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Abstract

Purpose—State-of-the-art methods for recognizing human activity using raw data from body 

worn accelerometers have primarily been validated with data collected from adults. This study 

applies a previously available method for activity classification using wrist or ankle accelerometer 

to work on datasets collected from both adults and youth.

Methods—An algorithm for detecting activity from wrist-worn accelerometers, originally 

developed using data from 33 adults, is tested on a dataset of 20 youth (age 13±1.3). The 

algorithm is also extended by adding new features required to improve performance on the youth 

dataset. Subsequent tests on both the adult and youth data were performed using crossed tests 

(training on one group and testing on the other) and leave-one-subject-out cross-validation.

Results—The new feature set improved overall recognition using wrist data by 2.3% for adults 

and 5.1% for youth. Leave-one-subject-out cross-validation accuracy performance was 87.0% 

(wrist) and 94.8% (ankle) for adults, and 91.0% (wrist) and 92.4% (ankle) for youth. Merging the 

two datasets, overall accuracy was 88.5% (wrist) and 91.6% (ankle).

Conclusions—Previously available methodological approaches for activity classification in 

adults can be extended to youth data. Including youth data in the training phase and using features 

designed to capture information on the peculiar activity fragmentation of young participants 

allows a better fit of the methodological framework to the characteristics of activity in youth, 

improving its overall performance. The proposed algorithm differentiates ambulation from 

sedentary activities that involve gesturing in wrist data, such as that being collected in large 

surveillance studies.
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Introduction

Traditional methods of measurement of physical activity include using a wearable device on 

the hip over a seven-day period of activity to classify participants into activity categories. 

Accelerometer-based activity monitors that output activity “count” values aggregate the 

motion of the device over a short window of time (“epoch”). The count value does provide a 

useful summary of overall motion along with some indication of gross motion and 

ambulation when placed at the hip. A recent trend, however, is to move the activity monitor 

from the hip to the wrist location, to increase wear-time compliance and capture sleep-

related behavior, as in the UK BioBank and U.S. National Health and Nutrition Examination 

Survey (NHANES) studies (26, 30). This trend recently started to involve physical activity 

estimation in youth using wrist worn accelerometers (7). Interpretation of wrist-based count 

values is challenging due to hand gesturing, which may confound the mapping between 

overall body ambulation and motion of the sensor (20). More detailed information about 

wrist motion captured in raw accelerometer data sampled at a high rate, however, may 

permit automatic identification of classes of activity types, such as ambulation vs. sedentary 

behavior. This information could be used directly to characterize activity, or perhaps to 

improve accuracy of accelerometer-based energy expenditure estimation (1, 8).

Prior work detecting activity type from raw accelerometer data from a variety of sensor 

locations on the body has primarily focused on detecting the activity of adults (e.g., (2, 16, 

34)). Recent work on the detection of activity type from raw accelerometer data on the wrist 

has focused mainly on adults (16, 24, 34) with the only exception being the work by Trost et 
al (29). In this study, we tested the applicability of an activity recognition algorithm based 

on ankle or wrist raw accelerometer data, previously developed for and validated in adults 

with youth aged 11 to 15 (16). The type and amount and intensity of activity of children and 

youth may differ from those of adults (5, 27). Algorithms developed for adults may not work 

well on children for one of two reasons: activities that children perform may not be 

represented in the adult models, and features used by the models for adults may not 

adequately capture important distinctions between activities in children, if children perform 

those activities in dramatically different ways. Whereas physical activity assessment in 

children and youth using activity count values obtained using accelerometry is common (7, 

21), researchers are still exploring whether the same models that worked for adults can be 

applied to children.

Activity recognition in youth: related work

Previous studies involving automatic activity recognition in youth from accelerometers have 

been surveyed (see Table 1). Four studies use activity count values. One such study using 

classification features extracted from activity counts (1 s epochs) gathered from 41 youth 

aged 10.8 ± 1.3 years classified activity into 10 categories (stationary, biking, crawling, 
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walking, scooter, horseback riding, jumping and floor exercise) with 67% accuracy using 

monitor data from the hip and wrist simultaneously (23). De Vries et al. tested single sensor 

solutions on 58 participants, using ankle and hip sensors worn by 9-12 yo youth that output 

1 s count values (9). When classifying seven activity types (sitting, standing, walking, 

running, rope skipping, playing soccer, and cycling) from 20 minutes of data per person, 

they obtained an overall accuracy of 68% ankle data, and 77% using hip data. More recently 

Trost et al. attempted the classification of five activity types (sedentary, walking, running, 

light intensity household activities or games, moderate-to-vigorous intensity games or 

sports) from activity count data with 1 s epochs, evaluating the algorithm on data from 100 

participants (5 to 15 yo), with two minutes of classified data for each activity (28). An 

overall accuracy of 88.4 % from a hip-worn sensor was reported. The most recent paper to 

include 1 s epoch counts processing for activity recognition was by Hagenbuchner et al who 

involved 11 pre-school children (3 to 6 yo, with a total of 264 minutes of classified data) 

(12). Four classes were recognized (sedentary activities, light activities, moderate to 
vigorous activities, walking and running) reporting 82.6% accuracy.

An alternative approach to using count values is to use the raw accelerometer data and 

compute a richer set of features that may help differentiate specific activities. Four recent 

studies have explored this approach for activity type detection in children. In Hikihara et al. 
(13), 32 Hz data from a waist-worn triaxial accelerometer were used to distinguish between 

two non-locomotive and locomotive activities in 68 6-12 yo children with approximately one 

hour of data from each child, classifying 99.1% of examples correctly. Nam and Park (19) 

proposed a method using a waist-worn accelerometer and a barometric pressure sensor to 

classify 11 classes (wiggling, rolling, standing still, standing up, sitting down, walking, 

toddling, crawling, climbing up, climbing down and stopping) of 10 1.3-2.4 yo toddlers. 

With a total of 50 h of acquired data, they obtained 88.3% classification accuracy using the 

accelerometer alone and 98.4% using both the accelerometer and barometric pressure 

sensors. Del Rosario et al. (10) performed activity classification using a smartphone 

embedded accelerometer, gyroscope and barometric pressure sensor, evaluating performance 

on 20 young adults (21.9 ± 1.7 yo) and 37 older adults persons (83.9 ± 3.4 yo). The same 

feature set was used in both age groups to classify 9 activities (stand, sit, lie, walk, walk 

upstairs, walk downstairs) from 10-30 minutes of data per person collected when the 

smartphone was kept in a person's trousers front pocket. Overall recognition accuracies of 

79.9% and 82.0% for young and older adults, respectively were reported. Finally, Trost et al. 
(29) proposed a method based on wrist or hip accelerometer for recognizing 12 activities 

merged to 7 categories (lying down, sitting, standing, walking, running, basketball and 

dancing). A total of 52 (13.7 ± 3.1 yo) children were included in tests and 2 min of each 

activity were classified obtaining 91% and 88.4% accuracy on average at the hip and at 

wrist, respectively.

Previous work did not test activity classification methods designed for adult activity on 

youth data. In this work, we fill this gap by testing an activity recognition algorithm we 

previously developed for adults (16) on data from youth performing a similar set of 

activities. The objective behind this approach is to check if it is possible to apply existing 

methods to this different age group and if it is possible to improve its results in a general 

solution that could effectively process data from both age groups. While it is theoretically 
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possible to create algorithms tuned for all age ranges, that would require large age-specific 

data collection efforts, with somewhat arbitrary age cutoffs. Moreover, deployment of 

algorithms would be simpler in large surveillance studies if the same algorithms could be 

used for both adults and children. Even if the algorithms could have to be tuned differently 

based on age, using the same set of features for adults and children might ultimately allow 

algorithms to be developed that adapt smoothly to different age groups, rather than using a 

hard (and unrealistic) age threshold to process data using two entirely different algorithms 

and models. . Both the youth and adults data in our work were acquired simulating free 

living conditions: participants were asked to do things as naturally as possible while doing a 

set of 23 activities for youth and 26 activities for adults classified among 4 general classes. 

Sensors were again placed at the ankle and wrist (each sensor was tested independently). 

Modifications to the algorithm were proposed – specifically in the selection of features 

computed from the raw data and fed to classification algorithm – that allow better detection 

of differences in the activities being performed by the youth. The resulting method was 

tested on the adults’ data as well as the combined dataset.

Materials and methods

1. Datasets

Participants performed a set of simulated daily activities in a lab environment while wearing 

a suite of synchronized sensors, following a similar protocol used when collecting data from 

33 adults in prior work (16). Twenty youth (12 boys 8 girls, ages 13±1.3) were recruited 

from the Stanford, California community. The Stanford University's Institutional Review 

Board approved the data collection protocol, and written informed consent was obtained 

before participation. Triaxial Wocket accelerometers (14) were secured to the wrist and 

ankle positions on the body using custom Velcro bands. Wockets are small, thin, and 

lightweight devices (43 × 30 × 7 mm, 13 g) making them particularly suitable for long-term 

physical activity monitoring studies. Raw acceleration data (range ± 4 g) were acquired at 90 

Hz and sent using the Bluetooth wireless protocol to a smartphone. The wrist sensor was 

placed on the dorsal aspect of the dominant wrist midway between the radial and the ulnar 

process. The ankle sensor was placed on the outside of the ankle, just above the lateral 

malleolus. The ankle placement site was chosen because it is an ideal site for ambulation 

detection (16). The wrist is a practical site for long term monitoring, because sensors can be 

attached using watch-like bands, can be worn during sleep comfortably, and do not need to 

be removed when changing clothes.

Participants were asked to perform a guided sequence of laboratory-based physical activities 

and common daily activities lasting 3-5 min each. Activities were annotated during the 

execution of tasks using a voice recorder, and then timings on the voice recording were used 

to annotate start/stop times for specific activities being observed. Data and annotation were 

synchronized using custom software (14). Data collected from the youth using this 

procedure will be identified as the Y-dataset (Youth). Similar data collected in prior work 

from adults will be identified as the A-dataset (Adult). Table 2 summarizes the list of 

available activities in each dataset. Activities were grouped into four classes: sedentary, 
cycling, ambulation and other activities. Multitasking behaviors were not included, except 
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for the activity “walking-carrying a load” in A. Activity categories were reduced to four 

categories used in previous work on wrist/ankle activity recognition in adults (16). Activities 

that were done in an upright posture but that can be physical demanding, such as cleaning 

and wall painting, were included in an other activities because they did not seem appropriate 

for the sedentary, ambulation and cycling classes. By collapsing activities into categories, 

the machine learning algorithms had more training data; future work with much larger 

datasets could explore detection of specific activities as well. To facilitate comparison with 

past work, new sport and leisure activities of the Y dataset involving movement in the 

upright position and not represented in A, were included in the other activities class.

2. Data preprocessing and features evaluation

Three-axis raw accelerometer data were preprocessed to extract the Signal Magnitude vector 

(SM):

where acc indicated the recorded raw data in g-units (1 g = 9.81 m/s2). The resulting 90 Hz 

SM signal was independent of the orientation of the sensing node. SMs were low pass 

filtered using a 15 Hz cut-off 4th order Butterworth filter to limit the bandwidth of the signal 

to the frequencies common in human motion (3). To classify data within the four defined 

activity classes, the SMs data were divided into 12.8 s non-overlapping windows. This 

window size was proposed by Zhang et al. (34) and also applied in Mannini et al. (16). 

Although prior work has shown that other window sizes (e.g., 4s) can be used with only 

modest degradation of performance (16), here use of the same window length value as in 

two prior studies allows a direct comparison between these results and those from the 

previous one about activity classification in adults(16).

The datasets used in this work were collected in the lab but include semi-structured activities 

labeled in real time, introducing small errors in annotating activity transitions due to reaction 

time and the difficulty of labeling activities when transitions occur quickly. For this reason, 

one window (12.8 s) was discarded before and after each label transition. Another type of 

annotation error is that some short activity changes during semi-structured activities were 

not labeled at all. For example, the dataset contains examples where participants stop briefly 

during non-treadmill walking, such as at a door that had to be opened. In such cases, even 

though a participant is standing still briefly, the label for the data is still ambulation. Some 

errors can be detected using the ankle acceleration recordings because in data labeled as 

ambulation, the SM of the ankle sensor is expected to be significant. Therefore the ankle 

sensor SM was used both to identify these labeling errors and to correct labels indicating 

ambulation. In particular, 2 s windows labeled as ambulation with a standard deviation less 

than 0.1 g were marked as labeling errors and discarded. This value was set by empirical 

observation so that ambulation with a cadence of 1 impact per window (i.e., nearly any 

movement) would be detected with an ankle sensor. Data-loss due to Bluetooth wireless 

transmission errors was handled by discarding windows with less than the 80% of the 

number of expected samples at the nominal 90 Hz sampling rate. In such cases, a new 
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window was started at the end of the data gap. Some fluctuations in the sampling rate may 

occur in the remaining windows due to the wireless connection. Before extracting frequency 

domain features, SMs in each window were linearly interpolated to obtain the same number 

of samples in every window.

Initially, the feature set defined in previous work was tested (16). Those features, listed in 

Table 3, encoded both temporal and frequency domain information, computed from 

acceleration SM. As in our prior work (16), the feature vectors (computed on every 12.8 s 

window) were used as input for a Support Vector Machine (SVM) with radial basis function 

kernel (31). Also as in prior work (16), the results were evaluated using cross-validation with 

Leave-One-Subject-Out (LOSO). Finally, the parameters of the radial basis function used for 

SVM classification were retained from the previous study (upper complexity bound C = 100 

and γ = 0.1) for evaluating the previous version of the algorithm and then optimized by 

running a grid search using classification accuracy as the optimization criterion. As 

described below, our initial testing suggested that the youth dataset recognition could be 

improved by adding some additional features to the algorithm. The adult dataset upon which 

the algorithm was developed did not include sports activities such as basketball, soccer, and 

tennis that were included in the youth data. To capture such activities that are more frequent 

in youth than in adults, the signal power at frequencies higher than 3.5 Hz, normalized by 

the total power, was included as a new frequency domain feature. The 3.5 Hz cutoff 

frequency was selected because previous studies pointed out that most of the energy of 

human movement during daily activities lies in the 0.3-3.5 Hz band (25). High frequency 

components, which are present especially in lower limb recordings, are mainly from high 

impacts (4); therefore, their presence suggests that the movement being performed involves 

high impact, as is common in ambulation or sport.

New features were introduced to capture information about starts and stops of short activity 

bouts that may be common for children (21, 22). Evaluating relevant acceleration bouts 

within the window allows to extract information about the activity fragmentation, while 

keeping the same window length used in previous work (16, 34). The fragmentation of the 

acceleration signal magnitude was evaluated as it is done in evaluating onset of 

electromyographic signals (18):

• SM were rectified by subtracting a constant value corresponding to gravitational 

acceleration (1 g) and removing the sign of the result.

• Windowed data were then low pass filtered (Butterworth filter, 5 Hz cut-off 

frequency).

A threshold (Th = 0.2*g, i.e. 1.96 m/s2) to identify active samples was then applied. In 

previous studies, periods with unfiltered acceleration SM lower than 0.4 m/s2 are considered 

static (32). Our threshold results from preliminary observation of rectified and filtered SM; it 

is significantly different, because our aim is to identify with high specificity periods of 

relevant activity, as opposed to periods with little motion.

Four different activity fragmentation features were evaluated as follows:

1. Fragmentation, active samples:

Mannini et al. Page 6

Med Sci Sports Exerc. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Where W is the window length in samples. This feature identifies the amount of 

activity within the window that is over the threshold, thereby providing a rough 

estimate of the amount of relevant activity being recorded in the window. This 

feature could distinguish between activities that result in relevant acceleration in 

most of the window and activities in which the relevant activity takes place for 

only a portion of the window.

2. Fragmentation, number of activations:

This feature identifies the number of threshold crossings within the window 

(rising edges only), normalized to the number of active samples FS, thereby 

capturing movement fragmentation within the window. This feature could 

discriminate impulsive events from longer-lasting acceleration events, since it 

quantifies how many times within the window the acceleration passed from the 

inactive to the active condition.

3. Fragmentation, mean activation interval duration

This captures the mean duration of activation intervals within the window, 

normalized by the window length. An activation interval is defined as the amount 

of samples between two consecutive threshold crossings. This feature provides 

information on movement bout fragmentation within the window that could help 

discriminate between activities that involve stable movements, such as those in 

natural walking, and those with short bouts, such as sport ones.

4. Fragmentation, activation interval duration variability

This feature captures the standard deviation of the duration of activation intervals 

within the window, normalized by the window length, thereby providing 

information on uniformity of activation intervals within the window. This feature 

may help discriminate between activities with cyclic movements with a very 

stable ratio between active and inactive phases, and more random activities. A 
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stable cyclic movement would result in lower variability of activation intervals 

that would repeat themselves within the window. Fast and aperiodic movements, 

however, such as those in recreational activities would result in highly variable 

activation bouts.

If no samples over the threshold were observed, FS, FAN, FAM and FAV were set to 0. FAV 

was set to zero also in the case of #threshold_exceedings less than 2.

In summary, six new features specifically developed for activities common in children were 

computed and available to the classification algorithm. All features are computationally 

efficient, permitting real-time recognition in future systems.

3 Feature selection, classification and validation strategies

In prior work, manual testing was used to assess the contribution of some group of features 

to overall algorithm performance (16). Here, new features were added to the feature space, 

and an automatic sequential forward search feature selection process (15) was adopted, 

where the LOSO validation output was used as the selection criterion. Sequential forward 

search is a suboptimal algorithm for feature selection that cannot guarantee the optimality of 

the selected set (15). However, it is a computationally acceptable (linear time complexity) 

dimensionality reduction strategy that may improve classification results by discarding 

redundant features prior to the classification step (15). SVM classifier training does not rank 

features (6). Therefore, feature set dimensionality reduction is effective for SVM classifiers. 

Reducing feature space dimensionality typically reduces the amount of training examples 

required to obtain reliable recognition results, because there is a lower risk of over-fitting 

examples and better generalization (15, 33). Moreover, by reducing the number of features, 

the complexity of the classifier is reduced (less parameters are needed) then the 

computational cost of both training and real-time recognition is reduced (33). In prior work 

the same feature sets were used for both the ankle and wrist algorithm training (16). Here, 

however, the algorithm could select different feature sets for the two sites; automatic feature 

selection was run on each site separately to obtain a location-specific feature set, given that 

signals may have different characteristics at different body sites (3, 17).

The LOSO cross-validation approach was preferred over standard n-fold cross-validation. In 

standard n-fold cross-validation, data are mixed from all subjects and held-out data are 

randomly selected; LOSO, alternatively, prevents similar data collected from the same 

participant at about the same time from ending up in both the training and test datasets (11, 

16). Therefore, LOSO results are more likely to demonstrate how a method may work under 

realistic conditions where a new participant, not included in the training data, is tested. 

LOSO is particularly challenging if testing occurs across different populations of people, 

such as training on adults and testing on youth, as done here. Most previous studies on 

activity classification did not apply LOSO cross-validation (13, 19, 23, 28, 29). A few 

studies did use this type of cross-validation (9, 10, 12), but they limited their testing and 

evaluation to a homogeneous pool of healthy adult users, with the exception of Del Rosario 

et al. who involved two age groups: 37 elderly (average age 84 yo) and 20 young adults 

(average age 22 yo) (10).
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The two datasets used in this work, adult activity (A) and youth activity (Y), were collected 

as part of two separate experiments. All activities in both datasets were chosen to represent 

common activities, and these are significantly different in an adult and youth population, as 

shown in Table 2. In LOSO validation using data from a single age group, all activities for 

that class listed in Table 2 were used. For LOSO validation using both age groups, classes 

were removed if no training data were available for that class. For example, when training on 

A and testing on Y, all the activities in A were trained, but those activities not available in A 

but in Y were removed from Y (i.e., the sport activities in the other activities class and the 

video gaming activities in the sedentary class were removed from Y for testing, because no 

training data were available for them). Alternatively, when training on Y and testing on A, 

activities in A that did not have training data were removed (i.e., painting with roller and 

painting with brush).

Testing proceeded as follows:

– Experiment 1: Test the algorithm originally developed for A on Y. This first 

experiment was aimed at evaluating if the previous existing methodology could be 

extended without modification to Y by running a LOSO cross-validation on Y.

– Experiment 2: Extend the feature set to incorporate additional features intended to 

capture more information about the youth activities, and train and the test using 

LOSO validation separately on the Y and A datasets. This was done to check if the 

proposed modification to the methodology improves the recognition accuracy respect 

to the original algorithm on both datasets.

– Experiment 3: Cross-test the algorithm by training on A and testing on Y, and 

training on Y and testing on A. Both the original feature set and the newly proposed 

set are evaluated. As mentioned above, activities not represented in the training set 

(i.e., without training data) were removed from the test set. The goal of this 

experiment was to assess whether information learned from one of the groups could 

be used to recognize similar activities in the other.

– Experiment 4: Test the algorithm with both datasets combined. LOSO validation is 

performed on A+Y, without removing any activities from either dataset. This test was 

performed to check if it is possible to obtain a general classifier that works equally-

well on both groups.

Results

1. Experiment 1: Test the algorithm originally developed for A on Y

The first test consisted of running a LOSO validation on the youth dataset, using the 

previously existing feature set (16). Ankle and wrist classifications were correct in the 

85.9% and 89.7% of cases, respectively. Results are reported in Table 4, part A.
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2. Experiment 2: Extend the feature set

Table 3 shows the feature sets obtained for wrist and ankle activity classification after (1) 

adding the new features, (2) applying the feature selection approach and (3) optimizing 

SVM parameters.

The feature selection procedure was run independently for the wrist and ankle, selecting 9 

wrist features and 7 ankle features. These location-optimized feature sets (including features 

designed to capture more information about the youth activities) led to improved results, as 

summarized in Table 4, part B, and in Table 5. By using the new feature set with the 

automatic feature selection, an improvement in overall classification accuracy of 2.7% was 

obtained for the ankle and 5.1% for the wrist. The detailed classification results for each 

type of activity are reported in Table 5.

SVM parameter optimization was used to find radial basis function parameters for the ankle 

(C = 16, γ = 0.25) and wrist (C = 128, γ = 0.0625) classifiers. However, comparing these 

parameter optimization results with the previously proposed configuration (C = 100, γ = 

0.1) improved overall accuracy by less than 0.5% for both ankle-based and wrist-based 

classification.

Solution robustness respect to different window sizes (8 s , 6.4 s, 4 s and 3.2 s) was tested. 

Classification accuracy decreased when reducing the window length. However, even in the 

worst case, the accuracy remained higher than 80% (83.5% at the wrist and 86.9% at ankle 

for the smallest window).

3. Experiments 3 and 4: Tests on both A and Y datasets

Table 6 shows results obtained by training on one dataset and testing on the other 

(experiment 3). Both the new and old feature sets were tested. Classification accuracies 

varied in this case from 79.3% to 87.4% at the ankle and from 58.8% to 71.8% at wrist.

Table 4, part C shows the results of running LOSO cross validation with the combined 

datasets including all 53 participants (experiment 4). The classifier was trained without 

respect to age group. The overall accuracy for this validation test reached 88.5 % at wrist 

and 91.6% at ankle. The contribution of the youth and adult results to the overall accuracy 

are reported in Table 6. Table 6 also summarizes accuracy results for all the tested 

experiments, showing the overall recognition accuracy and the recognition accuracy of each 

activity class.

Discussion

Feature sets

The extension of the methodology presented in Mannini et al. (16) to the Y dataset 

(experiment 1), using the same feature set and classification approach used on the original A 

dataset, produced classification results comparable to those in most previous studies (see 

Table 4 part A and Table 1). However, a significant improvement on this new group was 

obtained in experiment 2 by adding 4 (wrist) or 3 (ankle) new features and pruning 8 of the 

old features, as identified by automatic selection (table 4 part B). In addition to features 
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related to basic signal structure (mean, standard deviation, acceleration range), activity 

fragmentation features appear to be an important source of information (see Table 3) for 

both ankle and wrist sensing sites. The ankle classifier exploited the ratio between the 

dominant frequency of the currently tested window and the dominant frequency of the 

previous window (i.e., the prior 12.8 s). This feature, used in the previous adult-only study 

as well (16), captures temporal information that is useful for identification of consistently 

periodic behaviors such as ambulation or cycling at the ankle site. This feature was 

discarded at the wrist site; the activities tested here may exhibit more constant, periodic 

motion at the ankle than at the wrist.

The activity fragmentation features that were included to capture information about some of 

the youth activity, such as sports, encode information about signal power, taking into 

account the amplitude of the signal, the time duration and frequency of significant 

acceleration episodes within the window. Accordingly, when these features were available, 

several power-related features were discarded by the feature selection strategy. Similarly, the 

introduction of the “range” feature, jointly with the “maximum value” feature, led to the 

algorithm discarding the minimum-value feature at both ankle and wrist. The minimum may 

be less informative than the maximum acceleration, given that a low SM depends upon slight 

variations of the SM around 1 g. Such values can result from noise or from downward 

accelerations that compensate for the gravitational acceleration measured by the sensor. 

Such direction of movement at the ankle site, is necessarily followed by an impact, that is 

already observed by the “maximum value” feature.

Not all the frequency domain features proposed previously (34) and confirmed in our 

previous work (16) were actually selected by the automatic selection strategy. In particular, 

the first dominant frequency was retained for both ankle and wrist classifier, but the feature 

selector discarded the second dominant frequency and the dominant frequency in the band 

0.6-2.6 Hz. The number of activity fragments within the window may capture the 

information missed by discarding those features: a large number of activations within the 

window should be associated with fast movements that involve frequent accelerations and 

decelerations; a low number of activations may be associated to slow or sporadic movement 

episodes in which the amplitude of the acceleration is smoother. At the wrist site, a newly 

introduced frequency domain feature, the power at frequency components higher than 3.5 

Hz, was selected.

Activity classification using youth data

When using the new feature set on the newly available youth dataset, both ankle and wrist 

overall accuracy exceeded 90% (see table 4A and 4B). Updating the feature set resulted in a 

significant improvement on youth activity classification accuracy, especially for the other 
activities class. This result was expected after the introduction of the new features that are 

capable of extracting information about movement fragmentation, typical of recreational 

activities. Moreover, misclassifications are consistent with intuition. With the ankle 

classifier, for example, 24.5% of basketball-passing windows were misclassified as 

sedentary, which is consistent with someone temporarily keeping feet still doing this task 

(for a short 12.8 s window). Similarly, cleaning room and tennis-ball:-throwing-catching 
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were misclassified as sedentary from ankle data in 16.1 % and 20.2 % of cases, respectively 

– likely as a result of short bouts of no leg motion. Wii games were misclassified as other 
activities using ankle data in approximately the 10% of cases. Despite the sedentary nature 

of video-gaming, some Wii-games can actually be similar to sport activities, such as those 

included in other activities, if players engage in full-body motion when playing. When 

assigning activities to classes, we clustered the Wii games with sedentary video gaming in 

the “sedentary” class instead of grouping it with sport activities in the “other” class because 

Wii games can be played without moving feet, and even while sitting, and some children 

were observed doing so. At the ankle, misclassifications also occur between ambulation and 

other activity, basketball dribbling and ambulation, and walking natural and other categories. 

In all instances, the relatively small percentage of errors can be explained by the variability 

in the behaviors being studied.

Table 5 illustrates challenges with wrist-only activity recognition. Approximately one fourth 

of walking natural data were misclassified as other activities, whereas slow speed treadmill 

walking (2 mph) had the highest number of misclassifications in the ambulation class. Wrist 

movement during slow treadmill walking may not be significant. Exercise bike pedaling was 

classified as sedentary in almost all cases (88.9%). During this activity, the wrist was placed 

on the exercise bike handlebar and its movement could be negligible. Conversely, outdoor 
cycling was characterized by more significant wrist movement due to more variable wrist 

movement and vibrations that may result from real bicycle riding. Three of the youth 

participants were not comfortable with riding a bike and so they only used the exercise bike. 

As a consequence their cycling data were misclassified (see Table 5). Sport activities may 

involve ambulation and active bouts followed by quasi-sedentary periods. This resulted in 

higher error rates for basketball passing, soccer dribbling and tennis ball fielding. As with 

the ankle, Wii activities at the wrist were sometimes classified as other activities instead of 

sedentary as expected.

Cross-tests (experiment 3)

When training the SVM classifier on all available adult data and testing on all available 

youth data (or vice versa, see Table 5), ambulation and sedentary activities were generally 

correctly recognized, whereas more errors are found in the other activities. Cycling detection 

using wrist data was problematic if the model was trained on youth data and tested on adults. 

Both the ankle and wrist classifiers obtained overall recognition accuracies higher than 75% 

for sedentary and ambulation classes, even if the tested population was completely different 

in term of age of participants.

Merged dataset LOSO tests (experiment 4)

Merging both datasets in a single, larger dataset allowed us to use LOSO validation to verify 

the classifier independently from the age group (Table 4 part C and Table 6). When training 

data reflects testing data well, in this case including both examples from adults and youth, 

better performance would be expected, and we confirmed that here. For what concern the 

wrist classifier it was confirmed that the correct classification rate for cycling in adults was 

low in the merged dataset as well. This was because most of the adults cycling data were 

Mannini et al. Page 12

Med Sci Sports Exerc. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquired on an exercise bike. As stressed before, the wrist movement in exercise bike 

pedaling may be negligible.

Overall, the results confirm that the activity recognition method proposed previously (16) 

can be applied to recognize activity on youth data as well on adults. The LOSO validation 

results on the complete dataset (with both young and adults data) show that training 

classifiers with data from different age groups does not significantly reduce activity 

classification performances (Table 4C). Merging data from the two groups into a single 

dataset results in an accurate classifier that is not specific to one age group.

Comparison to literature

Prior work on activity classification using accelerometers in youth uses different activity 

sets, age ranges, number of participants, amount of processed data and experimental setups, 

and validation approaches (see Table 1), making direct comparison of results challenging. 

This study demonstrates a solution with overall accuracy higher than 90% for both wrist and 

ankle in a four-class activity problem, tested on structured and semi-structured activities. 

Unlike prior work, adults and children are considered together. Del Rosario et al. included 

activities from elderly and young adults, classified with 82.0% and 79.9% accuracy 

respectively, but from a smartphone in the trouser pocket (10). Only two previous studies 

focus on wrist activity classification in youth. Accuracy results obtained by Ruch et al., (23) 

who used wrist and hip sensors simultaneously, 67.0% on 10 classes. Activity counts were 

used instead of raw data to extract features. Trost et al. recently achieved wrist activity 

classification in youth with 5-class accuracy results similar to those presented here (88.4 

± 3.0% at wrist). In that study, a smaller number of activities were merged into five broad 

categories. LOSO cross-validation was not conducted; however, the authors applied a 

modified version of n-fold cross-validation to prevent data of the subject being tested from 

being included in the training set (29). Two previous studies that did not use LOSO cross 

validation show recognition accuracies larger than ours. In Hikihara et al. the classification 

was a 2-class problem, discriminating data between locomotion and non-locomotion using 

raw accelerometer readings from the waist, obtaining a 99.1% accuracy (13). Nam and Park 

report 98.4% accuracy using sensors including the accelerometer and barometer, but in this 

case the target population was significantly younger (1.3 to 2.4 yo), resulting in a very 

different activity vocabulary (19).

The dataset and Matlab code used in this study will be available to interested researchers 

(https://mhealth.ccs.neu.edu/data/).

Conclusions

In this work, good overall classification results were obtained using previously defined 

methods and features. However, given the different nature of activities that are much more 

frequent in youth than in adults (such as video-gaming or sports), the accuracy of the 

classifier may take advantage of the introduction of a different set of dedicated features. 

When validating methods with a LOSO approach starting from a merged A+Y dataset, it 

was confirmed that the accuracy can be improved by using data from both groups, even if 

the tested subject was not included in the training set. At the same time, the algorithm 
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preserves all the advantages of the previously proposed method in term of real-time 

implementation suitability and high comfort for the user given the single sensor wrist or 

ankle-worn proposed configuration.

In conclusion, as large surveillance studies include young participants in their evaluations 

with wrist worn monitors, it will be possible to use previously available methods, provided 

that data from young participants are included in the definition of classification rules. 

Important accuracy improvement would be obtained if the feature set also includes 

quantities that can describe the impulsive and fragmented nature of many youth activities.
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Table 2

Activities in the adult and youth datasets, grouped into four broad classes.

Ambulation Cycling Other activities Sedentary

Adult dataset (A) • walking. carrying-load
• stairs: inside and down
• stairs: inside and up
• treadmill: 3 mph 0% incline
• treadmill: 3 mph 6% incline
• treadmill: 3 mph 9% incline
• treadmill: 2 mph 0% incline
• treadmill: 4 mph 0% incline
• walking, natural

• 70rpm. 50W. 0.7kg
• cycling outdoor level
• cycling outdoor 
uphill
• cycling outdoor 
downhill

• painting: roller
• painting: brush
• sweeping with broom

• sitting, internet search
• sitting, computer typing
• sitting: writing
• sitting: reading
• sorting files / paperwork
• lying: on back
• lying on left side
• lying on-right-side
• sitting: legs straight
• standing still

Youth dataset (Y) • walking, natural
• treadmill walking: 2
• treadmill walking: 3 - 4 mph
• treadmill running:4.5 - 5 mph

• 70 rpm 50 watts
• Outdoor cycling

• basketball:-dribbling
• basketball:-passing
• basketball:-shortshots
• clean room
• soccer:-dribbling
• soccer:-passing
• tennis-ball:-fielding
• tennis-ball:-throwing-catching

• sitting: reading
• play-computer-game
• play-on-gameboy
• watch TV
• wii:-boxing
• wii:-tennis
• lying: on back
• sitting: legs straight
• standing still
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Table 3

Feature sets considered in this work (shaded are new relative to prior work (16)). Features indicated with 

check marks are those retained by the automatic selection strategy.

Features Selected for wrist classifier Selected for ankle classifier

Mean value ✓ ✓

Standard deviation ✓ ✗

Maximum ✓ ✓

Minimum ✗ ✗

P1 = Power of the first dominant frequency ✗ ✗

P2 = Power of the second dominant frequency ✗ ✗

F1 = First dominant frequency ✓ ✓

F2 = Second dominant frequency ✗ ✗

PT = Total power ✗ ✗

P1 / PT = Ratio of power at dominant frequency and total power ✓ ✗

Power of the first dominant freq in the band 0.6-2.6 Hz ✗ ✗

First dominant frequency in the band 0.6-2.6 Hz ✗ ✗

Ratio between F1 of the current and previous windows ✗ ✓

Range = maximum – minimum ✓ ✗

(Power at frequencies higher than 3.5 Hz) / PT ✓ ✗

fragmentation, samples ✓ ✓

fragmentation, number of activations ✓ ✓

fragmentation, mean activation interval duration ✗ ✗

fragmentation, activation interval duration variability ✗ ✓
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Table 4

Wrist and ankle classification confusion matrices for the four target activity groups using the SVM classifier 

with LOSO cross-validation. Correct classifications are in bold.

Part A, experiment 1, original feature set, Youth dataset

Wrist Ambulation Cycling Other activities Sedentary

Ambulation 646 (75.6%) 26 (3%) 52 (6.1%) 131 (15.3%)

Cycling 26 (2.1%) 1067 (87.5%) 36 (3%) 90 (7.4%)

Actual label Other activities 38 (3%) 38 (3%) 1038 (81.7%) 157 (12.4%)

Sedentary 16 (0.6%) 44 (1.8%) 170 (6.8%) 2277 (90.8%)

Overall accuracy 85.9 %

Ankle Ambulation Cycling Other activities Sedentary

Ambulation 752 (88%) 41 (4.8%) 60 (7%) 2 (0.2%)

Cycling 24 (2%) 1074 (88%) 89 (7.3%) 33 (2.7%)

Actual label Other activities 50 (3.9%) 58 (4.6%) 1025 (80.5%) 140 (11%)

Sedentary 1 (0%) 16 (0.6%) 94 (3.7%) 2433 (95.6%)

Overall accuracy 89.7 %

Part B, experiment 2, new feature set, Youth dataset

Wrist Ambulation Cycling Other activities Sedentary

Ambulation 674 (78.8%) 39 (4.6%) 60 (7%) 82 (9.6%)

Cycling 14 (1.1%) 1104 (90.6%) 21 (1.7%) 80 (6.6%)

Actual label Other activities 36 (2.8%) 11 (0.9%) 1149 (90.4%) 75 (5.9%)

Sedentary 8 (0.3%) 35 (1.4%) 63 (2.5%) 2401 (95.8%)

Overall accuracy 91.0 %

Ankle Ambulation Cycling Other activities Sedentary

Ambulation 818 (95.7%) 10 (1.2%) 27 (3.2%) 0 (0%)

Cycling 7 (0.6%) 1101 (90.2%) 79 (6.5%) 33 (2.7%)

Actual label Other activities 35 (2.7%) 19 (1.5%) 1084 (85.2%) 135 (10.6%)

Sedentary 0 (0%) 7 (0.3%) 99 (3.9%) 2438 (95.8%)

Overall accuracy 92.4 %

Part C, experiment 4, new feature set, Youth +Adult dataset

Wrist Ambulation Cycling Other activities Sedentary

Ambulation 2842 (86.4%) 149 (4.5%) 170 (5.2%) 127 (3.9%)

Cycling 92 (4.1%) 1741 (77.3%) 36 (1.6%) 383 (17%)

Actual label Other activities 85 (3.8%) 37 (1.7%) 1943 (87.4%) 159 (7.1%)

Sedentary 15 (0.3%) 153 (2.8%) 124 (2.3%) 5197 (94.7%)

Overall accuracy 88.5 %
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Part A, experiment 1, original feature set, Youth dataset

Wrist Ambulation Cycling Other activities Sedentary

Ankle Ambulation Cycling Other activities Sedentary

Ambulation 3278 (97.9%) 31 (0.9%) 37 (1.1%) 2 (0.1%)

Cycling 24 (1.1%) 2026 (89.7%) 111 (4.9%) 97 (4.3%)

Actual label Other activities 54 (2.4%) 29 (1.3%) 1766 (78.3%) 407 (18%)

Sedentary 0 (0%) 16 (0.3%) 315 (5.7%) 5211 (94%)

Overall accuracy 91.6%
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Table 5

Wrist and ankle classification details showing category recognition for each specific activity type. LOSO 

validation results using the new feature set on the youth dataset (experiment 2). Correct classifications are in 

bold.

Wrist, Ambulation Cycling Other Activities Sedentary

Ambulation Activities

    walking, natural 71 (71%) 3 (3%) 26 (26%) 0 (0%)

    treadmill walking: 2.0 249 (66%) 34 (9%) 21 (5.6%) 73 (19.4%)

    treadmill walking: 3.0 – 4.0 mph 9 (56.3%) 0 (0%) 1 (6.3%) 6 (37.5%)

    treadmill running: 4.5 – 5.0 mph 344 (95.3%) 2 (0.6%) 12 (3.3%) 3 (0.8%)

Cycling Activities

    Exercise bike 70 rpm 50 watts 2 (3.2%) 0 (0%) 5 (7.9%) 56 (88.9%)

    Outdoor cycling 12 (1%) 1104 (95.5%) 16 (1.4%) 24 (2.1%)

Other activities

    basketball:-dribbling 0 (0%) 0 (0%) 122 (97.6%) 3 (2.4%)

    basketball:-passing 0 (0%) 0 (0%) 100 (90.9%) 10 (9.1%)

    basketball:-shortshots 0 (0%) 0 (0%) 126 (97.7%) 3 (2.3%)

    clean room 13 (3.3%) 5 (1.3%) 357 (90.4%) 20 (5.1%)

    soccer:-dribbling 21 (17.8%) 3 (2.5%) 86 (72.9%) 8 (6.8%)

    soccer:-passing 1 (0.8%) 3 (2.3%) 117 (90.7%) 8 (6.2%)

    tennis-ball:-fielding 1 (0.7%) 0 (0%) 117 (86.7%) 17 (12.6%)

    tennis-ball:-throwing-catching 0 (0%) 0 (0%) 124 (95.4%) 6 (4.6%)

Sedentary activities

    sitting: reading 1 (0.4%) 3 (1.1%) 0 (0%) 275 (98.6%)

    play-computer-game 0 (0%) 5 (1.5%) 0 (0%) 321 (98.5%)

    play-on-gameboy 0 (0%) 0 (0%) 0 (0%) 320 (100%)

    watch TV 1 (5.9%) 0 (0%) 0 (0%) 16 (94.1%)

    wii:-boxing 3 (0.7%) 10 (2.5%) 41 (10%) 354 (86.8%)

    wii:-tennis 1 (0.2%) 4 (0.9%) 21 (4.9%) 403 (93.9%)

    lying: on back 0 (0%) 3 (1.2%) 0 (0%) 242 (98.8%)

    sitting: legs straight 1 (0.4%) 7 (2.9%) 0 (0%) 233 (96.7%)

    standing still 1 (0.4%) 3 (1.2%) 1 (0.4%) 237 (97.9%)

Ankle, Ambulation Cycling Other Activities Sedentary

Ambulation Activities

    walking, natural 86 (86%) 0 (0%) 14 (14%) 0 (0%)

    treadmill walking: 2.0 367 (97.3%) 7 (1.9%) 3 (0.8%) 0 (0%)

    treadmill walking: 3.0 – 4.0 mph 14 (87.5%) 2 (12.5%) 0 (0%) 0 (0%)

    treadmill running: 4.5 – 5.0 mph 350 (97%) 1 (0.3%) 10 (2.8%) 0 (0%)

Cycling Activities

    Exercise bike 70 rpm 50 watts 0 (0%) 63 (100%) 0 (0%) 0 (0%)
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Ankle, Ambulation Cycling Other Activities Sedentary

    Outdoor cycling 7 (0.6%) 1038 (89.7%) 79 (6.8%) 33 (2.9%)

Other activities

    basketball:-dribbling 26 (20.8%) 2 (1.6%) 97 (77.6%) 0 (0%)

    basketball:-passing 0 (0%) 2 (1.8%) 81 (73.6%) 27 (24.5%)

    basketball:-shortshots 0 (0%) 2 (1.6%) 119 (92.2%) 8 (6.2%)

    clean room 0 (0%) 11 (2.8%) 323 (81.2%) 64 (16.1%)

    soccer:-dribbling 9 (7.6%) 0 (0%) 106 (89.8%) 3 (2.5%)

    soccer:-passing 0 (0%) 0 (0%) 129 (100%) 0 (0%)

    tennis-ball:-fielding 0 (0%) 1 (0.7%) 127 (94.1%) 7 (5.2%)

    tennis-ball:-throwing-catching 0 (0%) 1 (0.8%) 102 (79.1%) 26 (20.2%)

Sedentary activities

    sitting: reading 0 (0%) 2 (0.7%) 1 (0.3%) 291 (99%)

    play-computer-game 0 (0%) 1 (0.3%) 4 (1.2%) 323 (98.5%)

    play-on-gameboy 0 (0%) 0 (0%) 3 (0.9%) 334 (99.1%)

    watch TV 0 (0%) 0 (0%) 0 (0%) 17 (100%)

    wii:-boxing 0 (0%) 2 (0.5%) 42 (10.2%) 366 (89.3%)

    wii:-tennis 0 (0%) 2 (0.5%) 46 (10.7%) 381 (88.8%)

    lying: on back 0 (0%) 0 (0%) 0 (0%) 250 (100%)

    sitting: legs straight 0 (0%) 0 (0%) 2 (0.8%) 238 (99.2%)

    standing still 0 (0%) 0 (0%) 1 (0.4%) 238 (99.6%)
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Table 6

Accuracy results are summarized for all the experiments conducted (Single group LOSO cross validation tests 

(CV), crossed test and LOSO CV on the merged dataset)

Classification accuracy (%)

Exp ID Wrist activity recognition Ambulation Cycling Other Sedentary Overall

Mannini et al. (16) LOSO CV on A (original feature set) 87.2 62.9 81.6 91.2 84.7

Exp 1 LOSO CV on Y (original feature set) 75.6 87.5 81.7 90.8 85.9

Exp 2 LOSO CV on A (new feature set) 88.9 66.4 83.5 93.6 87.0

LOSO CV on Y (new feature set) 78.8 90.6 90.4 95.8 91.0

Exp 3 Crossed tests:

    Training on A testing on Y (original feature set) 75.1 29.0 44.1 92.2 58.8

    Training on A testing on Y (new feature set) 66.6 59.2 44.1 94.0 69.8

    Training on Y testing on A (original feature set) 76.3 8.5 47.9 93.7 71.7

    Training on Y testing on A (new feature set) 79.4 12.4 30.4 93.0 71.8

Exp 4 LOSO CV on A+Y 86.4 77.3 87.4 94.7 88.5

        (Youth data contribution only) 77.9 92.5 90.0 94.6 90.7

(Adult data contribution only) 89.4 59.4 83.8 94.8 86.7

Exp ID Ankle activity recognition Ambulation Cycling Other Sedentary Overall

(16) LOSO CV on A (original feature set) 99.5 93.9 81.6 96.0 95.0

Exp 1 LOSO CV on Y (original feature set) 88.0 88.0 80.5 95.6 89.7

Exp 2 LOSO CV on A (new feature set) 99.0 91.6 81.1 97.1 94.8

LOSO CV on Y (new feature set) 95.7 90.2 85.2 95.8 92.4

Exp 3 Crossed tests:

    Training on A testing on Y (original feature set) 92.7 76.2 37.4 92.7 79.3

    Training on A testing on Y (new feature set) 93.7 85.5 47.2 93.8 84.7

    Training on Y testing on A (original feature set) 89.4 91.3 26.0 94.9 87.4

    Training on Y testing on A (new feature set) 94.1 89.9 28.2 85.2 84.9

Exp 4 LOSO CV on A+Y 97.9 89.7 78.3 94.0 91.6

        (Youth data contribution) 96.8 89.3 88.3 88..8 90.0

        (Adult data contribution) 98.3 90.3 65.3 98.5 92.9
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