses (models 0–3), machine-based thresh-
olds of dense scar and total scar (models 2 and 2b) improved 
the guideline criterion–based model (AUC, 0.68 and 0.67 vs 
0.63; P = .02 and P = .01, respectively), while the human-based 

Table 3: Multivariable Cox Model for Cardiac Characteristics Associated with Major Adverse Cardiac Event

Characteristic HR P Value 95% CI AUC Time-dependent ROC*
Multivariable Cox models–dense scar
 Model 0
  Guideline criterion† 3.99 <.001 2.24, 7.13 0.63 (0.52, 0.74)
 Model M1–dense scar, human-determined 0.65 (0.54, 0.75) [P = .36 vs M0]
  Guideline criterion† 3.63 <.001 2.076, 6.34 ...
  Threshold over 20.3 g 1.26 .42 0.72, 2.22 …
 Model M2–dense scar, machine-determined 0.68 (0.58, 0.78) [P = .02 vs M0] [P = .13 vs M1]
  Guideline criterion† 3.39 <.001 1.95, 5.91 ...
  Threshold over 20.3 g 1.79 .050 1.00, 3.19 …
 Model M3–dense scar, human- and  

 machine-determined
0.69 (0.59, 0.78) [P = .02 vs M0] [P = .18 vs M1]

  Guideline criterion† 3.49 <.001 2.00, 6.11 ...
  Threshold over 20.3 g, human 0.60 .24 0.26, 1.41 …
  Threshold over 20.3 g, machine 2.64 .03 1.10, 6.37 …
Multivariable Cox models–total scar
 Model 0
  Guideline criterion† 3.99 <.001 2.24, 7.13 0.63 (0.52, 0.74)
 Model M1b–total scar, human-determined 0.65 (0.54, 0.75) [P = .09 vs M0]
  Guideline criterion† 3.65 <.001 2.10, 6.34 ...
  Threshold–totalScarhum (>30.7 g) 1.37 .38 0.681, 2.746 …
 Model M2b–total scar, machine-determined 0.67 (0.58, 0.76) [P = .01 vs M0] [P = .36 vs M1b]
  Guideline criterion† 3.10 <.001 1.76, 5.47 ...
  Threshold–totalScarmach (>30.7 g) 2.31 .047 1.01, 5.29 …
 Model M3b–total scar, human- and  

 machine-determined
0.67 (0.58, 0.76) [P = .03 vs M0] [P = .64 vs M1b]

  Guideline criterion† 3.08 <.001 1.75, 5.44 ...
  Threshold over 30.7 g, human 0.79 .58 0.34, 1.83 …
  Threshold over 30.7 g, machine 2.70 .05 0.99, 7.38 …

Note.—Table shows results for testing group two-dimensional late gadolinium enhancement images (n = 216). AUC = area under the 
receiver operating characteristic curve, HR = hazard ratio, ROC = receiver operator characteristic curve.
* Data in parentheses are 95% CIs, and data in brackets are P values.
† Left ventricular ejection fraction with echocardiography (≤35%) and New York Heart Association class II or III were criteria for 
implantable cardioverter defibrillator implantation, according to international guidelines (11–13).
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Figure 6: Graph shows major adverse cardiac event (MACE) risk prediction with use of the 
combination of the guideline (GL) criterion– and machine-based dense scar mass of late gadolinium 
enhancement cardiac MRI. Kaplan–Meier curves for MACE prediction show that the combination 
of these parameters discriminates between different risk groups (log-rank test, P < .001). The positive 
(pos) guideline criterion is defined as left ventricular ejection fraction of 35% or smaller and dyspnea 
New York Heart Association class II or III. The green survival curve represents a combination of neg-
ative (neg) guideline criterion and machine-determined dense scar mass (Dense Scarmach) of less than 
or equal to 20.3 g; the blue survival curve represents a combination of positive guideline criterion or 
machine-determined dense scar mass of more than 20.3 g; the red survival curve represents a combi-
nation of positive guideline criterion and machine-determined dense scar mass of more than 20.3 g.

scar results did not (AUC, 0.65 and 0.65 vs 0.63; P = .36 and  
P = .09, respectively).

To our knowledge, current LGE analyses generally used some 
user input, such as human tracings of endo- and epicardial con-
tours (24,25) or contours of cine images (26). Furthermore, pre-
vious studies with use of LGE analysis did not quantify scars 
(27), only used three-dimensional data (28), and did not assess 
the predictive performance of the machine learning–based al-
gorithm (24–28). The novel TTA machine algorithm presented 
here demonstrates similar performance in comparison to human 
analyses irrespective of LGE image quality for total, dense, and 
nondense scar (P = .051, P = .13, P = .052, respectively) (Mann-
Whitney test), gender (P = .15, P = .21, P = .09, respectively), or 
age (P = .67, P = .18, P = .69, respectively) of participants, and it 
eliminates any scar analysis variability even in multicenter data. 
In addition, the algorithm reduces the tedious LGE analysis time 
down to 0.5 seconds per heart.

Several single-center studies demonstrated the predictive 
value of human-determined scar for MACE (7,19,29–31), and 
the current study extends this knowledge to a multicenter, mul-
tivendor setting. Regarding the fully automatic scar analysis by 
a machine learning algorithm, this is, to our knowledge, the 
first time that these measures are shown to confer incremental 
value over the guideline criterion (the combination of echocar-
diographic LVEF of 35% or smaller and New York Heart As-
sociation class II or III [11–13]) for the prediction of MACE. 
The current findings may suggest the possibility to hand over 
time-consuming scar analyses from humans to machines.

Applying machine learning methods to directly predict 
MACE (instead of learning to segment scars) might perform bet-
ter than the presented approach. Such a strategy was applied in a 

three-center learning cohort, and the AUC to pre-
dict arrhythmic SCD was 0.72 (32), thus, slightly 
higher than the best AUC for MACE prediction of 
0.69 found in our study. Ventricular tachycardias 
in postmyocardial infarction scar are based on re-
entry circuits through conducting channels in the 
scar tissue. Nondense scar typically is the substrate 
for such channels, while dense scar forms the bor-
ders. Thus, both scar types are relevant to provide 
the arrhythmic substrate (33). Several studies sup-
port nondense scar as most predictive for MACE 
(7,29,31,34), while others (19) and the current 
study favor dense scar. Future studies are warranted 
to address this question in detail.

Our study had several limitations. First, as in 
any registry, referral biases cannot be excluded (eg, 
decompensated patients with severe dyspnea [and 
difficulties to perform breath holds] might be un-
derrepresented). Second, our algorithm was tested 
in a held-out population of the DERIVATE co-
hort, and no external population was used for test-
ing. Thus, the findings of this study should only 
be applied to populations that fulfill the inclusion 
criteria of this trial (including the LGE CMR 
parameters) (10). The three-dimensional LGE 
images were inferior in quality versus two-dimen-

sional LGE images (good or acceptable quality in 61% vs 80%, 
P < .001) and were, therefore, not used for outcome prediction 
modeling, and consequently, the prediction performance is re-
stricted to two-dimensional LGE images. Third, at the time of 
study inclusion, novel T1-mapping techniques or sophisticated 
three-dimensional LGE techniques that were acquired during 
free breathing were not available in all centers, which could 
have improved prediction performance and interobserver re-
producibility, respectively. We would like to note that it was 
the aim of the study to investigate the prognostic power of 
scar quantification with breath-hold LGE CMR that could be 
readily applied in general cardiology routine. Fourth, based on 
the current data, we cannot investigate potential mechanisms 
to explain the trend of better outcome prediction of the ma-
chine algorithm versus humans. Fifth, event documentation 
was accomplished by the local physicians, and no independent 
adjudication committee was established, which is certainly a 
limitation. Finally, our study was not powered to assess the in-
fluence of different machine vendors, contrast medium doses 
or type, nor pulse sequence types on machine learning–based 
scar quantification or outcome prediction.

In this large international, multicenter, multivendor setting, 
scar with late gadolinium enhancement cardiac MRI was fully, 
automatically analyzed by a machine learning–based algo-
rithm. This approach improved the current prediction model 
that uses guideline-based risk criteria to identify candidates for 
implantable cardioverter defibrillators. Future prospective tri-
als are warranted to evaluate the performance and added value 
of machine learning–based scar quantification for better ma-
jor adverse cardiac event prediction and improved arrhythmia 
management of patients with coronary artery disease.
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