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Abstract— Soft robots show compliance and have infinite
degrees of freedom. Thanks to these properties, such robots can
be leveraged for surgery, rehabilitation, biomimetics, unstruc-
tured environment exploring, and industrial grippers. In this
case, they attract scholars from a variety of areas. However,
nonlinearity and hysteresis effects also bring a burden to robot
modeling. Moreover, following their flexibility and adaptation,
soft robot control is more challenging than rigid robot control.
In order to model and control soft robots, a large number
of data-driven methods are utilized in pairs or separately.
This review first briefly introduces two foundations for data-
driven approaches, which are physical models and the Jacobian
matrix, then summarizes three kinds of data-driven approaches,
which are statistical method, neural network, and reinforcement
learning. This review compares the modeling and controller
features, e.g., model dynamics, data requirement, and target task,
within and among these categories. Finally, we summarize the
features of each method. A discussion about the advantages and
limitations of the existing modeling and control approaches is
presented, and we forecast the future of data-driven approaches
in soft robots. A website (https://sites.google.com/view/23zcb) is
built for this review and will be updated frequently.

Note to Practitioners—This work is motivated by the need for
a review introducing soft robot modeling and control methods
in parallel. Modeling and control play significant roles in robot
research, and they are challenging especially for soft robots. The
nonlinear and complex deformation of such robots necessitates
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specific modeling and control approaches. We introduce the
state-of-the-art data-driven methods and survey three approaches
widely utilized. This review also compares the performance of
these methods, considering some important features like data
amount requirement, control frequency, and target task. The
features of each approach are summarized, and we discuss the
possible future of this area.

Index Terms— Soft robot, data-driven method, physical model,
Jacobian matrix, statistical model, neural network, reinforcement
learning.

I. INTRODUCTION

SOFT robots have been developed for a large number of
applications. Owing to their infinite degrees of freedom

(DOFs) and flexibility, soft robots are leveraged in robot
assistant surgery, especially minimally invasive surgery [1].
Compared with their rigid counterparts, soft robots are rela-
tively safe due to their softness and have significant advantages
in assisting elderly and disabled people with daily tasks [2]
and cooperating with humans [3]. Moreover, they are used as
hand recovery devices [4] and wearable devices [5] for various
medical purposes like rehabilitation and human motion moni-
toring. Animals are composed of soft tissues, and researchers
in the bioinspired area apply soft materials like silicone to
build soft robots and mimic the behaviors of living beings,
such as octopus [6], elephant [7], and earthworm [8]. These
robots produce specific motions and manipulations by imi-
tating the structures and behaviors of soft animals. With the
help of such soft biomimetic robots, some exploring tasks in
various environments like underwater [9] and walls [10] can
be achieved. Soft robot hands are adaptative to objects and
commonly applied for grasping tasks involving fragile [11]
and diverse [12] objects. To summarize, unique properties
like infinite DOFs, compliance, and safety for humans lead
to the high potential of soft robots. Hence, soft robot study is
a research area highly attractive to robotics scholars.

Followed by the aforementioned advantages and applica-
tions, the most considerable drawback of soft robots is the
challenge of modeling and control. Deformable materials
lead to the nonlinear and delayed responses of soft robots.
Moreover, infinite DOFs make it complicated to build accurate
models for soft robots. The physical properties of soft robots
will also vary due to the aging of soft materials. Owing to
the above characteristics, the modeling of soft robots is more
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Fig. 1. Diagram of soft robot modeling and control processes. Robot design (grey) provides a specific soft robot structure and actuation pattern. The sensing
system (green) obtains robot information via the sensors of such a robot. Modeling fθ is a function that predicts the robot state p (blue), as end position and
robot pose, according to the actuation variables a (red.) Control gτ aims to decide actuation variables a with the desired state pd and sensing inputs. Finally,
such a robot system can achieve a variety of tasks. θ and τ represent the parameters in the data-driven methods of modeling and control, respectively.

complex than that of their rigid counterparts, which also leads
to challenging control tasks [13], [14]. Therefore, modeling
and control play essential roles in soft robot research.

The working process of soft robots is summarized in Fig. 1.
Various kinds of robot designs are used in soft robots, like 1
DOF soft fingers [15], 3 DOF continuum robots [16], parallel
robots [17], concentric tube robots [18] and so on. To actuate
a soft robot, the researchers apply actuation approaches like
fluid-driven methods [19], cable-driven method [20], electroac-
tive polymers [21], shape memory alloy (SMA) [22], etc.
Also, there are multiple categories of sensors, e.g., optical
markers [23], EM trackers [24], flex sensors [25] and Fiber
Bragg Grating (FBG) [26], [27]. Some reviews detailedly
introduce soft robots with mechanical aspects [28], [29]. Based
on these hardware implementations, soft robot modeling can
be seen as a function that takes actuation a as the input and
robot state p, such as end position, orientation, and shape,
as the output. Meanwhile, soft robot control is the inverse
process of modeling, which takes the desired robot state pd

and the sensing signal s as the input and actuation a as the
output. The input and output choices may change considering
the control strategy. For example, the open control strategy
in [30] only requires the target positions pd for the trajectory
following, but the close loop control approach in [23] utilizes
both the target position pd and the previous end positions
from the sensing system s. Each mapping requires a model,
f or g, and the parameter θ or τ , which are partly influenced
by robot design and sensing system. Finally, such control
methods are leveraged for simple tasks, like target reach
[31] and trajectory following [32], and challenging tasks, like
interaction adaptation [3] and navigation [33].

Due to the variety of structures and the complexity of behav-
iors, it is challenging to propose accurate physical models and
corresponding control strategies for every soft robot. However,
data-driven methods have shown considerable benefits. Data-
driven approaches summarize the features of data collected
from robot motions without the necessity of robot design
knowledge. Furthermore, compared with physical approaches
based on simplifications and hypotheses, data from real robots
can illustrate the real features of soft robots. Thanks to these
advantages, some data-driven approaches can be proposed for
robot modeling and control with optimization [34] or learning
[19]. Data-driven approaches can be applied for various kinds
of modeling and control strategies, like kinematics modeling
[35], dynamic modeling [36], open loop control [37], and

close loop control [38]. Moreover, they can also be utilized
for observer [39] which includes modeling as prediction and
sensing characterization [40] which can be applied in control.

This review aims to present and compare data-driven meth-
ods applied to soft robot modeling and control in parallel.
Although some reviews are related to soft robot modeling and
control [14], [41], [42], [43], they do not introduce modeling
and control simultaneously. In this review, first we briefly
introduce foundations for data-driven approaches, which are
physical models and the Jacobian matrix. Physical models
provide simulation environments and insight into soft robots,
while the Jacobian matrix infers the data relationship for
data-driven approaches. Then, we classify data-driven meth-
ods applied to soft robot modeling and control into three
categories: statistical method, neural network, and reinforce-
ment learning. We introduce the corresponding modeling and
control approaches for each kind of data-driven approach par-
allelly and compare them within and among these categories.
Finally, conclusions on data-driven approaches applied to soft
robot modeling and control are proposed, and we discuss the
challenges and emerging directions of this area. Fig. 2 shows
the paper number of different methods cited in this review
according to the publishment time. In Fig. 2-(a), one paper
may fall into multiple categories if it involves several methods,
but one paper only falls into one category considering the main
method in this paper in Fig. 2-(b). Fig. 3-(a) and Fig. 3-(b)
summarize the number of papers according to the publishment
time and method category, respectively. The summary of data-
driven method categories is shown in Table I.

II. FOUNDATIONS FOR DATA-DRIVEN APPROACHES

In this section, we introduce two significant foundations
for data-driven methods, which are physical models and the
Jacobian matrix. Both of them are very popular and effective in
rigid robot modeling and control. In this case, the researchers
also try to employ them in soft robots. They stimulate the
development of data-driven approaches by providing simula-
tors or inferring data relationships.

A. Physical Models

Physical models are significant in soft robotics because they
can illustrate the nature of soft robot motion and deformation.
Also, they are fundamental to data-driven methods by provid-
ing simulation environments and data. Discretization methods
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TABLE I
SUMMARY OF METHOD CATEGORIES

Fig. 2. Paper number for (a) included methods and (b) the main method.

Fig. 3. Paper number for the main method according to (a) years and (b) categories.

like FEM have been applied for robot simulation. The Cosserat
model and its discretization method, like geometric variable-
strain (GVS), provide simulators specifically for soft robots.
Piecewise constant curvature (PCC) can be seen as a special
case of GVS and is widely applied to the soft robot simulation
based on the assumption of deformation shape. Some specific
models, like the pseudo-rigid model and the concentric tube
model, are proposed for specific soft robots. Some typical
physical models are shown in Fig. 4. In robot control, methods
considering physical models or parameters are model-based,
while approaches only employing data and not using physical
relationships inherent in robots can be seen as model-free [44].

FEM is a popular discretization simulation method in
robotics. This method can be applied to various soft robots, for
example, soft foam robot hand [45], soft pneumatic actuator
[46], and PneuNet bending actuator [47]. This model can
provide high-accuracy simulation with the requirement of
material parameters such as mass density, Young’s modulus,
and Poisson’s ratio. Generally, FEM works as an offline mod-
eling method, such as producing a dataset [46] for NN learning
and building an exploring environment for RL [45]. FEM

is applied in the simulator SOFA [48] for deformation and
interaction simulation. Moreover, a series of works [17], [49],
[50] focus on FEM applications for real-time control. In order
to cope with this highly complicated model, methods like local
linearization [17] and reduced-order control model [50] are
employed for the trade-off between the model accuracy and
control frequency.

Besides the discretization of 3D small elements, the dis-
cretization of 1D Cosserat rod is also applied. Cosserat rod
models soft continuum robots with a series of rigid cross-
sections, and includes bend, twist, stretch, and shear. The
simulator PyElastica [51] applies a discrete geometric form
of the Cosserat rod model for soft robot simulation. The most
general strain-based discretization method of the Cosserat rod
is GVS [52], which discretizes the continuous Cosserat rod
model into a finite set of strain basis functions. SoRoSim [53]
integrates GVS for soft, rigid, and hybrid robotic system sim-
ulation. PCC is a special GVS, which only includes bending
and simulates a continuum robot with several curves in some
bending angles [54]. Original PCC only shows the geometrical
information and dynamic PCC models include spatial dynamic
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Fig. 4. Diagrams of (a) FEM, (b) PCC with pseudo-rigid model, (c) Cosserat
rod model, and (d) concentric tube model. Element motion and deformation
in (a) represent the soft robot deformation. The grey soft robot in (b) is
represented by a series of constant curves, and the augmented rigid robots
model the soft robot dynamically. The Cosserat rod model in (c) includes
forces and moments inherently. The concentric tube model in (d) represents
the robot motion with the configurations l1, l2, θ1 and θ2.

effects [55] and external interactions [56]. Of note, PCC
is a simplification of the nonlinear Euler-Bernoulli beam,
which can be applied for soft robot modeling under external
interaction without the constant curvature assumption [57].

There are also some physical models for specific kinds of
soft robots. Considering concentric tube robots, the authors
of [18] leverage rotations and translations of tubes as actuation
variables for the concentric tube robot model, as shown in
Fig. 4-(d). The control tasks are achieved by finding the inverse
kinematic solutions. Neural networks are utilized for both
modeling and control in [58] based on this model. The con-
centric tube model has also been used for RL control in [31] to
provide action variables. Pseudo-rigid models can approximate
soft robots with rigid counterparts [59] as shown in Fig. 4-(b),
and the sophisticated motions of soft robots are simulated with
the help of pseudo springs [60] and dampers [61].

In conclusion, the research of physical models deepens the
understanding of soft robot nature and produce various soft
robot simulators for data-driven approaches. A comparison
of some typical papers applying physical models is shown
in Table II. This table includes the simulator SOFA based
on FEM [48], the simulator PyElastica based on Cosserat
rod [51], the simulator SoRoSim based on GVS [53], and RL
works using the specific model concentric tube model [31].

B. Jacobian Matrix

The Jacobian matrix can infer the relationship between
the actuation and position velocities by model linearization.
Thanks to its concision and effectiveness, the Jacobian matrix
is widely applied in rigid robots, whose explicit physical
models are easy to propose. Also, it is possible to linearize
such models. However, due to the difficulties of building

TABLE II
PHYSICAL MODEL PAPER COMPARISON

Fig. 5. Diagram of the Jacobian matrix estimation and control. Based on
the Jacobian matrix initialization, the Jacobian matrix is updated based on the
sensing s. Then, the estimated Jacobian matrix is applied for control.

accurate and explicit models for soft robots, optimization is
utilized for Jacobian matrix estimation instead of directly
linearizing explicit models. The included robot model is just
a general model like p = fθ (a) instead of an explicit and
physical one, and it is only employed for illustration instead
of calculation [34].

The Jacobian matrix estimation and control process is
summarized in Fig. 5. The first work applying the Jacobian
matrix in the main approach is [34]. For Jacobian matrix
initialization, each actuator should be actuated with a small
incremental amount in order to estimate the initial Jacobian
matrix J0 [34], [62], [63], [64]. Then, the Jacobian matrix is
updated according to the actuation and end position change in
the last step. The matrix update strategy can be shown as

min
Ĵ k+1

∥△ Ĵ∥2

s.t. △xk
= Ĵ k+1W△yk

Ĵ k+1
= Ĵ k

+△ Ĵ (1)

where △xk and △yk are the end effector displacement and
actuation change at step k, respectively. J = [J1 J2 . . . Jn]

is the Jacobian matrix and n is the dimension of the actuation
variable y. W = diag(∥J1∥2, ∥J2∥2, . . . , ∥Jn∥2) is a weighting
matrix and Ĵ = J W−1 is the unit Jaocbian matrix. Ĵ k and
Ĵ k+1 are the unit Jacobian matrix at step k and k + 1.

The actuation variables are derived as the cost function in
an optimization problem considering the constraints of the
Jacobian matrix and target end position for control. The control
strategy for step k + 1 can be shown as

min
△yk+1

∥yk
+△yk+1

∥2

s.t. △xd = Ĵ k+1W△yk+1
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TABLE III
JACOBIAN MATRIX PAPER COMPARISON

yk
+△yk+1

≥ ymin

yk
+△yk+1

≤ ymax (2)

where △xd is the desired displacement for the end effector.
The actuation value yk

+ △yk+1 is constrained between the
minimal and maximal actuation value ymin and ymax according
to the robot structure. Except for the optimization control
method in Eq. 2, the inverse Jacobian matrix is also utilized
for control [39].

Considering nonlinearity and hysteresis of soft robots, the
Jacobian matrix in the last step may not be accurate and
suitable for this step. It is challenging for the original Jacobian
estimation method to face complex tasks due to its over-
simplification. Therefore, some researchers try to adapt this
method for various applications. For example, the authors
of [64] also emphasize that there may be a significant deviation
between the estimated and real Jacobian matrix, and they
alleviate this issue by smoothing the activation values. Force-
displacement model is included for force control in [20]. When
end effector and actuation displacement between only one step
is involved in [34], the displacement among multiple steps is
utilized in [65]. Also, the Jacobian matrix is adjusted in [66]
by multiplying a rotating matrix considering the difference
between the intended and measured motions. The fusion of
sensing information from a camera and FBG provides accu-
rate positions in [63] for stable and precise Jacobian matrix
estimation.

Although so many adaptations have been proposed, the
Jacobian matrix is still an initial solution for many labs
and motivates applying the other approaches, especially data-
driven ones. A neural network is applied for control in [67],
which is based on the Jacobian matrix estimation process.
A honeycomb pneumatic networks arm is controlled by the
inverse Jacobian matrix in [68], and the same soft robot is
included in [69] for challenging manipulation tasks. The latter
work employs the Jacobian matrix in a low-level behavior
controller and compares it with RL.

In summary, the Jacobian matrix is a concise and simple
method for soft robots. The matrix is updated online with
a high frequency in most cases, which can be achieved
due to the simple structure. Meanwhile, the oversimplified
linearization necessitates online updating and high control
frequency. A comparison of some typical papers using the
Jacobian matrix is shown in Table III. This table contains the
first paper employing the Jacobian matrix for soft robot control
[34]. Force control is achieved in [20] considering a force
model in the control optimization problem. The authors of the

last work [69] take inspiration from the Jacobian matrix in
[68] and implement RL based on the same robot.

III. STATISTICAL METHOD

Statistical methods are utilized to build the mapping func-
tions between different variable spaces with only data, and
physical relationships among these spaces are unnecessary. For
example, the authors of [70] infer the relationship between
the actuation input and image feedback for kinematic control,
and the authors of [21] plan the actuation variables based on
the temporal values. There are many regression approaches
utilized in soft robots, like linear regression [71], local weight
regression (LWR) [72], support vector regression (SVR) [73],
Gaussian process regression (GPR) [25], and local weight
projection regression (LWPR) [16]. Other than the regression
methods, the Gaussian mixture model (GMM) [74] summa-
rizes collected data with a joint data distribution, and the
extended Kalman filter (EKF) [39] estimates robot states as
an observer.

A. Regression Method

Regression methods with different models are employed in
soft robot modeling and control. These methods aim to fit
the training data with a specific model, like a linear function
or a Gaussian process, by optimizing the parameters and
decreasing the loss. Then, the trained regression model can
take some observation samples as model input and predict the
corresponding values. For instance, linear regression, a simple
regression approach, is applied in [71] to map FBG signals
into soft robot end position for sensing. A linear function is
included for fitting, and the parameter matrix is optimized.
Similarly, LWR employs the linear function but considers
the distance between the collected data and the observation
samples for fitting. In [72], data from human demonstrations
is used for fitting. The temporal value is taken as input to
decide action for control.

SVR is utilized in [73] for the forward kinematic modeling
and in [75] for the close loop position controller. It has been
proven in [75] that SVR gets better approximation accuracy
than NN on a simple function, but this model requires more
convergence time than NN on a large amount of data (15625
samples) in [73], which may be caused by the different
optimization strategies or mature NN optimization software.
The SVR modeling and control algorithm in [75] can be
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summarized as

min
W,B

1
2

M∑
j=1

∥w j∥
2
+ C

n∑
i=1

L(µi ),

s.t. µi = ∥yi − (φ(xi )W + B)∥

W = [w1, w2, . . . , wM ] (3)

where d, M are the dimensions of the mapping input xi and
output yi , and n is the size of the learning dataset. The
function φ(xi )W + B aims to estimate the mapping output
with a nonlinear transformation φ(·) : R1×d

→ R1×h and
the optimized matrices W ∈ h × M and B ∈ 1 × M . L(·)

is a loss function and the extended Vapnik ϵ-insensitive loss
function based on L2-norm is applied in [75]. C is the tradeoff
parameter that adjusts the estimation errors and regularization.
For kinematics modeling, SVR takes the actuation as input x
and estimates y as the robot state. For control, which can be
seen as the inverse process of modeling, SVR receives the
desired displacement as input and decides the actuation.

GPR employs the Gaussian process, a probability distribu-
tion over functions, for fitting. For modeling, GPR predicts
robot states, such as position or shape parameters, based on the
training dataset and current actuation variables. For example,
GPR is applied in [25] to predict the actuator curvature. Given
N training inputs X = [x1, x2, . . . , xN ]

T
∈ RN×i and N

curvatures as the training outputs Y = [y1, y2, . . . , yN ]
T
∈

RN×1, where i represents the dimension of each input x . The
prediction process based on the test input xt can be shown as

µ(xt ) = k∗(X, xt )
T K (X, X)−1Y,

6(xt ) = k(xt , xt )− k∗(X, xt )
T K (X, X)−1k∗(X, xt ), (4)

where µ(xt ) and 6(xt ) are the predictive mean and vari-
ance. k(·, ·) ∈ R is the kernel function applied in GPR,
a squared-exponential kernel function in most cases, and
k∗(X, xt ) = [k(x1, xt ), k(x2, xt ), . . . , k(xN , xt )]

T
∈ RN×1.

K (X, X) ∈ RN×N is a covariance matrix with entries Ki j =

k(xi , x j ), i, j = 1, 2, . . . , N . The above prediction process
supposes that the prior mean is zero, and one can preprocess
the sample output Y by zeroing the mean before fitting and
prediction. It should be noticed that the noise of the mapping is
considered in [70], which is assumed as white Gaussian noise
with zero mean and variance σ 2

n . In this case, the prediction
can be derived as

µ(xt ) = k∗(X, xt )
T (K (X, X)+ σ 2

n I )
−1

Y,

6(xt ) = k(xt , xt )− k∗(X, xt )
T (K (X, X)+ σ 2

n I )
−1

k∗(X, xt ).

(5)

With the forward model derived from GPR, the authors of [4]
propose a control strategy by minimizing a cost function
containing the predicted errors and actuation variables. GPR
is also employed in close-loop kinematics control in [70] by
predicting desired actuation variables based on the robot state
feedback. The authors of [15] aim to predict the difference of
robot states instead of only the next states as the modeling
part in optimal control.

Based on LWR, which utilizes each training data as a
local model, LWPR projects training data into several linear

models and weighs them with Gaussian kernels. The covari-
ances of these kernels are decided by an incremental gradient
descent based on stochastic leave-one-out cross validation
criterion [76], [77]. To find the optimization of the parameters
in linear models, which is a redundancy problem, a null-space
behavior is defined as a guide. This user-defined behavior is
applied in a cost function and attracts the actual behaviors.
For example, the robot elongation is minimized in [16] for
a relatively straight shape, and the overall inflated chamber
pressures are minimized during the control process in [78].

B. Gaussian Mixture Model

GMM encodes collected data into a data distribution com-
posed of multiple Gaussian components. In the fitting step,
GMM parameters are optimized to fit the collected data. Dur-
ing the prediction step, the input data works as the prior, and
the posterior of GMM under some input data will be used as
prediction output. Of note, once a GMM is built, each kind of
data plays the same role in principle. In such a joint probability
density function, every dimension can be applied as a prior and
derive expectations on the remaining dimensions. In this case,
GMM in [74] produces both forward kinematics modeling and
position control strategy with actuation variables and desired
end positions as the prior, respectively. The catheter kinematic
GMM is represented by the joint probability density function:

P[p[k + 1], p[k], a], (6)

where p[k] denotes the robot state at step k. The forward
modeling process can be shown as

E[p[k + 1]|p[k], a], (7)

which is the conditional mean of the model Eq. 6 given the
robot state p[k] and actuation a. The control strategy is

E[a|pd [k + 1], p[k]], (8)

which is the conditional mean of the model Eq. 6 given the
robot state p[k] and desired state pd [k + 1].

In addition to modeling and control, such data encoding
characteristic develops some planning solutions. For exam-
ple, the authors of [21] encode pose and temporal value
into a GMM for navigating through narrow holes based on
human demonstration. Moreover, other task parameters like
the rotation matrix of the coordinate system are included as
the planning objects in the GMM of [79]. Making use of
its encoding ability, GMM transfers demonstrations on rigid
robots to the STIFF-FLOP continuum robot in [80].

C. Extended Kalman Filter

Considering one existing model and its prediction, the
Kalman filter can be applied as an observer and corrects
the predicted values with measurement. Due to the nonlinear
responses from soft robots, most modeling process is non-
linear, and the extended Kalman filter (EKF), instead of the
original linear Kalman filter, is widely applied in soft robots.
P, Q, R represent the estimation covariance, process noise
covariance, and measurement noise covariance, respectively.
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In prediction, the state at the k + 1 step is predicted as pk+1|k
based on the state pk|k and actuation ak at the k step.

pk+1|k = f (pk|k, ak),

Pk+1|k = Ak Pk|k AT
k + Qk, (9)

where f (·, ·) represents the nonlinear forward modeling, Ak

is the local linearization of f (·, ·). The correction process cor-
rects the prediction state to pk+1|k+1 considering measurement
output sk from sensing.

Kk = Pk+1|kCT
k (Ck Pk+1|kCT

k + Rk)
−1

,

pk+1|k+1 = pk+1|k + Kk(sk − g(pk+1|k)),

Pk+1|k+1 = (I − KkCk)Pk+1|k, (10)

where g(·) represents the measurement process, Ck is the local
linearization of g(·). Kk is the Kalman Gain and evaluates the
reliability of measurement and prediction. EKF is commonly
leveraged since it adjusts the modeling process and provides
an accurate robot state estimation. For example, the authors
of [81] map actuator variables and segment parameters into the
robot pose to build the nonlinear forward modeling with the
transformation matrices, and the sensing signal from position
sensors is applied for correction. The authors of [82] aim to
estimate robot poses and physical parameters and apply pose
measurement for correction. NNs like wavelet networks [83]
are also employed as the forward model in EKF for curvature
angle estimation. In their following research, the authors
of [84] also estimate the external force as the unknown system
input based on the state estimation from a similar EKF.
Similarly, the unknown external forces are taken as the system
state p and accurately estimated in [85]. Furthermore, due to
the modular structure of the snake robot in [86], the EKF is
adapted by changing the dimension of state variables according
to the advancing or retracting motion for shape estimation.

D. Summary Statistical Method

Because statistical models only consider data relationships,
such models have shown high potential to cope with vari-
ous kinds of data. At first, statistical models only include
robot actuation for modeling [87]. Then, position feedback
is involved in [75] for adaptive modeling and control. Fur-
thermore, temporal values are applied for control in [21] and
[72]. The authors of [70] even include visual information for
kinematic control. Recently, sensing information from various
sensors like resistance and force sensors has been employed
in [84] and [88] for modeling adjustment. Most statistical
approaches can be applied for both modeling and control with
different inputs, like two SVR models in [75].

Besides data categories, the methods also evolve over time.
For instance, the Jacobian matrix is involved in the EKF
in [85], and the pseudo rigid robot model takes its place
in [89]. The authors of [39] apply the adaptative Kalman filter,
which shows strong robustness against the model nonlinear-
ity and uncertainty instead of EKF. Recently, the unscented
Kalman filter is leveraged in [88], which can apply the implicit
Gaussian process for robot modeling. Also, GPR also evolves
over time. The whole working space is divided into several
regions, and each part requires a single GPR model for local

modeling in [70]. Then, only one online learning GPR model
is employed to model the whole working space in [15], and
a meta-learning GPR model is employed in [90] for multiple
new unknown working spaces.

Statistical methods make data distribution assumptions from
the perspective of statistics. They can attain an acceptable
performance even with a small amount of data and become
more effective with more data. Moreover, most of them can
be leveraged for both modeling and control. A comparison of
some typical papers applying statistical methods is shown in
Table IV. This table first includes a simple regression model
SVR in [75], then includes two regression approaches GPR
in [15] and LWPR in [16]. Finally, the observer EKF in [81]
is introduced.

IV. NEURAL NETWORK

Considerable efforts have been focused on NN applications
in the soft robot field. In the early years, extreme learning
machines (ELM) [91] and radial basis function (RBF) [35]
were popular choices. Nowadays, researchers prefer multilayer
perceptron (MLP) [92] and recurrent neural network (RNN)
[93] due to their generalized and sequence-related structures,
respectively. Moreover, for some special proposes like image
processing, autoencoder (AE) [94] and convolutional neural
network (CNN) [95] are utilized. Some typical NNs are
shown in Fig. 6.

A. ELM and RBF

ELM only comprises an input layer and an output layer. The
input layer weights and bias are randomly assigned before
training and fixed during training, while the output layer
weights are trained to decrease loss. A simple loss is utilized
in [96] for kinematics control, which only aims to decrease
the estimation error. The ELM is

â = W out
· f (W inp

· p + B), (11)

where â, p denote the estimated actuation value and the robot
state, W out , W inp denote the output and input layer weights, B
denotes bias, and f (x) = (1+ e−x )

−1 is the sigmoid activation
function. The training process of the original ELM in [96] can
be shown as

min
W out

∥A − Â∥,

s.t. Â = W out
· P, (12)

where A and P are all the real actions and input layer output
in the training dataset, and Â is the ELM estimation based on
P . The optimized output layer weights are Ŵ out

= A · P†,
where P† is the pseudo-inverse of the input layer output P .

In addition to estimation error, the authors of [97] and [98]
involve the norm of the output weight matrix into optimization
error as a regularization term to avoid too large output weights
for kinematics control. Constraints on the range of outputs are
applied in the ELM controller [3] according to the constraints
of the real actuation. The training process can be shown as

min
W out

N∑
i=0

∥ai − âi∥
2
+ α · ∥W out

∥
2
,

s.t. â = W out
· f (W inp

· p+ B),
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TABLE IV
STATISTICAL METHOD PAPER COMPARISON

Fig. 6. Diagrams of (a) MLP, (b) RNN, and (c) CNN. MLP is composed of multiple layers. Parameters W∗, B∗ in one layer are in parallel and can be
trained simultaneously. RNN takes the input data x sequentially, and each bar shares the same weights WS, Wx , Wy , bx , and by . CNN obtains matrix with
channel C1, height H1, and width W1 as input. In the network feedforward, the channel number improves while the width and height decrease using kernels.
Finally, CNN outputs a matrix with dimension (Cn, 1, 1), and a fully connected layer is employed to map to the target dimension k.

∂

∂pi
â(p) > 0 : ∀p ∈ �, i = 1, . . . , n

amin < â(p) < amax : ∀p ∈ �, i = 1, . . . , n (13)

where a is the real actuation value, α is the regulation
parameter, N is the size of the training dataset, n is the degrees
of actuation, and � represents a set of samples basically cover
the input space. The second condition guarantees that ELM
has the same actuation direction as the real conditions, and
the third is the actuation range constraint. Recently, ELM has
been utilized for online pose estimation in [40] thanks to its
simple structure and fewer parameters compared with other
complicated NNs.

Based on the structure of ELM, RBF changes the activa-
tion function from a sigmoid activation function to multiple
Gaussian functions in [35] for forward kinematic modeling.
Clustering can be applied to the training dataset to select
the center of the Gaussian functions [98]. Although ELM
and RBF include some basic elements of NN, e.g., activation
functions and neurons, they contain some designed constraints
for specific tasks and waste a part of their potential mainly due
to the fixed parameters.

B. MLP

MLP is the most popular NN. The diagram of MLP is shown
in Fig. 6-(a). Generally, MLP can be shown as

y = Wn · f (Wn−1 · f (. . . W0 · f (x)+ B0 . . . )+ Bn−1)+ Bn,

(14)

where Wn, Bn represent network weight and bias of n-th layer,
and y, x are the output and input of MLP. To model a robot,
the input is actuation, and the output is the robot state. For

control, the desired and real robot states are input, and MLP
can provide the estimated actuation.

The first paper utilizing MLP in the soft robot field is [99],
which is also the first paper utilizing NN. This work designs
a particular parameter updating strategy for control instead of
the backpropagation widely applied now. Similarly, training
data is normalized in [92] with principal component analysis
(PCA) instead of batch and layer normalization, which are
widely employed currently. MLP has many hyperparameters
and changeable components, and plenty of papers have been
conducted on them. For example, the authors of [100] com-
pare the performance of MLPs composed of different neuron
numbers on position control tasks. Three activation functions
(i.e., log-sigmoid, linear, and tan-sigmoid) are tested in [47]
for pneumatic robot modeling. The stochastic gradient descent
(SGD) optimizer is applied in [101] instead of the popular
Adam optimizer. The authors of [24] comprehensively inves-
tigate the influence of hidden layer number, neuron number,
and batch size on training time and validation loss of sensing
tasks. In general, there is no optimal combination of the
hyperparameters and component structures for all tasks, but
most choices can obtain acceptable performance on most tasks.
The detailed influence of each hyperparameter on the MLP
performance has yet to be fully explored and explained.

Some uncommon MLPs have been applied to soft robots.
The authors of [22] provide targets to the hidden neurons of the
MLP directly, similar to the conditional generative adversarial
network (CGAN), which takes advantage of the information
that is indirectly related to the mapping but restricts the poten-
tial of NN. A U-Net-like MLP is leveraged in [102] for robot
modeling in model predictive control (MPC), which connects
the former and latter layers sequentially. Multiple MLPs are
connected in [103], which have different applications, e.g.,
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forward kinematics modeling in simulation and sim-to-real
transfer learning. The combined MLP can collect actions in
simulation and estimate the corresponding robot states.

For soft robot modeling and control, some unique features
of MLP are developed. For example, the inputs of some
MLPs take physical models into consideration. Based on the
concentric tube model, the translations and rotations of the
concentric tubes are employed into MLP inputs in [104]
for modeling. Furthermore, the authors of [105] compare
different joint space forms of the concentric tubes as input
on the forward modeling estimation tasks. Similarly, PCC is
included in [54] by taking curvatures and curve lengths as
MLP input. The authors of [106] utilize MLP to estimate
physical parameters like mass inertia matrix, which is a model-
based approach with NN. Due to the time-delayed motion, end
positions in the current and past timesteps are fed into the MLP
in [107] for control.

C. RNN

RNN is a kind of NN that is designed specifically for
sequential data. The diagram of RNN is shown in Fig. 6-(b).
Although MLP can also receive temporal data, it is fed into
networks simultaneously and fails to infer the sequential rela-
tionship. RNN takes data in sequence using recurrent structure.
The n-th bar in Fig. 6-(b) can be represented as

Sn = f (Wx · xn +Ws · Sn−1 + bx ),

yn = g(Wy · Sn + by), (15)

where W∗, b∗ are the RNN weight and bias parameters, Sn

is the hidden state of the step n, and f (), g() are activation
functions. As shown in Fig. 6-(b), the network of each step
takes the hidden state from the previous step. Such a structure
infers the sequential relationship of data while the other NNs
take the data input simultaneously. In this case, RNN is more
suitable than the other networks like MLP and CNN for soft
robots, which provide delayed responses. The modeling and
control with RNN share the same data category requirement
with MLP mentioned in Eq. 14, but RNN needs data from
multiple time steps instead of a single time step.

The first RNN applied is modified Elman NN in [108],
which restores information in previous steps with context
nodes for dynamic control. Then, researchers leverage a non-
linear autoregressive network with exogenous inputs (NARX)
in a series of papers [19], [67], [93] for dynamic control. This
kind of RNN receives outputs in previous steps as a part of
input in the current step.

Long short-term memory (LSTM) is a kind of RNN pro-
posed for long-term dependence issues. This network has been
used on endoscopic robot distal force prediction [109], [110]
and external force position and magnitude prediction [111].
Moreover, such a network can cope with sensing signals from
nonlinear time-variant soft sensors and achieves tasks like
position prediction [112], object recognition [113], and shape
reconstruction [94]. In addition to perception, the authors
of [32] dynamically control a robotic catheter with LSTM to
decrease contact force. The authors of [114] employ LSTM
as an offline dynamic controller to cope with the nonlinear

behaviors. In summary, RNNs perform satisfactorily on vari-
ous tasks due to their sequential structures and memory ability.

D. Special NN

There are some NNs that take advantage of visual infor-
mation in soft robot control. For example, AE is utilized to
extract features from the images of soft robots in [94] and
estimate the robot’s shape. CNN estimates shapes [115] and
joint values [116] based on robot images. The diagram of CNN
is shown in Fig. 6-(c). Also, CNN can predict the orientation
of the placenta in [95] and encodes robot deformation for
shape estimation with the help of markers inside the chamber
in [117]. Furthermore, although RNN is the most popular
choice for sequential information processing, CNN can also
be applied for dynamic modeling using rearranged pressure
inputs [118]. The space relationship in a matrix is leveraged
to infer the sequential relationship of an actuation sequence
for hysteresis modeling. A 3D NN is employed in [119] for
a segmental surgical manipulator, which considers the time
sequence between layers and the segmental sequence between
neurons for planning. Spatial sequences of soft modular robots
are considered in [120] by utilizing bidirectional RNN. A gen-
erative adversarial network (GAN) is utilized for synthetic data
in [121].

E. Summary Neural Network

The application of NN in soft robots started with [99]. First,
some simple networks like ELM and RBF are included. Then,
with the development of NN, the researchers give up the
constraints of ELM, change the activation function of RBF,
and enlarge the network. In this case, MLP becomes a good
tool for both modeling and control. Furthermore, due to the
hysteresis of soft robots, RNN is applied to deal with time-
related data. AE and CNN are employed to process images.

To summarize, owing to the large variety of structures,
NN is attractive to soft robot research. For most issues in
soft robot modeling and control, it is highly possible to find
a related NN solution. However, such models require a large
amount of data due to their complicated structures, and it is
challenging to update them online. A comparison of some
typical papers applying NNs is shown in Table V. This table
begins with a simple NN, RBF [122]. Then, a common NN,
MLP [24], is included in this table. Finally, LSTM for control
[32] and CNN for modeling [118] are summarized in Table V.

V. REINFORCEMENT LEARNING

RL copes with high-level tasks by exploring the environ-
ment and exploiting data collected during exploration. This
strategy trains an agent for complicated tasks and requires a
long learning time and a massive amount of data. The agent
is trained considering defined reward functions. This approach
cannot be used for modeling. Moreover, it requires exploring
environments, which may be provided by modeling methods.

A. RL Implementation

In the early years, statistical models were applied as the
agents in RL instead of NN. A GPR model named Gaussian
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TABLE V
NEURAL NETWORK PAPER COMPARISON

TABLE VI
REINFORCEMENT LEARNING PAPER COMPARISON

process temporal difference method is employed in [123] to
control an octopus arm. As the RL agent, a GMM is trained
to estimate robot shape and contact in [124] and control a
flexible surgical robot to go through a tube in [125]. For
robotic catheter control inside a narrow tube, a joint probability
distribution is learned considering various variables like tip
and entrance points, touch state, and action in [33]. Q-learning
is implemented with a Q table or Q function as the agent. The
agent decides the action A based on the state S and a certain
policy like ϵ greedy. The training process of the Q table or
function can be shown as

Q(St , At )← α[R(St , At )+ γ max
a

Q(St+1, a)− Q(St , At )]

+ Q(St , At ), (16)

where St is the state at time t , At is the action decided by the
Q table or function according to the state St , and R(St , At ) is
the reward function. α and γ are the learning rate and discount
rate, respectively. max

a
Q(St+1, a) means the maximal Q value

for the state St+1 and every possible action a. For example,
the authors of [69] exploit Q-learning for many sophisticated
control tasks like turning a handwheel, unscrewing a bottle
cap, drawing a line with a ruler, and so on.

With the help of NN as an agent, RL not only achieves
simple tasks like position reach [126] and trajectory follow-
ing [127] but also addresses some complex issues like gait
design [128]. A soft snake robot is controlled to move on the
ground and arrive at target positions in [128]. It is challenging
to control the robot gait with traditional control methods, but
RL is utilized for gait design and obstacle avoidance in [129].
The authors of [130] fuse the visual and shape information
with NN in RL and control a flexible endoscopy to navigate.

B. RL in Soft Robots

Soft robots can take advantage of various unique RL strate-
gies specifically for soft robots to cope with some challenges.

The infinite DOFs lead to wide actuation and state spaces,
which bring a burden to explore the whole environment. In this
case, most researchers discretize these spaces. The action
space in [123] is restricted to only six available actions, and the
authors of [37] discretize the workspace into a 3D grid with
a resolution of 0.01 m. Although discretization limits the RL
potential, it produces simple spaces and decreases the training
time. The soft robot in [131] is able to keep the end position
invariant while changing the orientation with the help of RL.

One of the most considerable challenges of RL is exploring
the real world, which has a high time cost and may damage
robots. Therefore, modeling in simulation, especially with
physical methods, is widely utilized in the training process.
The authors of [132] first train an RL strategy to control a
robotic catheter system in a simulator named CoppeliaSim and
then test it on the real robot. Constant curvature (CC), a soft
robot modeling method, provides a simulation environment
for [133] at first, and the NN agent continues to learn in
the real world using the Deep Deterministic Policy Gradient
method (DDPG). In most cases, the explored environment
is modeled by a trained NN. For example, MLP is applied
for modeling in [134] as the exploring environment. Also,
RNNs are utilized in [23], [38], which are NARX and LSTM
respectively, for forward modeling of segmented pneumatic
robots. Then, RL agents are trained and validated in reality.

C. Summary Reinforcement Learning

RL application in soft robots first starts with the help of
statistical models as agents, and then NNs take the place due
to their generalization. Discretization is widely applied for RL
in soft robots. Meanwhile, RL leverages soft robot simulators
and stimulates their development. With such RL strategies,
now soft robots can achieve some complicated tasks.

Compared with other approaches, RL requires the most
enormous amount of data. More critically, a predefined agent
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TABLE VII
SUMMARY OF PAPERS AFTER 2019

and interaction with the environment are necessary. Following
such a high cost, RL can fulfill complex and high-level
tasks. With some adaptation strategies like discretization and
simulation transfer learning, the time and resource costs can
be reduced to some extent. A comparison of typical papers
applying RL is shown in Table VI. This table begins with an
RL strategy applying the statistical model Gaussian process as
agent [123], and the authors of [127] apply NNs for RL. Then,
two strategies for soft robot RL are included. RL strategies like
discretization are employed in [37], and the authors of [133]
pretrain the agent in simulation and test it in reality.

VI. CONCLUSION AND DISCUSSIONS

In this section, we summarize the foundations, data-driven
methods, and their representative papers in Subsection VI-A.
The benefits and limitations of data-driven approaches
involved in the review are included and compared in
Subsection VI-B. Finally, we forecast the emerging directions
for soft robot research in Subsection VI-C.

A. Summary

This review summarizes the data-driven approaches applied
in soft robot modeling and control. The physical approaches
provide simulators for data-driven methods, like SOFA [48],
Pyelastica [36], and SoRoSim [53]. The Jacobian matrices
describe soft robots and control the robots with the inverse
Jacobian matrix or optimization. The authors of [34] firstly
utilize the Jacobian matrix in the main approach.

Statistical models aim to achieve modeling and control with
datasets. Regression methods like GPR [70] and LWPR [16]
can estimate the mapping functions, and each trained model
can be applied for either modeling or control according to
the input of the training data. GMM [74] encodes the dataset
into a joint data distribution, which can be applied for both
modeling and control. Observers like EKF [88] can estimate
robot states based on one existing modeling method. Recently,
NN has been the most compelling tool for soft robots. ELM
[3] was a popular choice in early years, and now MLP [100],

which is more complicated, and RNN [19], which can cope
with time-related data, have shown their benefits. Similar to
statistical models, NN can also be applied for both modeling
and control. RL shows good performance on position control
[38], planning [31], and even some sophisticated manipulation
tasks [69]. Generally, RL does not provide a robot model but
exploits an existing environment. The papers based on data-
driven methods, which are cited in this review and published
after 2019, are summarized in Table VII.

It is apparent that sophisticated models like RL require a
larger amount of data while achieving better performance,
but they also improve the computation cost. Oversimplified
approaches like the Jacobian matrix are only feasible for
limited simple tasks, but they are easy to understand and
can achieve a high control frequency. Considering both cost
and performance, each model has its own advantages and
disadvantages, and there is no optimal solution for all tasks.

B. Advantages and Limitations

Statistical modeling and control approaches are moderate
and flexible approaches in these methods. Generally, they
only require a moderate amount of data, which is less than
the NN requirement but more than the requirement of the
Jacobian matrix. Also, the control frequency is lower than
that of the Jacobian matrix but higher than the RL frequency.
One statistical model can be applied for both modeling and
control online, but some models are only local models and lack
generalization ability, which can be proven by the working
space segmentation in [70]. NN is very suitable for soft
robot modeling and control due to the nonlinear activation
functions and complex network structure. This model shows its
general applicability. However, the data amount requirement
accelerates the aging of soft robots and takes a long time for
data collection. NN cannot be a fast and online approach due
to the slow training process. By exploring the environment
and exploiting the data, RL can achieve some high-level tasks
like navigation. Careful planning is not required even for
sophisticated tasks. Meanwhile, RL has a high requirement
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for time and computation resources. Exploring the real world
may damage the robots, and some environments, like the
human body, cannot be applied for exploring. Highly realistic
simulators are required if the RL agent is trained in simulation.
To summarize, RL is a useful but consuming approach.

C. Emerging Directions

In the other research areas like computer vision and natural
language processing, the original NN is simple at first [135].
Then, more complex NNs with large sizes and different
structures are proposed, like ChatGPT, BERT [136] and YOLO
[137]. Similarly, the size and complexity of NN in soft robots
will improve. Such models can achieve more challenging tasks
compared with simple NNs. However, large models lead to low
frequency for control implementation, and one should consider
balancing the model complexity and computation cost based
on the modeling and control requirement.

The research on soft robots begins with the application of
one single approach and simple tasks. Recently, there have
been some papers combining multiple methods to solve diffi-
cult problems like model mismatch. For example, the authors
of [114] apply offline RNN and online kinematics model for
control. MPC and iterative learning controller are combined
in [60]. Two NNs are included in [138] for RL agent and
model mismatch adjustment. As discussed in Subsection VI-B,
each method shows its own advantages and disadvantages.
The usage of multiple methods can take advantage of every
approach and achieve better performance.

The medical environment, as one of the most significant
applications of soft robots, has a high standard for safety,
efficiency, and convenience. To involve soft robots in medical
applications, some advanced modeling and control strategies
are required. Although so many works achieve controlling the
robot end pose, it is challenging to control the whole robot
shape and avoid contact which may damage the human body.
NN and RL lack interpretability and are challenging to apply
in real surgery. Also, it is impossible for RL to explore in vivo,
and RL agents can only be trained in simulation or physical
simulators. The automatic medical soft robot control is still in
its nascence from the aspect of safety and data requirements.
Cooperation among robotics researchers, doctors, and related
departments is required to address these issues.
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