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Abstract: Despite the automatization of many industrial and logistics processes, human workers
are still often involved in the manual handling of loads. These activities lead to many work-related
disorders that reduce the quality of life and the productivity of aged workers. A biomechanical
analysis of such activities is the basis for a detailed estimation of the biomechanical overload, thus en-
abling focused prevention actions. Thanks to wearable sensor networks, it is now possible to analyze
human biomechanics by an inverse dynamics approach in ecological conditions. The purposes of
this study are the conceptualization, formulation, and implementation of a deep learning-assisted
fully wearable sensor system for an online evaluation of the biomechanical effort that an operator
exerts during a manual material handling task. In this paper, we show a novel, computationally
efficient algorithm, implemented in ROS, to analyze the biomechanics of the human musculoskeletal
systems by an inverse dynamics approach. We also propose a method for estimating the load and
its distribution, relying on an egocentric camera and deep learning-based object recognition. This
method is suitable for objects of known weight, as is often the case in logistics. Kinematic data,
along with foot contact information, are provided by a fully wearable sensor network composed of
inertial measurement units. The results show good accuracy and robustness of the system for object
detection and grasp recognition, thus providing reliable load estimation for a high-impact field such
as logistics. The outcome of the biomechanical analysis is consistent with the literature. However,
improvements in gait segmentation are necessary to reduce discontinuities in the estimated lower
limb articular wrenches.

Keywords: biomechanics; ergonomics; load estimation; wearable sensor networks; inertial
measurement units

1. Introduction

Manual Material Handling (MMH) is still one of the most common human activities in
logistics and industrial contexts, despite the enormous progress in automation. The aging
of the workers’ population is exacerbating the impact of work-related musculoskeletal
disorders (WMSDs) related to MMH on workers’ health (e.g., [1] in Europe). This situation
negatively affects workers’ quality of life, productivity, and the costs for national healthcare
systems. Prevention of WMSDs through mitigation of the biomechanical overload risk is
the best strategy to cope with this problem.

Prevention actions include total or partial (e.g., collaborative robotics) automation of
processes [2,3], exoskeletons for the human workers [4,5], and re-design of MMH tasks
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and tools. All these prevention actions need the evaluation of the ergonomic risk and can
highly benefit from a biomechanical analysis of MMH tasks.

Standardized methods for the evaluation of the ergonomic risk related to MMH are
reported in the ISO norms for the assessment of the risks correlated to posture (ISO 11226)
and MMH (ISO 11228-1-2-3). These methods are observational and typically require many
human kinematics variables for their computation. At the same time, they often demand
only a coarse knowledge of the external loads to compute a score of the ergonomic risk.

Although ergonomic assessment is carried out traditionally by visual inspection of
videos of the working activity, wearable sensing technologies, such as inertial measurement
units and electromyography have been adopted for partial or complete automation of the
evaluation process [6,7]. These technologies have allowed evaluators to use quantitative
measurements of the kinematic variables, thus improving the accuracy and the repeatability
of the evaluation.

In recent years, however, some ergonomists recognize the need to enrich these methods
with information related to the actual loading of the musculoskeletal system [8], which can
be obtained through a biomechanical analysis of MMH tasks based on models of the human
musculoskeletal system. Beyond risk assessment, biomechanical models are useful tools
for the design of prevention actions. They can serve for the definition of the specifications
of assistive exoskeletons, for the organization of production lines that include collaborative
robots, or be extended to the more general paradigm of Virtual Commissioning, which
is promising in Computer-aided manufacturing to reduce production costs and failures,
which are detrimental to companies’ reputation [9,10]. Therefore, the purposes of this study
are the conceptualization, formulation, and implementation of a deep learning-assisted
fully wearable sensor system for an online evaluation of the biomechanical efforts that an
operator exerts during an MMH task.

Thanks to the aforementioned technologies nowadays available for motion tracking,
human posture, and motion are assumed to be known in all these applications. Therefore,
we focus on methods based on inverse dynamics. The models that have been proposed to
cope with this problem can be split into two groups.

The first group exploits a detailed representation of the human musculoskeletal sys-
tem. These models include almost all the human bones, properly connected by modeling
the surface contacts among bones and considering muscles as actuation units with inertial,
elastic, and damping properties as well as actuation functions. The resulting musculoskele-
tal models are inevitably mechanically redundant as several muscles span each joint, and
different compositions of muscle forces can generate a net joint moment. The solution of
the redundancy is often obtained using optimization functions (e.g., [11,12]) that, for exam-
ple, may assume as a criterion the minimization of muscles tension/stress [13]. Another
adequate resolution approach consists in exploiting muscular activation data (EMG-driven
methods) [14–16]. These models require extensive information about human body prop-
erties and typically do not run in real time. For the implementation of such methods, a
state-of-the-art, open-source framework is OpenSim [17], a modular platform that allows
users to build models and solve them using the Simbody solver [18]. An example of a real-
time application that exploits the OpenSim platform is the one proposed in [19]. However,
here the authors do not take into account the possibility of multiple contact points different
from the double support. Moreover, the mentioned work does not consider the presence of
external loads, which is crucial in MMH.

Simpler methods, belonging to the second approach, do not include modeling of each
muscle, but model the human body in a robotics-like fashion: each bone is a rigid link,
which is connected to its neighbors through rotational, hinge, or ball joints, and is actuated
by wrenches lumped at the joints [20–22]. This approach requires far less information about
the human body to run a simulation hence allowing for online estimation of the human
joint torques. Indeed, such a computationally convenient modeling method is widely used
for real-time assessments of forces and torques to which an operator’s joints are subjected
(e.g., [23,24]).
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We consider robotics-like models the ideal compromise between the richness of the
model and its simplicity. To support this statement, we report a study [25] that investigated
the correlation between a standardized ergonomic risk assessment method (i.e., RULA [26]),
and methods belonging to the first and the second type. Results show a better correlation
of the second type model with the RULA method.

Therefore in this paper, we have adopted the second approach for three reasons. Firstly,
we want to make it easy to set up the human model for pervasive use, e.g., in a workplace
to assess ergonomic risks. Hence, we want the model to require as few parameters as
possible. Secondly, we want our method to be suitable for real-time execution to provide
timely feedback to workers for everyday use. Lastly, we want to make it easily usable in
complex simulation environments where humans interact with robots.

In this work, we have focused on manual material handling (MMH) in warehouse
scenarios where human operators handle a defined set of items, and the inertial properties
of these items are known. We propose a novel fully-wearable system for biomechanical
analysis, which opens up the possibility of analyzing human biomechanics in ecological
settings, with minimal impact of the sensing equipment on the performance.

Our algorithm builds on the Recursive Newton-Euler Algorithm (RNEA), recognized
as highly computationally efficient due to its low algorithmic complexity [27]. However,
we propose a novel tree management that allows loops in the kinematic chain and multiple
contact points by differentiating the trees used for the forward kinematics and the backward
calculation of wrenches. Differently from conventional implementations of the RNEA (in
particular the one implemented in the Orocos Kinematics Dynamics Library), the proposed
method divides forward and backward recursion over the kinematic tree. Through this
alteration in the inverse dynamics recursion, the system acquires the possibility to manage
multiple contact points. A couple of admissible and coherent assumptions have to be
considered: the external wrenches on the hands are due to the carried objects, and the
contact wrenches on the contact points are known, except for the case of the feet on
the ground.

Under these assumptions, this method requires an estimation of external loads. Com-
mon approaches require expensive pressure and force sensors applied to smart gloves
(e.g., [28]) or insole pressure/force sensors to estimate the ground reaction force (e.g., [29]).
Alternatively, EMG and IMU have been adopted [30] for load estimation and they can be
used to have an estimation of some articular joint torques, or the carried load [31].

To minimize the cost, the encumbrance, and the discomfort of the sensing devices
we propose a novel approach suitable to MMH tasks in which the carried load belongs to
a known dictionary. This occurs often in logistics, considering every object contained in
a box, its weight is available in a database, and the worker has to scan it whenever it is
moved from one location to another.

We propose using an egocentric camera worn on the chest and a computer vision
algorithm based on deep learning to recognize the carried box, its identification barcode,
and the hand(s) holding it. By moving the complexity from the hardware system to the soft-
ware and exploiting the object-detection capabilities of state-of-the-art deep-learning-based
detectors, we provide a cost-effective though reliable solution for external load estimation.

For estimating the external wrenches due to object manipulation, we exploit the
detection of the box and hands, along with a predefined dictionary that allows us to
determine the mass of the carried object (identified through the aforementioned barcode).
Using the monitored hands’ kinematics, we can also calculate the wrench(es) applied to
the hands.

We used ROS to facilitate the integration of our algorithms into more complex simula-
tion setups, even beyond the biomechanical analysis of MMH tasks, for future research.

In summary, the main contributions and novelties of this paper are:

• A novel RNEA-based algorithm that allows for multiple contact points, since it sepa-
rates forward and backward recursions, performing them with two distinct trees.
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• A fully wearable system that collects human kinematic data and recognizes through
neural networks the handled objects—from a known database—along with the grasp-
ing hand(s) allowing for online biomechanical analysis of MMH tasks.

• The integration of inverse dynamics approach and object/grasp recognition, leading
to the ROS implementation—that guarantees remarkably low computing times—of
the proposed method that is easily usable with a commercial-off-the-shelf device for
motion tracking based on inertial measurement units and a USB camera.

The proposed algorithm has been tested experimentally. The proposed procedure
aims to replicate the working conditions of an operator handling and moving boxes in a
warehouse-like environment.

The paper is structured as follows: Section 2 shows the algorithm devised for the
biomechanical analysis. Section 3 shows the algorithm used for the estimation of the
external loads. Section 4 presents the integration of the aforementioned algorithms, whereas
Section 5 proposes a preliminary experimental assessment of the method through the
analysis of a task that has been performed five times by each of the four selected participants.
The paper is concluded by Section 6, which reports a discussion about the overall value of
the proposed approach, and Section 7, which summarizes the conclusive assessments.

2. Human Biomechanics Model

The model used to represent the human body is inspired by robotics and is composed
of rigid bodies connected via revolute joints in a tree-like structure. Several trees are em-
ployed to account for different contact points with the external environment, as explained
in this section. Each tree is connected to a reference world link by a 6 Degrees of Freedom
(DoFs) joint, which is supposed to be fixed. The mass properties of the links are gathered
from anthropometric tables [20].

2.1. Kinematics and Dynamics Equations

For the implementation of the inverse dynamics, we adopted the Recursive Newton-
Euler Algorithm (RNEA), which allows us to easily compute also the articular wrench
components which do not make work, and that is flexible for changes of the tree structure.
A typical RNEA is composed of a forward and a backward recursion. In the forward
recursion, which stems from the root and proceeds towards the leaves of the tree, the
link position, velocities and accelerations are computed from the joint kinematics. In the
backward recursion, the wrenches exchanged between the links are computed starting from
the leaves and going back to the root of the tree. This allows for adding external wrenches
at any link and at any time step. Both links kinematic and dynamic equations are written
using the spatial Vector algebra, which has been proven to be the most computationally
efficient [32]. We use the same notation described in [32]. The velocity and acceleration of
the i-th link, are vi and ai respectively.

The matrix Xi,p(i) represents the coordinate transform matrix from the reference frame
attached to the i-th link parent, i.e., p(i) and that of the i-th link (see Figure 1). Si , qi, q̇i ,
and q̈i are respectively the axis, the position, the velocity, and the acceleration of the joint
that connects the parent link p(i) to the i-th link. Ii is the inertia matrix of the i-th link. In
the forward recursion, the equations of each link kinematics are computed:

vi = Xi,p(i)vp(i) + Si q̇i , v0 = 0 (1)

ai = Xi,p(i)vp(i) ∧ Si q̇i + Xi,p(i)ap(i) + Si q̈i , a0 = −g (2)

along with the inertial term:
fin

i = Iiai + vi ∧ Iivi (3)

which is used in the backward recursion, in the i-th link dynamics equation.
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Figure 1. Representation of spatial forces acting on Link i.

In the backward recursion, first the force balance equation of each link are computed,
thus obtaining the wrench applied by link p(i) to link i via joint i:

fi = fin
i − fe

i + ∑
k∈c(i)

X∗ikfk (4)

where fe
i is the external wrench applied to the i-th link, fk are the wrenches applied by the

i-th link to its children c(k) and X∗ik is the transformation that allows moving a wrench written
in the frame k to the i-th link reference frame. Finally, the torque applied by joint i is:

τi = ST
i fi (5)

2.2. Wrenches

The wrenches that the human body exchanges with the external world and those due
to internal loops are separated into two classes: those due to the object carried by the user
and those due to contact with the environment. The former is estimated by employing deep
learning techniques, as shown in Section 3. In the cases in which only one contact point
occurs, there is no redundancy and the wrench at the contact point is obtained by attaching
the world link at the contact point. If more contact points occur, the related wrenches
cannot be uniquely determined by inverse dynamics.

In this paper, we assume that these wrenches, except in the case of double support
in gait, are known. These wrenches can be obtained using sensors (e.g., pressure sensors
in smart textiles), using heuristics, or by optimization procedure, but this is not the focus
of this paper since in object manipulation it is unlikely to have multiple contact points
different from the contact of the feet with the ground.

2.3. Tree Management

Differently from the state-of-the-art RNEA implementation used in the Orocos Kine-
matics and Dynamics Library (KDL), we propose to separate the forward and the backward
recursions in the algorithm and perform them with two distinct trees. This allows us to
cope with multiple contact points and to perform the RNEA with any tree structure. Since
the external wrenches are calculated with respect to the world link, whereas most of the
motion capture systems are rooted in the pelvis, we use different trees for the forward and
the backward recursions according to the contact point. Although the mass properties of
the link of these trees are always the same, the link hierarchy has to be changed according
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to which link is connected to the world link. The tree used for the forward recursion is
shown in Figure 2. The world link is attached to the pelvis because most of the motion
capture systems are rooted in the pelvis.

Figure 2. Computational flow during outward recursion. The red circles represent rigid bodies,
whereas the blue arrows represent the joints connecting them. The grey circle represents the world
and functions as a starting condition for the outward recursion.

A single joint with six joint variables is displayed to represent the fictitious six joints
corresponding to the pelvis’ degrees of freedom with respect to the world link. Each of the
green joints is associated with three revolute joints in a wrist configuration. This solution
is consistent with the BVH (Biovision Hierarchy Animation File) motion representation
standard, which is commonly available in motion capture systems. For the backward
recursion, several trees are possible.

In this paper, we focus on the special cases of MMH in which the worker walks or
stands on two legs while carrying and manipulating a cardboard box. The tree used for the
backward recursion changes according to the current contact points with the environment.
In particular, its root link coincides with the human body link that is in contact with
the environment.

The selection of which tree should be used for the backward recursion is based on the
feet’ kinematics. Gait includes four possible phases: one-leg support, double-leg support,
and no-leg support. Therefore, four trees are used, one for each contact configuration.
The backward trees used in the backward recursion are reported in Figure 3. Currently,
the logic used for the gait segmentation simply applies a threshold on the ankle vertical
distance from the ground. We plan to use more algorithms to determine foot contacts with
the ground at each instant, but this is not the focus of this paper.

The indeterminacy that occurs at the pelvis when both feet are in touch with the
ground is dealt with as follows. First, the force computation proceeds from the upper limbs
towards the pelvis. At the hips level, the wrench is distributed on each leg based on the
body’s center of gravity position to ensure static balance as if the legs had no mass. Finally,
each leg is solved separately.

A better estimation of the contact force with the ground may be obtained through
pressure sensors, but the proposed solution is much simpler from a hardware point of
view and it is reasonable for low-speed walking and for operations in which the worker
manipulates the object in a quasi-static configuration.
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(a) (b)

(c) (d)

Figure 3. Trees used in the four gait phases. The grey circles represent the world link. Arrows
represent the computational flow from the leaves to the root. (a) Left foot support; (b) Right foot
support; (c) No support; (d) Double support.

2.4. Implementation Issues

The implementation of this method moves from the motion data, that we suppose to
have available in BVH format. This format does not include inertial information of the links,
but only the kinematic structure. Therefore, we decided to map the BVH representation of
the human in a Unified Robot Description Format (URDF) to include the inertial properties
in a format that is used in ROS, thus easing the future development of simulations that
include robots interacting with humans. This solution allows us to include the hierarchy of
the links that will be used in the forward recursion.
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Since the forward recursion and the backward recursion for relevant contact points
configurations require many trees, which differ only for the position of the world link and
for the hierarchy, a function that generates all the required URDF files from the same BVH
file was developed.

The last implementation issue regards the hierarchies in the forward and backward
recursions. We observed that the best choice for reference systems definition, in terms of
computational efficiency and code clarity, was to keep the tree reference systems of the
forward recursion. The Newton-Euler equations of each link are always written in the
reference systems of the forward tree. The output of each backward recursion step is the
spatial force that the parent link (in the backward tree) exerts on the child. The backward
recursion is modified to ensure that the equation of motion of each link is expressed in such
reference systems and to guarantee the correct force computational flow.

3. Load Estimation

In MMH activities it is reasonable to assume that most of the external load is due to an
object carried by the hands of the user. To estimate such load, we propose a method based
on an egocentric camera and deep learning algorithms for object and grasp recognition. An
egocentric camera is placed on the chest of the user so that the hands and the object are in
the field of view during object manipulation.

The frames obtained with the camera are processed by the object detection model
YOLO [33], a state-of-the-art deep learning neural network. In particular, in this project, the
model nano [34] of YOLOv8 [35] (at the time of writing it is the latest version of the YOLO
object detection model) is trained and deployed.

The proposed method is applied in a situation that aims at reproducing the conditions
of an operator that moves packages in a warehouse. Different cardboard boxes were
selected; each of them has been equipped with a barcode that identifies the product. The
identified object is an item in a database that includes data about the object’s size and mass
(a common situation in logistics). To detect and track the boxes during the experiment, the
box-6500images (https://universe.roboflow.com/project-9tdw1/box-6500images, accessed
on 30 March 2023) dataset has been used for training the selected object detection model.
The cardboards dataset has been split into a training set (80% or 3188 images), a validation
set (10% or 390 images), and a testing set (10% or 391 images). The model achieves an
F1-score of 0.91.

For detecting the hands of the human operator another nano YOLOv8 model pre-
trained on the popular dataset COCO [36] has been used. Regarding the evaluation model
used for person detection, with the help of Fiftyone (https://github.com/voxel51/fiftyone,
accessed on 15 April 2023) library is possible to inspect the performance metrics of the
given model. The F1-score for the category person is 0.76.

For detecting and decoding the barcode OpenCV library (https://docs.opencv.org/
4.x/d6/d25/tutorial_barcode_detect_and_decode.html, accessed on 20 March 2023) has
been used, creating an instance of cv2.barcode.BarcodeDetector and executing the function
detectAndDecode.

The biggest problem encountered during the test of a single network, after the training
on the two separate datasets, is the absence of labels regarding the other category. Different
experimental results have reported greater accuracy and smaller inference times using two
mono-class models with fewer parameters instead of a single more complex version trained
on the merged datasets. For this reason, two nano YOLOv8 models have been used in
parallel: one for detecting people (hands result as a part of a ‘person’ object) and the other
for identifying cardboard boxes.

Then, we performed an additional analysis of the bounding box center with respect
to the frame. Given the camera position, it is reasonable to assume that the left and right
hands will most likely be on their respective side of the image. The bounding boxes that
enclose the hands and the object detected in the image are analyzed. If the Intersection

https://universe.roboflow.com/project-9tdw1/box-6500images
https://github.com/voxel51/fiftyone
https://docs.opencv.org/4.x/d6/d25/tutorial_barcode_detect_and_decode.html
https://docs.opencv.org/4.x/d6/d25/tutorial_barcode_detect_and_decode.html
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over Union (IoU) of a hand box and the object box is higher than a threshold value, the
object is recognized as grasped by that hand.

We also implemented a state machine in which the object grasp conditions are coded.
One object can be either handed by no hand, left hand, right hand, or both hands. The
object enters one state according to the aforementioned IoU score computed for each hand.
The transition to another state is only allowed when a time threshold of stay-in-the-state
is exceeded.

In Figure 4 the bounding boxes are reported on a frame (taken from a video recorded
during one of the conducted experiments) where a card-board box is grasped with both
hands; also the detected barcode for the identification is highlighted.

Figure 4. Example of a frame, from one of the videos recorded during the experiments, reporting the
output of the detection of the operator’s hands, the carried box, and the identifying barcode.

We created a dictionary containing, for each of the barcodes attached to the boxes, the
respective inertial information necessary to compute the external wrench on the hands.

This includes:

• the type of object that is carried and its inertial properties, i.e., mass and barycentric
inertia tensor

• the coordinate transformation from the hand reference frame to the barycentric inertia
system. This information can vary, so a list of transformations in typical grasp condi-
tions for each object was created (one transformation matrix Xhg for each condition)

In the case of both hands holding the object, we shared the load equally on the hands.
The load that the hand exerts on the object can be computed as:

fH−→G = X∗hgIGXghaH + vH ∧ (X∗hgIGXghvH) (6)

where fH−→G is the wrench that the hand exerts on the object, Xhg is the transformation
from the object barycentric inertia tensor to the hand frame, IG is the object inertia tensor,
aH and vH are the hand acceleration and velocity. This is true in the reasonable hypothesis
that the object does not move relative to the hand that holds it, which is true for most rigid
carried objects.
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4. Integration in ROS

The inverse dynamics algorithm described in Section 2 and the load estimation pipeline
described in Section 3 were joined into a single system that performs the biomechanical
analysis. The system architecture is shown in Figure 5.

Figure 5. Biomechanical analysis system architecture.

It is composed of two parts. The one on the bottom includes the devices which are
worn by the user and the processing steps which are executed by these devices. The upper
parts show the software modules, which run on a host PC, to execute the biomechanical
analysis. The same architecture reports two data processing pipelines.

The left one provides the kinematic data. At the bottom, the Mocap module represents
the motion-tracking system that is worn by the user. In the current implementation, either
the Xsens MVN -Link-Biomech tracking system (Enschede, 7521, The Netherlands) or the
Noitom Perception Neuron (Miami, FL, 33137, USA) Both are composed of 9-axes Inertial
Measurement Units equipped with magnetometers. The raw data coming from the are
Pre-processed by a proprietary software module (either the MVN Analyze if the Xsens is
used or the Axis Neuron v3.5.24 if the Perception neuron is used) and sent via Wi-Fi to a
local host. In this pipeline, the local host runs proprietary software which processes motion
data and returns motion data in BVH format. This output is then post-processed to provide
joint angles, velocities, and accelerations to the biomechanical analysis module. Before
differentiating the joint angle variables through the backward Euler method for obtaining
the velocities and accelerations, a 12th-order LowPass Butterworth Filter is used with a
cut-off frequency of 80 Hz.

The right pipeline corresponds to the vision data. On the user body, the egocentric
camera (ELP-USBFHD06HBL180 fish-eye camera) is connected via USB to a UP Board (UP
Board RE-UP-CHT01-A10-0116) which features Ubuntu 18.04 bionic and OpenCV version
3.0. The camera sends H264 compressed video to the embedded board that records video
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and sends the acquired data to the local host via Wi-Fi. This Wi-Fi separation makes the
acquisition system completely wearable. The streamed video is the input of the Object
classification module, which runs on the host PC. This module processes the video using
the mentioned neural networks to obtain the grasp information, i.e., the object being held
and which hands hold it. The object and the pick information are used to select the right
information from the barcode dictionary and send them to the biomechanical analysis
module. This latter processes motion data and the information about the carried object
to select the proper tree and compute the wrenches at every link and the torques at every
joint, which is the final output of the system.

Figure 6 shows the ROS implementation of our system. The neural network node is
a ROS node written in Python language. It runs the CNNs on the frames that come from
the camera video stream. The combined neural networks take roughly 15 ms to process
each video frame. This node also implements the additional functions that analyze the
bounding boxes obtained with the neural networks. The output of this node is published
on a ROS topic that stores the grasp corresponding to each frame.

Figure 6. ROS scheme in online mode.

The joint variables obtained with the motion tracking system (i.e., the output of the
proprietary mocap software) are processed by the post-processing node and given as input
to the biomechanical analysis node, which is written in C++.

The whole system can run either in online or offline mode. In the latter case, the
topics, the video stream, and the motion data stream are replaced with files that store the
gathered data.

5. Experimental Assessment
5.1. Experimental Procedure

The whole system was tested during a study case performed in laboratory settings
that aims at replicating the warehouse environment. Four healthy volunteers participated
in this experiment. Participants did not report issues related to the musculoskeletal system
or that could prevent completing the task, they were aged 31 ± 8, tall 1.70 ± 0.08 m, and
with mass 69 ± 13 Kg. They were asked to wear the Xsens MVN-Biomech suite as shown
in Figure 7 along with the egocentric camera, the UP Board, and a power bank. These latter
were fixed to the chest using an elastic band.

The participants were instructed about the task and the goal of the experiment, and
age, anthropometric measures, and weight were annotated.

After a brief calibration procedure needed to set up the motion capture system, they
were asked to reach a starting position marked on the ground and stand still in N-pose
(stand with arms alongside the trunk). Then they had to walk for 2 m to reach a desk
where they had to pick a box with both hands. After picking the box, they had to bring it to
another table 3 m away from the first one and release the box. This experimental procedure
is represented in Figure 8.
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The host pc used for the experiment is an MSI GF63 Thin 10SCSR-073IT Notebook (Intel
Core I7-10750H, 16GB RAM, GPU Nvidia GTX 1650Ti). Figure 7 shows the experimental
setup, with the participant wearing the XSENS sensory system.

Figure 7. Experimental Setup.

Figure 8. Simple graphic representation of the environment in which the experiments were conducted,
with a basic delineation of the path walked by the participants and the phases of the task.

This cycle was repeated five times, and each cycle lasted about 15 s on average. The
duration of each experiment varies depending on the self-selected speed at which the
participants performed each task (for example, some take more time for the grabbing phase,
while others walk lightly slower when carrying the box).
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5.2. Data Processing

Anthropometric data and the mass of each participant were used in the initializa-
tion phase of this algorithm to generate the URDF file that represents the digital twin of
the participant.

Motion data were processed online by the XSens MVN Animate software, which ran
on the host PC, to locally stream joint angles. These angles were then used to produce the
joint speeds and accelerations according to the method reported in Section 4. At the same
time, Camera images were streamed to the host PC that ran the detectors and provided the
external wrenches. We estimated 80 ± 20 ms latency between motion data and wrenches.
Therefore we temporally aligned motion data to the wrenches obtained from the camera
images analysis.

Finally, we stored the results of the detectors and of the biomechanical analysis to
evaluate the system performance. In the following section, we report plots that show
some of the forces and torques estimated during the conducted experiments. Besides the
examination of data related to a single experimental procedure, a comparison is performed
between the mean values of the examined forces and torques computed for each of the
participants along the five repetitions of the task described previously. As stated before,
each experiment has been conducted without imposing time constraints, therefore a certain
variation can be observed even between repetitions executed by the same participant.
To compare the variables related to different task executions and various participants
and calculate the mean of the variables of interest, a temporal synchronization has been
performed for the offline processing of the data, exploiting the alingnsignals functions
from MATLAB to align the signals. The computed variables are originally composed of
a dissimilar number of samples given that different executions of the same task require
distinct time intervals. Therefore, before performing the alignment, these time functions
have been normalized with respect to the task accomplishment. Then the mean values have
been calculated and reported in the following section, allowing the comparison between
experiments of multiple time durations and performed by different participants.

5.3. Results

The captured data were used to test the load estimation algorithm. We report in this
section the estimation of the wrenches at relevant joints, focusing first on the information
related to a single experimental procedure, and concluding with a comparison between
data of different participants. The variables reported in the following are expressed in the
local frames of the investigated joints, arranged according to the bvh standard, in which the
y axis is directed like the main limbic axis.

As stated before, the current gait segmentation approach is based on the height of the
ankle joint, using a threshold that has proven itself quite accurate in the detection of the
steps during the task, even if a better gait segmentation algorithm is necessary, and will be
the next focus of this work. Concerning the ankle joint, in Figure 9 the forces exerted on the
right and left ankles by the ground are reported.

As can be stated from the overlapped variables, the steps performed by the participant
are detected, and the value of the peaks of the ground reaction forces are coherent with the
masses of the user and the carried box. Given the sufficient recognition of the steps during
the experiments, we can identify the first three steps (without load) that the participant
performs for reaching the shelf with the boxes. Once the box has been grasped, five other
steps are necessary for getting to the table where the object will be left. In the second group
of steps, a slightly bigger magnitude of the peaks can be noted, given that the participants
that is carrying the 2 Kg box has a mass of 64 Kg.
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Figure 9. Vertical force computed online at the right ankle joint, from one of the task executions of
participant 1.

During the first seconds the participant stand in the N pose, as stated in the protocol.
From seconds 1 to 3 he walks to the shelf where the cardboard boxes are. He stands in front
of the shelf for about 6 s, and after this period, he has grabbed and lifted the selected box
and then starts walking to the table where he will leave the box. The details regarding the
grabbing and lifting movements are going to be clear by analyzing the forces and torques at
the upper limbs. From second 9 to 13 he walks to the table (the distance is higher, so it takes
five steps to walk this part of the path). As for the previous stand phase, the details about
the actions from the second 13 to 18 will be investigated through upper limb dynamics.

This preliminary recognition of the phases of the experimental procedure is useful for
examining in an effective way the other results of the inverse dynamics algorithm, such as
slight oscillations in the forces and torques at certain joints due to the walking movements.

Regarding the upper human joints, the following panel of graphs in Figure 10 repre-
sents some of the forces and torques computed at the wrists (the pictures in position (1, 1)
in the panel), elbows ((1, 2) and (3, 1) in the panel), shoulders ((2, 1) and (3, 2) in the panel),
and lower back ((2, 2) in the panel) of participant 1, that is 1.70 m tall, aged 28, and has a
mass of 64 Kg. Some forces or torques are reported only along some directions (as in the
pictures of the panel regarding the elbows) for showing only the most interesting variables.

Regarding the Wrist forces, before the grasping movement gravity has the main
contribution (the forces are coherent with the mass of the hand in the model, that is 0.4 Kg).
While holding the box, the wrists rotate, moving the effect of gravity on the z component.
The phases where the forces in both y and z directions are about 8 to 13 N coincide with the
grabbing and dropping activities, so when the participant brings the box near himself from
the shelf and turns it away on the target table. In these instants, the accelerations are not
only due to gravity but to the participant’s motion.
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Figure 10. Selection of some of the computed forces and torques for one of the task executions
performed by the participant 1.

A consistent correlation can be observed between the forces at the wrists and those
at the elbows and shoulders. The synchronous plateaus from seconds 8 to 16 give us
information about the exact grabbing and dropping actions, with correct differences in the
modules because the upstream joints have higher masses attached. A similar assessment
can be proposed regarding the lower back vertical force, whose increment is coherent with
the before-mentioned plateaus, and the extent of the increase confirms the presence of 2 Kg
mass of the carried box.

Considering also the estimated shoulders’ torques, it can be observed how the grabbing
(at the beginning) and dropping (at the end) phases can be distinguished from the load-
carrying phase, noting the peaks—due to the arm extensions in the mentioned phases—of
the plateaus of the variables along the x direction.

For concluding this preliminary analysis of the results related to a single participant, it
is important to note, in the charts reporting variables from right and left body parts, the
similarity between these variables, be they analogous in modulus and sign (e.g., shoulders’
forces along y and the forces on elbows) or just in module (e.g., the shoulders’ torques
along y and z).

After the presentation of the results regarding participant 1 during a single experiment,
in the following figures, we report a comparison between forces and torques computed in
case of different participants. In Figure 11 the ground reaction forces are estimated at the
right and left ankle in one experimental task for each participant. Through these pictures,
we can observe how the different masses (e.g., participant 1 weights 62 Kg and participant
2 weights 82 Kg) of the participant lead to consistent ground reaction forces, showing
also a little increase after the grasp due to the weight of the carried box. The number of
steps estimated through the inverse dynamics algorithm is consistent in every analyzed
experiment with the procedures performed (the tallest participant executes fewer and
longer steps). For the first three participants, the gait segmentation approach based on an
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ankle height threshold works quite accurately, while it shows some flaws with participant
4, who is 1.62 m tall, the smallest height of the four participants.).

Figure 11. Ground reaction forces at the right and left ankles of the four participants, reported
normalized with respect to the task execution.

The graphs regarding the ground reaction forces are also useful for identifying the
phases of the task, helping in the interpretation of the other variables. We can observe, for
example, that the participants take a different amount of time for each of the transitions
that compose the task.

In Figure 12 the main components of lower back vertical forces are reported, after
being processed as explained in the previous section. As expected, the forces are consistent
with the masses of the participants and the box. The mean red lines are computed after the
normalization (with respect to the task execution) and the alignment of all the data available
for a precise participant. The final falling edge represents the instant when the participant
drops the box on the target table diminishing the vertical load. The alignment works more
effectively on that because the dropping of the boxes was the triggering event for stopping
the recording. On the contrary, given that different velocities of execution have been
observed in all the performances of the four participants, the mean rising edge has a major
margin between the maximum and the minimum limit. For example, participant 2 shows
the narrower plateaus, meaning that he was the fastest at taking the box, carrying it to the
table, and dropping it. On the contrary, participant 4 and 1 shows larger plateaus, with
differences in the uncertainties on the rising edge, meaning that participant 4 performed
the task approximately at the same rate all five times. The force profile that differs the
most from the others is the one relative to participant 3. Evaluating the other two forces at
the examined joint, we noted how the mentioned participant would tend to slightly lean
forward, diminishing the force in the investigated direction.
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Figure 12. Lower back vertical forces, normalized with respect to the task execution, computed as the
mean of the variables collected during the five repetitions of the assignment by the four participants.

Figure 13 reports the estimated torques at the shoulder joints of the four participants.
In these plots, the starting and ending peaks that can be recognized at the limit of the
plateaus represent the instants of elongation of the arms for taking and dropping the box.
The final positive peaks (observed in participants 3 and 4) show the fastest retreat of the
arms once the box was left on the table, consistent with how the experiments have been
conducted by the participants. Even if limited in the module, the differences between the
torques’ values are motivated by the dissimilarity of the anthropometric measures between
the participants. For example, the fourth and shortest participant (therefore with the
shortest arms for the torques) shows minor torques with respect to the tallest (participant 2,
1.78m tall). This difference is also due to the discrepancy in the movements performed by
the participants.

In Figure 14 we report the components of elbows forces which better express the
variations through the task due to the grasping and carrying of the object. Indeed, the
graphs reporting the data of participants 1 and 3 are quite similar, starting with a force
that represents the weight of the forearm. Concerning the elbows’ forces reported for
participants 2 and 4, it can be noted - through the evaluation of the other components of
the wrench at these joints - how the difference in the poses and motion joints trajectories
for accomplishing the tasks can be extrapolated by interpreting the data from our inverse
dynamics approach. The fact that the examined element of the force does not start with
a value coherent with the mass of the forearm means that, during the grasping-carrying-
dropping sequence, participants 2 and 4 rotate their arms, adjusting a self-selected position
for a more comfortable pose to maintain while holding the box. The force profile that
differs the most from the others is the one relative to participant 4. Through an examination
of the other two forces at the elbows’ joints, we observed how this participant not only
rotates the elbows for interacting with the box, but also tends to tilt the elbows in the
first stage of the grasping and load-carrying phases, initially diminishing the force in the
investigated direction.
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Figure 13. Shoulder torques, normalized with respect to the task execution, computed as the mean of
the variables collected during the five repetitions of the assignment by the four participants.

Figure 14. Elbow forces, normalized with respect to the task execution, computed as the mean of the
variables collected during the five repetitions of the assignment by the four participants.



Sensors 2023, 23, 5885 19 of 22

To present an example that shows how the rotation of the investigated articulation
during the task affects the forces estimated, in Figure 15 we report the mean (together with
the maximum and minimum limits) of the three components of the force at the wrists for
the participants 2 and 3, normalized along the execution of the experimental procedure
repeated for five times. The modules of the proposed forces are consistent with the masses
of the body segments of interest (in this case the hands) and with the dynamics of the
events during the procedure. Element 1 of the Force reported (that is to say the two graphs
in the middle column of the panel) contain the main contribution in the unloaded walk
(before taking the box), i.e., the gravitational component, however, the different behaviors
of the examined participants lead to dissimilarities in the subsequent trends.

Figure 15. Wrist forces, normalized with respect to the task execution, computed as the mean of the
variables—corresponding to the three components of this force—collected during the five repetitions
of the assignment by participants 2 and 3.

As mentioned previously, by analyzing the components of this force, we can investigate
distinct variations of the grasping, dropping, and load-carrying hand pose. In this case,
participant 2 presents two spikes in Force 2 at the moments of grabbing and depositing
the box, with a continuous and higher plateau on the 0 component. This means that the
self-selected hand pose varies during the phase of carrying the load from the shelf to the
target table. On the contrary, evaluating the elements of the force at the wrist of participant
3, we observe that two plateaus with similar modules coexist from the grasping moment to
the final dropping stage. This means that participant 3 maintains approximately the same
position and orientation of the hands while interacting with the box.

Observing the correlation between the data related to the joints of the same arm, it can
be noted how the backward recursion effectively conveys the forces and torques from the
last joint of the human chain (in this work the wrist) to the other joints connected in series
with it.

6. Discussion

The experiments have proven that the neural networks were properly trained, per-
forming very well in the hands and box recognition. Furthermore, the implementation of a
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finite state machine permitted to avoid the wrench discontinuities when the camera loses
the targets, which occurs when the operator’s hands are not detected, the carried box is not
recognized or its identification barcode is not identified in the image.

The choice of the camera is satisfactory, indeed the load estimation performed with
the aid of an egocentric camera seems to be a good approach, making it suitable for the case
of people that have to work with objects with similar appearance whose content (therefore
inertial properties) can be identified through the detection of a certain element (in this
case barcodes).

The proposed RNEA algorithm easily allows for the application of external wrenches
on any body of the tree thanks to the novel tree management described in Section 2.3. The
experimental results are consistent with the gait analysis results that can be found in the
literature (e.g., [37]) both in terms of absolute values of ground reaction forces and their
distribution over the gait cycle. Results show that the system copes correctly with strongly
differently sized participants, providing a consistent estimation of wrenches regardless
of the user’s anthropometric measures. Articular forces and torques are also consistent
with the literature for similar tasks, even if an immediate comparison is not feasible.
Indeed, examining similar works from the literature, such as [38–40], both the experimental
protocols and the way of displaying the results (not showing forces and torques but EMG
data or fatigue factors) turn out to be quite different. In [41], for example, the task of lifting
is performed with heavier boxes and following a quite dissimilar movement pattern. We
draw a similar conclusion considering the results from [42], where the torques at wrist and
elbow joints are reported from quasi-static experiments conducted using two different loads.
Consequently, only a quantitative comparison is allowed, while considering a scaling factor
that accounts for the difference in the manipulated load and anthropometric measures.
In the proposed ROS implementation, the inverse dynamics solver executes within the
desired rates with its 2 ms computation time. This perfectly fits with the desired objective
of performing an online biomechanical analysis.

The experiments, conducted with a sufficiently variable set of participants, allowed
us to stress the current limitations of this approach, which are mainly due to the simple
algorithm used for gait segmentation, which is based on a threshold on the ankle position.
A more complex gait classification, e.g., a classifier based on the joints angles, could be
used to improve the leg wrenches results without using costly and uncomfortable insole
sensors and avoid discontinuities. This will be the target of future studies to improve the
novel system proposed in this paper. The mentioned limitation does not apply to the upper
body part, where the wrenches have proven to be consistent for every upper body joint.

Besides enhancing the gait segmentation system, future insights will lead to investi-
gating the method exposed in this paper through extensive experimental validation for
other tasks that are exhaustively analyzed in the literature. Therefore, not only the MMH
in a warehouse-like environment for logistics applications will be deepened by enrolling
real-world operators, but also other experimental procedures are going to be examined to
extend the possible confrontations with other works from the literature.

7. Conclusions

The paper presented a novel method for the biomechanical analysis of the human that
naturally allows for the application of multiple wrenches, and is particularly suited for the
case of manual material handling activities in a warehouse-like environment. The results
show that the idea of using an egocentric camera is suitable for online load estimation,
which needs efficient and computationally light neural networks for the required detections,
in high-impact cases such as those in logistics. The whole system can perform a correct
biomechanical analysis of the user’s activity, though improvement is necessary to have a
more reliable gait segmentation and an experimental exploration of different tasks, aiming
at a more comprehensive confrontation with the literature.
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