
Citation: Mugnai, M.; Teppati Losé,

M.; Herrera-Alarcón, E.P.; Baris, G.;

Satler, M.; Avizzano, C.A. An

Efficient Framework for Autonomous

UAV Missions in Partially-Unknown

GNSS-Denied Environments. Drones

2023, 7, 471. https://doi.org/

10.3390/drones7070471

Academic Editors: Samir Khan, Vaios

Lappas and Nadjim Horri

Received: 23 May 2023

Revised: 9 July 2023

Accepted: 15 July 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

An Efficient Framework for Autonomous UAV Missions in
Partially-Unknown GNSS-Denied Environments
Michael Mugnai *,† , Massimo Teppati Losé † , Edwin Paúl Herrera-Alarcón , Gabriele Baris ,
Massimo Satler and Carlo Alberto Avizzano

Institute of Mechanical Intelligence, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
massimo.teppatilose@santannapisa.it (M.T.L.); edwinpaul.herreraalarcon@santannapisa.it (E.P.H.-A.);
gabriele.baris@santannapisa.it (G.B.); massimo.satler@santannapisa.it (M.S.);
carloalberto.avizzano@santannapisa.it (C.A.A.)
* Correspondence: michael.mugnai@santannapisa.it
† These authors contributed equally to this work.

Abstract: Nowadays, multirotors are versatile systems that can be employed in several scenarios,
where their increasing autonomy allows them to achieve complex missions without human interven-
tion. This paper presents a framework for autonomous missions with low-cost Unmanned Aerial
Vehicles (UAVs) in Global Navigation Satellite System-denied (GNSS-denied) environments. This
paper presents hardware choices and software modules for localization, perception, global planning,
local re-planning for obstacle avoidance, and a state machine to dictate the overall mission sequence.
The entire software stack has been designed exploiting the Robot Operating System (ROS) middle-
ware and has been extensively validated in both simulation and real environment tests. The proposed
solution can run both in simulation and in real-world scenarios without modification thanks to a
small sim-to-real gap with PX4 software-in-the-loop functionality. The overall system has competed
successfully in the Leonardo Drone Contest, an annual competition between Italian Universities
with a focus on low-level, resilient, and fully autonomous tasks for vision-based UAVs, proving the
robustness of the entire system design.

Keywords: UAV; MAV; mission planning; collision avoidance; navigation in partially-known
environments; visual-based navigation; GNSS-denied

1. Introduction

Recent technological advances have raised interest in autonomous Micro-Aerial Vehi-
cles (MAVs) for different applications from agriculture to industry. MAVs assist human
operators in repetitive or dangerous tasks, such as powerline maintenance [1] and Search
and Rescue (SAR) activities. The fields where autonomous drones are reducing the com-
plexity and risk of different human chores are increasing daily. Current challenges in MAV
research involve using only local sensing and pushing the efficiency of the algorithms
further in order to improve the agent’s self-sufficiency. Anyway, the design of a fully
autonomous framework for a small platform with limited payload and sensing capabilities
poses significant challenges. The design of such systems is a process that requires the
continuous improvement of both the hardware and the software components to find the
optimal trade-off between performance and flight duration.

For example, from 2018 to 2021 international agencies such as DARPA funded the
Subterranean Challenge (SubT) Search and Rescue competition. The challenge aimed to
boost the research and the development of technologies that can support operations in
complex and diverse underground settings which pose significant risks and challenges
for military and civilian first responders. In this challenge, the teams had to address per-
ception, networking, and navigation problems that arise when using autonomous robots

Drones 2023, 7, 471. https://doi.org/10.3390/drones7070471 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7070471
https://doi.org/10.3390/drones7070471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-7983-6780
https://orcid.org/0000-0002-1718-7719
https://orcid.org/0000-0003-2175-3143
https://orcid.org/0000-0002-1721-9055
https://orcid.org/0000-0001-6731-3114
https://orcid.org/0000-0001-5802-541X
https://doi.org/10.3390/drones7070471
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7070471?type=check_update&version=1

Drones 2023, 7, 471 2 of 18

in unpredictable subsurface environment conditions in order to obtain a map of the sce-
nario. The teams that participated in the challenge were Team CoStar [2], Team CSIRO
Data61 [3], Team CTU-CRAS-NORLAB [4], Team Cerberus [5], Team Explorer (www.cmu.
edu/news/stories/archives/2021/september/darpa-subt-finals.html (accessed on 17 July
2023)), Team Marble (www.colorado.edu/today/2021/09/24/engineers-take-home-5000
00-international-underground-robotics-competition (accessed on 17 July 2023)), Team Co-
ordinated Robotics, and Team Robotika. These teams implemented different heterogeneous
multi-robot systems for the SAR exploration task that can be split into two categories.
On one side, there was a significant variety of ground robots, including legged robots,
crawling hexapods, and both wheeled and tracked rovers. On the other side, the flying
robots consisted of custom-built multirotors, which are optimal for autonomous operations
relying only on onboard sensing due to their maneuverability, vertical take-off and landing
capability, small factor size, and low cost.

The flying platforms of the DARPA Subterranean Challenge present different frame-
works towards full aerial autonomy, for which environment perception sensors strongly
rely on 3D LiDAR technology due to the lack of good visibility in certain areas. Never-
theless, most MAVs used cameras, as the subterranean exploration mission was oriented
towards identifying and localizing specific objects within the environment, which was
incrementally mapped as the robots navigate in it.

Depending on the scenario, lighting conditions, and tasks to be accomplished, au-
tonomous platforms could generally operate based on camera systems only regardless of
whether they used a 3D LiDAR. LiDAR technology is fast and accurate, and the amount of
information obtained at each sample time is huge. Therefore, its usage in an autonomous
system requires an onboard computer with the computational capacity to handle a large
amount of information in real-time. In addition, its price with respect to other onboard
sensors is significantly higher. Vision-based navigation relying only on onboard sensors
such as cameras and inertial measurement units (IMU) is a plausible option. Cameras are
promising sensors for small drones because they can gather rich information and span
wide fields of view for comparable mass. An example of a vision-based MAV autonomous
stack is Ingenuity (https://mars.nasa.gov/technology/helicopter/ (accessed on 17 July
2023)) [6], a 1.8 kg multirotor designed to autonomously fly for up to 90 s in the atmosphere
of Mars. Ingenuity is the first aircraft to accomplish autonomous exploration on a planet
relying entirely on onboard sensors. Its sensors include inertial measurement units for
accelerations and angular rates, a laser rangefinder to measure its distance to the ground,
and a navigation camera to take pictures.

New challenges related to vision-based tasks in autonomous drones have appeared in
recent years. For instance, the MBZIRC 2020 competition’s first challenge was intended
for an autonomous UAV to localize, track, and neutralize an intruder UAV in an outdoor
open space. The International Conference of Unmanned Aircraft Systems (ICUAS) 2022
proposed a UAV competition in which the drone had to quickly explore an environment,
detect a static target, and precisely deliver an object to the target.

1.1. Competition Details and Proposed System Overview

Leonardo S.p.A., an Italian aerospace and defense company, created the Drone Con-
test challenge (https://www.leonardo.com/it/innovation-technology/open-innovation/
drone-contest (accessed on 17 July 2023)) in 2019, a yearly event among Italian universities
to solve vision-based tasks in an indoor GNSS-denied environment using a UAV. In the 2022
competition, the environment was partially unknown: teams knew the position of many
obstacles, while others were randomly placed before each round. Each round consisted of
two phases: first, the drone had to explore the environment looking for a moving target,
then it had to be tracked for at least 10 s. In the second phase, a sequence of actions was
provided to the team, with each action having a score. The teams decided on the execution
order of the actions. Actions could be of two types: precision landing, or taking a picture
of a marker. The winner was the team with the highest score over the three rounds of

www.cmu.edu/news/stories/archives/2021/september/darpa-subt-finals.html
www.cmu.edu/news/stories/archives/2021/september/darpa-subt-finals.html
www.colorado.edu/today/2021/09/24/engineers-take-home-500000-international-underground-robotics-competition
www.colorado.edu/today/2021/09/24/engineers-take-home-500000-international-underground-robotics-competition
https://mars.nasa.gov/technology/helicopter/
https://www.leonardo.com/it/innovation-technology/open-innovation/drone-contest
https://www.leonardo.com/it/innovation-technology/open-innovation/drone-contest

Drones 2023, 7, 471 3 of 18

the competition. In detail, the autonomous platform had to navigate autonomously in an
environment of dimensions 20 m× 10 m with a maximum height of 3 m while relying only
on vision-based sensors. Within the environment, the drone had to search for a mobile
ground robot and track it for a minimum amount of time. Then, a sequence of actions was
provided to the UAV. These actions were divided between precision landing and taking
pictures of fiducial markers positioned on the vertical faces of the obstacles.

This paper introduces a ROS framework capable of performing autonomous mis-
sions in a partially unknown GNSS-denied environment and presents a solution for the
Drone Contest challenge with a vision-based autonomous MAV based on the open-source
PX4 firmware. The proposed solution was tested in a real environment during compe-
tition. (a video of the competition can be found at https://www.youtube.com/watch?
v=HiNrlqCKWlQ&t=3133s (accessed on 17 July 2023)). While within the Drone Contest
challenge a partial map of the environment is available, this work considers the possibility
of variations within the environment such as the presence of new unknown obstacles,
extending the global planning strategy to work alongside a local re-planning module. In
previous works, we proposed an object-oriented exploration and volumetric mapping of
an unknown environment [7] and a 3D low-dimensional topological graph generated on
previously explored environments, which is useful for global path planning [8]. In this
work, the navigation graph is extended as the entry point of a trajectory planner able to
guide UAVs in partially known environments through an obstacle avoidance module that
overrides desired UAV velocities in order to evade unmapped obstacles. The overall system
is handled by a mission planner that drives the UAV during the entire challenge using a
finite-state machine.

1.2. Related Works

This section reviews works presented in the literature regarding fully autonomous
frameworks, then works concerning their evolution towards vision-based platforms, and fi-
nally provides a comparison between the presented hardware and software modules with
other state-of-the-art systems with similar characteristics.

Over the last decade, the research topic of aerial navigation has driven towards the
challenging problem of employing solely onboard sensors. The earliest overall frameworks,
such as Shen et al. [9], proposed a platform based on an IMU, monocular camera, and 3D Li-
DAR as unique sensors for the autonomous UAV. Tomic et al. [10] introduced a quadcopter
with navigation based on a combination of Visual Odometry from a stereo camera and 3D
LiDAR scanning. These works focused on providing greater robustness for both indoor
and outdoor SAR scenarios. Both frameworks were validated through experiments that
highlighted navigation performance through evaluations of the pose estimation and loop
closure in different indoor and outdoor scenarios. On the other side, Fraundorfer et al. [11]
presented a quadrotor with navigation that depended solely on visual information, using a
front-facing stereo camera and a down-facing optical flow camera. Their work emphasized
accurate perception of the environment by using two different sensors to analyze different
planes. The navigation was validated by testing it with an onboard planning and mapping
algorithms, while the loop closure was done offboard.

Nowadays, the most common architecture for autonomous custom-built drones uses
two boards: a companion computer for high-level modules and a low-level attitude con-
troller board. For the latter, Pixhawk (https://pixhawk.org (accessed on 17 July 2023))
hardware has become an open-source standard. Up to its original work on autonomous
vision-based MAVs, Pixhawk [12] has become a flexible research module to standardize the
low-level controller and the state estimation. An important advantage of Pixhawk boards is
that they are supported by the most popular autopilots for autonomous vehicles: PX4 [13]
and ArduPilot (https://ardupilot.org/ (accessed on 17 July 2023)).

Another option for low-level control and estimation is the board used by Loianno et al. [14]
with the Qualcomm® SnapdragonTM FlightTM, which aims to achieve lightweight visual–
inertial navigation. This board features a downward-facing VGA camera with 160° field

https://www.youtube.com/watch?v=HiNrlqCKWlQ&t=3133s
https://www.youtube.com/watch?v=HiNrlqCKWlQ&t=3133s
https://pixhawk.org
https://ardupilot.org/

Drones 2023, 7, 471 4 of 18

of view, a VGA stereo camera, and a 4 K camera, all packed into a board of dimensions
58 mm × 40 mm. Ge et al. [15] used this setup in a MAV swarm system for decentralized
vision-based detection and tracking strategies. On the same topic, Thakur et al. [16] instead
used the successor of the previously mentioned board. These works depict examples of
lightweight vision-based platforms using smartphone processors with weights under 450 g.
These platforms are lightweight enough to be both agile and resistant in case of collisions,
and as such are a good prototype for testing new algorithms. However, they are currently
not designed to fulfill long high-level missions due to their lack of high computational
power and loe level of flight autonomy.

The Size, weight, and power (SWaP) constraints perfectly describe the trade-offs for
designing MAV platforms. For this reason, autonomous flying system developers often
have to accurately choose the number of sensors to use, then estimate the computational
cost needed for processing their information and the minimum accuracy they want to
reach in terms of both the navigation error and the trajectory tracking performance. Liu
et al. [17] highlighted the evolution of technologies for autonomous multirotors as well
as the need for bigger sensors, more computational power, and better batteries for GNSS-
denied environments. On one side, platforms under 450 g (wheelbase under 0.35 m from tip
to tip with 3-inch propellers) continue to see reduced form factor and battery size while
increasing their flight time and performance. On the other side, the evolution of larger
prototypes (wheelbase over 0.75 m) has significantly improved in terms of endurance,
sensor carrying technology, and computational power. However, their weight remains over
3.5 kg.

Moon et al. [18] described the challenges involved in Autonomous Drone Racing
(ADR) and analyzed the technologies and results in the IROS competitions in 2016 and
2017. ADR is a vision-based competition in which the drone has to navigate in a clut-
tered indoor environment while detecting and crossing through gates and relying only
on onboard resources. Several of the platforms used in this competition are based on
commercial off-the-shelf drones [19,20] modified for the competition rules, while other
teams build their own custom drones [21,22]. Other published platforms relate to specific
competitions or programs, such as the drone from the AlphaPilot [23] ADR Competition
(www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html (accessed
on 14 March 2023)), the team from Politecnico di Milano [24] in the Leonardo Drone Contest,
and Mohta et al. [25,26] from the DARPA Fast Lightweight Autonomy program.

Several projects have been published with the aim of reproducibility and to encourage
open-sourcing. For example, the Open Vision Computer (https://osrf.github.io/ovc/
(accessed on 17 July 2023)) project (OVC) was tested on a drone [27]. Oleynikova et al. [28]
and Kompis et al. [29] have published both the hardware and software setup of their fully
autonomous projects. Finally, other projects have published their integrated frameworks
to display their performance in accomplishing specific problems, such as SAR tasks [30],
sensor placement [31], and using computational-constrained platforms [32].

Table 1 summarizes the overall specifications and hardware information of the pre-
viously mentioned frameworks. All of the mentioned platforms navigate autonomously
while relying only on vision sensors. These platforms were presented to solve different
problems, such as racing, high-speed navigation, exploration in unknown cluttered envi-
ronments, dense mapping and reconstruction of real-world scenarios, and sensor allocation.
Compared to the other solutions, our proposed platform shows a fair trade-off between
the available computational power of the companion computer and its small size, mak-
ing it particularly suitable for performing complex navigation and exploration tasks in
cluttered environments while relying primarily on vision. The main disadvantages are
the limited flight time and the limited angular range to detect obstacles due to the lack of
LiDAR sensors.

For autonomous navigation and obstacle avoidance in GNSS-denied environments,
the platform must continuously preserve information about its pose with different localiza-
tion strategies. Different works in the literature have focused on the development of several

www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://osrf.github.io/ovc/

Drones 2023, 7, 471 5 of 18

individual modules in simulation [33,34] without developing a comprehensive solution
in real-world experiments. In this work, we present a complete framework that enables a
drone to autonomously navigate in partially known environments even in the absence of a
reliable position reference such as a GNSS.

Table 1. Summarized characteristics of autonomous vision-based middle-size platforms described in
the literature.

Reference
Wheelbase/

Weight Flight Time
Companion
Computer

FCU/
Autopilot Sensors

Rojas-Perez et al. [19]
47 cm
≈560 g <20 min Odroid XU4

Parrot Board
Bebop Autopilot

Sensors from
Parrot Bebop 2

Kaufmann et al. [21]
49 cm
0.950 g N.S. Aaeon UP Board

Qualcomm
Snapdragon Flight

N.S.

Intel RS R200
or

Front-facing Camera

Li et al. [20]
51 cm
≈400 g ≈12 min

Parrot P7 dual-core
CPU Cortex A9

Parrot Board
Paparazzi

Sensors from
Parrot Bebop 1

Jung et al. [22] 73 cm
2.26 kg

12 min NVIDIA Jetson
TK1

In-house
ZED Stereo Camera

LiDAR Lite V3
PX4FLow

Mohta et al. [25,26] 75 cm
≈2.8 kg

≈5 min Intel NUC i7 Pixhawk 4
PX4

2 × FLIR Chamaleon
VN-100 IMU

LiDAR Lite V3
Hokuyo UTM-30LX *

Quigley et al. [27]
40 cm
≈1.3 kg 15 min NVIDIA Jetson

TX2
Pixhawk

N.S.

FPGA with:
2 × 1300 Python Cameras
4 × Fish-eye Cameras

AlphaPilot [23]
70 cm
3.4 kg N.S. NVIDIA Jetson

Xavier AGX
N.S.
N.S.

2 × Leopard IMX 264
IMU Bosch BMI088

LiDAR Lite V3

Sandino et al. [30]
73 cm

Under 2 kg 8 min
Aaeon UP Squared

Board
Pixhawk 4

PX4

Intel RS D435
Intel RS T265

HBV-1615 RGB camera
TFMini Plus

Oleynikova et al. [28]
70 cm
≈2.5 kg 15 min Intel NUC i7

mRo Pixhawk
PX4

VI Sensor ([35])
Intel RS D435

Kompis et al. [29] 75 cm
≈1.6 kg **

15 min

Intel NUC i5/i7
or

NVIDIA Jetson
TX2

Pixhawk 4
PX4

Stereo VI Units ***:
Intel RS D455

Alphasense Core
Skybotix VI-Sensor

ZED 2
Structure Core

Venus RGB
BlueFox

Campos-Macias
et al. [32]

59 cm
1.3 kg <20 min Intel Atom x7-Z8750

STM32F427V
N.S.

Intel RS D435
Intel RS T265

Roggi et al. [24]
53 cm

2.85 kg ≈20 min
NVIDIA Jetson

Xavier NX
Pixhawk 4

PX4

ZED Stereo Camera
2 × OpenMV H7 Plus

LiDAR Lite V3

Stephens et al. [31]
60 cm
1.9 kg ≈20 min Intel NUC i7

Pixhawk Pixracer
PX4

Intel RS D435i
Intel RS T265

our quadcopter
54 cm
1.5 kg ≈12 min Lattepanda

Alpha 864s
Pixhawk Durandal

PX4

Intel RS D435i
Intel RS T265

TFMini-S

N.S.: Not Specified. * The LiDAR sensor was used only for dense mapping. ** Weight without the VI camera and
its respective supports. *** The platform was tested with different VI cameras, not simultaneously.

The rest of this paper is organized as follows. Section 1.2 reviews fully autonomous
UAV frameworks employed in applications similar to the proposed one. Section 2 presents
the proposed custom UAV’s architecture, including both the hardware and software mod-

Drones 2023, 7, 471 6 of 18

ules. In Section 3, the navigation stack is exposed in depth. Simulations and real experi-
ments are described in Section 4, and the conclusions are presented in Section 5.

2. System Overview

This section describes the UAV architecture, consisting of hardware components
and software modules, that guarantees autonomous flight while relying only on onboard
vision-based sensing. The competition rules forbid the use of LiDARs and GNSS-based
positioning systems.

RealSense D435i

RealSense T265

Lattepanda
Alpha 864s

Pixhawk
Durandal PX4

LiPo 4S 5200mAh

Holybro
Telemetry Radio

TFMini-S

Figure 1. One of the prototypes used in the Leonardo Drone Contest 2022 competition, with 7-inch
propellers (wheelbase 51.5 cm from tip to tip) and a LattePanda Alpha 864s for onboard processing.
The low-level control board is a Pixhawk Durandal. The drone is equipped with a front-facing camera
for stereo depth and an RGB channel and a down-facing fisheye camera for VIO and object tracking.

2.1. Hardware Overview

The MAV employed in this work in Figure 1 is an evolution of the experimental
platform presented in our previous work [7], a custom quadrotor built with commercially
available off-the-shelf products. The chosen frame is a carbon fiber quadcopter with a
wheelbase without propellers of 36 cm, intended for propellers up to 8 inches (maximum
wheelbase of up to 54 cm from tip to tip).

The perception task is accomplished by two stereo-cameras, one front-facing for
obstacle avoidance and one down-facing for Visual–Inertial Odometry (VIO). In particular,
the former is an Intel Realsense D435i camera able to provide depth-maps through stereo-
vision information, while the latter is an Intel Realsense T265 camera able to provide MAV’s
pose in a local reference frame. Both the depth and VIO are computed onboard these
devices through proprietary firmware.

Because the environment is only partially known and front pictures must be taken as a
task during the mission, it is necessary to employ a front-facing camera for the local planner
module. A down-facing camera can work instead as an optical flow module; thanks to its
wide fisheye’s Field Of View (FOV), the T265 can observe the UAV’s surroundings (≈5 m
wide at an altitude of 1.5 m) both for visual navigation and mission tasks such as ground
patrolling. The chosen altimeter is a Benewake TFmini-S that allows distances up to 12 m
to be measured in a small form-factor. The flight controller is a Pixhawk Durandal board
with PX4 Autopilot firmware v1.12.3.

2.2. Software Overview

The UAV estimates its 3D pose and velocity relative to a local starting position through
Visual Inertial Odometry (VIO). The resulting pose estimation is combined with the Pix-

Drones 2023, 7, 471 7 of 18

hawk’s IMUs and altimeter through an Extended Kalman Filter (EKF) implemented in
PX4 and computed inside the flight controller. In particular, the EKF fuses the on-board
IMU data (two accelerometers, two gyros, and one magnetometer) with external pose
estimates, which in our case are computed by the VIO and the drone altitude sensor. The
flight controller board runs multiple instances of the Extended Kalman Filter. By comparing
estimate consistencies of the EKF instances, an EKF selector is able to determine which
filter output is the more confident, thereby monitoring sensor faults. This enables detection
and isolation of faults such as sudden changes in IMU bias, saturation, and stuck data.

As shown in Figure 2, the estimated pose is provided to both the mission planner and
global planner. The mission planner, described in depth in Section 3.6, dictates the overall
behavior of the UAV during the mission through a Finite State Machine that spans from the
initial takeoff to each mission task needed to fulfill the competition or challenge. It requests
goal poses in a map frame for the global planner, which is divided into two components.
The global planner first performs a fast exploration of a precomputed navigation graph,
generated as specified in Section 3.1. With the obtained feasible sequence of intermediate
waypoints, the current pose is connected to the goal pose through rectilinear segments,
which are proven to lie in the obstacle-free region of the known map. In Section 3.2,
the trajectory reference is generated from the interpolation of the provided waypoints
while obeying dynamic constraints. Collisions with unknown obstacles or due to trajectory
tracking errors are handled by the local planner, which steers the MAV by altering the
trajectory reference velocity vector, as explained in Section 3.3. The output trajectory
is tracked with velocity commands, generated as in Section 3.4; these are forwarded to
the Pixhawk’s micro-controller, which converts the center-of-mass desired velocities as
commands for the actuator drivers.

Marker
Recognition

T265

B&W Image

Odometry

D435i

RGB Image

Depth

IMUs

Distance

TFMini-
S

EKF

escaping UGV
relative positionTarget Detection

Local Planner

Target
pose

Mission Planner

Feasible
trajectory

Current Pose Estimate

Global Planner

trajectory
modifications

Trajectory
Generator

Actuators

Low-Level
Controller

Reference Tracker

Exteropeceptive Sensors Pixhawk Board Computer Companion Output

Figure 2. Overall architecture of the system. Data flows from the sensor’s inputs (green boxes) to the
main modules of the system in their respective boards (pink boxes for the MCU, blue boxes for the
companion computer) up to the controlled output (red box).

3. Core Modules of the Navigation Stack

In this section, a detailed overview of the navigation stack is presented. Figure 3
depicts the information flow that composes the overall structure of the navigation stack.
Each time a goal end pose is supplied, a pathfinder queries an offline-computed topological
graph to find intermediate waypoints that connect the current UAV pose to the desired goal
pose. In this passage, the selected crossing points as well as the path that connects them lie
in the obstacle-free region of the pre-acquired map. This path is used as a nominal reference
for the UAV trajectory, while unpredicted obstacles are handled online by the influence
of the obstacle avoidance module on the actual trajectory to be tracked. The waypoints

Drones 2023, 7, 471 8 of 18

selected from the topological graph are interpolated by a dynamically feasible trajectory
that drives the UAV in the obstacle-free region of the previously known map. Unpredicted
obstacles are handled by the local planner, which alters the nominal trajectory by steering
the UAV along free regions.

GNGraph

3D volumetric map topological graph

Global Planner

start pose

end pose

waypoint
sequence

Trajectory Generator

Low-level
Controller

offline computed

velocity
commands

feasible
trajectory

Local Planner

current pose

local depth Trajectory Tracker

trajectory
corrections

Figure 3. Core elements of the navigation stack. A navigation graph, computed offline over a given
3D map, is queried to produce a feasible trajectory that can be modified by the local planner for
avoidance of unknown obstacles.

3.1. Offline Path Planning

The path planning is composed of two successive parts: an offline precomputing
of the topological graph and an online trajectory generation and tracking. The former
is approached using a graph-based solution, which can model the essential notions of
navigational knowledge using route graphs, as presented by Werner et al. [36].

Our previous work, GNGraph [8], was a map-based general method that computed a
low-dimensional topological graph of the environment for path planning. This solution
exploits an unsupervised Hebbian learning algorithm, and is devised for a fast run-time
global planning query on low-computing power embedded systems. The resulting graph
is extracted from the environment’s Euclidean Signed Distance Field (ESDF) map, and
represents a clearance roadmap of the collision-free surroundings close to its 3D Generalized
Voronoi Diagram (GVD). A clearance roadmap is a suitable solution for the challenge in
question: considering the partially-known environment, the GVD maintains the safest
distance from the known obstacles; a collision-avoidance module can then operate in the
presence of unknown obstacles.

For this work, the shortest path search algorithm was changed from A* to Dijkstra’s
algorithm. This decision was taken because A* searches for the optimal path through a
heuristic function, while in the case of the contest environment, considering its content size
and topology, it is more feasible to run Dijkstra, which guarantees optimality without the
need to define a heuristic.

The waypoint sequence between two extreme points, that is, the starting position and
goal position, is obtained by first finding the closest vertices of the graph to the starting
and goal positions in the environment considering the Euclidean distance between each of
them. For this, it is assumed that the segment that connects starting and goal positions to
their nearest graph vertices relies on the obstacle-free space. Then, the Dijkstra algorithm
finds the shortest path that connects both nodes. It is guaranteed that at least one path is
found, as GNGraph ensures the graph’s connectivity using the spectral analysis included
in its stopping learning criteria.

Drones 2023, 7, 471 9 of 18

3.2. Online Trajectory Planning

The second step of the path planning is achieved online, working with the information
computed by the method in Section 3.1. While navigating in the environment, the pathfind-
ing algorithm is applied in the topological graph in order to obtain a feasible sequence of
waypoints that allows the UAV to move from the current (starting) point to any desired
final position. Note that the topological graph dictates only desired 3D positions of the
UAV, while the orientation is left free and can be programmed in order to fulfill a secondary
task, such as pointing the front-facing camera in any desired direction.

From the obtained sequence of positions, a feasible trajectory that obeys UAV dynamic
constraints such as maximum velocities and accelerations must be computed. Time-Optimal
Path Parametrization (TOPP) is a class of methods that has the aim of generating a feasible
trajectory in the configuration space that interpolate an ordered sequence of desired config-
urations. The planned trajectory lies in the flat space that is the outcome of the application
of the Differential Flatness theory [37] to the quadrotor dynamics. As commonly used in
the literature, the chosen flat states in this work are the position of the UAV’s center of
mass and heading angle, both of which are taken with respect to a fixed frame. Indeed, the
3D position and orientation cannot be controlled independently; the UAV’s roll and pitch
angles used to obtain the desired position and yaw are constrained by its dynamics. These
two elements generate a four-dimensional space that composes the hyperplane in which
the trajectory is planned.

The feasible first- and second-order pose derivatives constrain the allowed set, while
the ordered sequence of waypoints obtained by the exploration of the GNGraph imposes
intermediate cross-points as position-only constraints. The current UAV position pre f (0),
together with the M desired waypoints wi and the final position pre f (t f) are interpolated
with a cubic spline S that defines the UAV trajectory as pre f (t) = S(t) in t ∈ [0, t f].

The heading angle can be imposed as a function of the current mission; during the
exploration phase, i.e., while the UAV is navigating in previously unknown environments,
the heading can be fixed towards the direction of motion by imposing the desired yaw
angle ψ as

ψre f (t) = arctan
vy(t)
vx(t)

, (1)

where (vx, vy) are the horizontal components of the reference UAV velocity with respect
to the map reference frame. This allows the front camera to detect unattended obstacles.
During scanning phases, i.e., while the quadrotor is seeking some element of interest in a
known direction, the desired heading can instead be directly imposed for each waypoint wi.

Among TOPP algorithms, TOPP-RA [38] exploits Reachability Analysis, a linear
control systems theory that allows for the identification of feasible states starting from
constrained inputs. In the studied case, feasible trajectories for the UAV position and
heading angle are generated as time-dependent parametric curves using this method,
where velocity and acceleration constraints are enforced over a sampling grid. Together
with their time derivatives, the computed trajectories are sampled to generate the time-
varying setpoint employed as a reference for the low-level controller, which is discussed in
Section 3.4.

3.3. Local Planning for Obstacle Avoidance

The developed local planner module allows the robot to navigate in environments
where the map is partially known a priori. The unknown obstacles that compose the
environment are represented by columns; these are placed at random points in the en-
vironment in a scattered manner such that their composition does not generate a con-
cave configuration. The module interacts with the global planner and sends addic-
tive speed references to change the planned trajectory in real-time based on local sens-
ing sensors. The perception of obstacles is carried out by the obstacle detector system
(https://github.com/tysik/obstacle_detector (accessed on 17 July 2023)), which reads the
depth information from the RGB-D camera and performs a clusterization to generate point

https://github.com/tysik/obstacle_detector

Drones 2023, 7, 471 10 of 18

cloud groups that identify the obstacles. Because the size range of the obstacles is known a
priori, the clusterization algorithm fits the point cloud data with the expected dimension to
detect obstacles.

After the obstacles have been detected within the camera’s field of view, the respective
centroids are used as reference points for the obstacle avoidance algorithm.

Artificial Potential Field (APF) [39] represents a simple approach for implement-
ing an obstacle avoidance module able to interface easily with a generic global planner.
The method is a control strategy for autonomous systems based on the artificial potential
function that guides the motion of the system. The APF has been shown to be effective in
a wide range of applications, including robotic navigation, formation control, and multi-
agent coordination. Our implemented local planner is based on this method and allows the
autonomous platform to achieve real-time performance with unpredicted obstacles, show-
ing robustness in the presence of location uncertainty while exploiting solely local sensing
information. In addition, the implemented approach only requires a few parameters to
be tuned.

The planar position ri = [xi, yi]
T of each i-th detected obstacle is expressed with

respect to the local reference system attached to the quadrotor. For each i-th obstacle, the
corresponding planar velocity

vi =

−
[

kr
x2

i
, kr

y2
i

]T
if ‖ri‖ ≤ R

[0, 0]T otherwise
(2)

is computed only if the obstacle is detected within a certain threshold of the distance R
from the geometric center of the drone. The gain kr is the tuning parameter that modulates
the motion aggressiveness in avoiding obstacles. The vector modulus of each velocity vi is
saturated if a certain threshold vmax in magnitude is exceeded; in this way, the contribu-
tion of the repulsion velocity is limited and the safety of autonomous navigation can be
ensured by tuned limits. Then, the average speed v̄ is computed on the actual repulsive
contributions to calculate the overall repulsive velocity for N obstacles

v̄ =
1
N

N

∑
i=1

vi. (3)

The average operator ensures that the generated repulsive velocity does not exceed the
established threshold vmax for any distribution of detected obstacles. The computed overall
repulsive velocity is sent to the global planner’s reference tracking control in order to obtain
feasible trajectories that evade unknown obstacles in the environment, as described in the
next Subsection.

3.4. Trajectory Reference Tracking and Low-Level Control

The desired trajectory that the UAV has to track, as computed in Section 3.2, can be
expressed with the desired position pref(t) and heading angle ψref(t), the function of the
time t ∈ [t0, t f], and their time derivatives vref(t) and ψ̇ref(t).

The lower level control of the UAV is handled by the PX4 autopilot, which communi-
cates desired propeller velocities to the ESCs with several nested control loops. The chosen
entry point for the position and velocity references designated by the high-level control is
the UAV’s center of mass velocity. Here, a PID controller implemented in the PX4 is able to
map the desired UAV velocities to actuation reference signals.

Therefore, it is sufficient to produce a desired UAV center-of-mass velocity vd together
with a desired heading rate ψ̇d to feed to the control loops of the PX4. The position and
velocity references produced by the trajectory planning in any time instant t are converted
to the desired center of mass velocities as

vd = ṗref(t) + kP pref(t) , (4a)

Drones 2023, 7, 471 11 of 18

ψ̇d = ψ̇ref(t) + kψψref(t). (4b)

As computed in Section 3.3, the additional contribution of the local planner can be
added to Equation (4a) after each position and velocity vector is written in the reference
system fixed to the UAV frame. Indeed, velocity variations due to the avoidance of obstacles
are identified via local sensing, as they are already expressed in the UAV frame and are not
impacted by navigation errors.

3.5. UGV Tracking

The tracking problem is stated as an unknown target moving freely on the ground
constrained inside the partially known environment. The target’s state and kinematics are
entirely unknown; therefore, its dynamics is assumed to be a double integrator in discrete
time with a sampling period ∆t.

The target UGV position is measured using the intrinsic camera matrix to project
the position from the pixel 2D image plane to the 3D camera plane and then estimated
with a Kalman filter. The state vector is composed of positions and velocities in the
horizontal plane, such as x = [px py ṗx ṗy]T , while the state transition matrix A and
the observation matrix H are

A =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

, H =

[
1 0 0 0
0 1 0 0

]
. (5)

In the prediction step
x̂k|k−1 = Ax̂k−1 ,

Pk|k−1 = APk−1 AT + Q
(6)

the Kalman filter produces the a priori prediction state x̂k|k−1 and state estimation error
covariance Pk|k−1 considering the covariance Q of the process noise.

In the update step

Kk = Pk|k−1HT
(

HPk|k−1HT + R
)−1

,

Pk = (I4×4 − Kk H)Pk|k−1 ,

x̂k = x̂k|k−1 + Kk

(
yk − H x̂k|k−1

) (7)

the current a priori prediction is combined with the current observation yk to obtain the a
posteriori state estimate x̂k and the estimate covariance matrix Pk considering the covariance
of the observation noise R.

3.6. Mission Planner

The high-level mission logic is managed by means of a Finite State Machine (FSM), the
representation of which is shown in Figure 4. The FSM dictates the overall UAV behavior
while taking on all the challenge tasks exposed in Section 1.1.

The mission starts in the Idle state. When the UAV is set to the PX4 offboard mode
and receives the takeoff command, the system moves to the Hover state until the Start
Search command is received, at which point the system moves into the Search state. In the
latter state, the drone starts exploring the environment and looking for the moving target
in the down-facing camera stream. When the target is found, the system moves into the
Tracking state. The tracking of the target must last for 10 s; if the target is lost, the drone
starts exploring again (i.e., the system moves again into the Search state). If the tracking is
performed continuously for 10 s, the system moves into the Wait for Mission state and
the drone stays in hover.

Drones 2023, 7, 471 12 of 18

At this point, the Ground Control Station (GCS) can send a mission to the drone.
A mission consists of a sequence of actions: either land, or take a photo. In both cases,
a target coordinate is specified as a cell of the competition field. The system automatically
picks up the first action in the list and moves to the desired location. If the action is a land
request, then the drone lands, waits 10 s, and takes off again; if the action is a photo request,
the drone starts an exploration phase looking for the target that must be shot. During the
challenge, the environment is partially known in terms of obstacles; however, we only have
an approximate location of the target to be shot. For this reason, a series of waypoints is
used as a reference for the exploration phase. When the target is found, the drone takes a
picture and the operator at the GCS accepts the picture or sends the retry command.

When an action is completed, the system again enters the Select Action state and the
loop repeats until all actions have been executed. Finally, the drone moves to a safe location
(away from obstacles) and performs a final landing before returning to the Idle state.

Figure 4. Schematic representation of the FSM managing the whole mission logic. The blue circles
represent states, while the arrows represent transitions.

4. Evaluation and Experiments

The effectiveness of the different modules described in this work was first tested
in simulated environments, then validated in real-world scenarios. The PX4 Software
In The Loop (PX4-SITL) allows testing and comparison of the proposed algorithm in
simulation and in the real world without any modification. PX4-SITL is based on the
RotorS simulator [40], a Gazebo-based simulation environment that provides reliable
multirotor models. The simulated quadrotor, mimicking the real one, is equipped with a
face-forward stereo camera that provides real-time color images and depths of the simulated
environment as well as with a downfacing camera.

The partially known 3D map of the Drone Contest is reproduced in Blender and
imported in Gazebo with a dynamical spawning of the additional unknown obstacles
in random positions; these are regulated as stated in Section 1.1. The escaping UGV is
implemented in simulation with a Turtlebot 3 (https://www.turtlebot.com/turtlebot3
(accessed on 17 July 2023)), whereas during the competition the real robot is a Roomba
(https://www.irobot.it/roomba (accessed on 17 July 2023)) with original firmware. Both
are constrained in rectangular subsections of the map’s ground.

4.1. Global Trajectory Planner

Example trajectories are shown in Figure 5, where a top view of the competition field is
represented. In Figure 5a, the computed trajectory moves the UAV from the starting cell I12
to the left side of the map in order to look for the escaping UGV. The trajectory is generated
through the method described in Section 3.2 by interpolation of the red waypoints. The
ordered list is obtained prepending the user-defined sequence G8-G6-D6-D8, with the

https://www.turtlebot.com/turtlebot3
https://www.irobot.it/roomba

Drones 2023, 7, 471 13 of 18

waypoint sequence selected from the GNGraph obtained as in Section 3.1, which connects
the starting point (I12 to the first user-defined search position (G8).

(a) (b)

Figure 5. UAV planned trajectories, in red, for (a) beginning UGV search performed when taking off
from the starting square I12 and (b) long-distance navigation from B3 to G16. The red dots are the
intermediate waypoints selected from the GNGraph, that the trajectory has to interpolate.

Figure 5b shows the planned trajectory from the start position B3 to the target G16.
The entire list of intermediate waypoints is inferred from the GNGraph algorithm. At any
time instant, the heading angle is set tangent to the green curve in order to always monitor
the direction of motion for unknown obstacles with the forward-facing camera.

These examples show the versatility of the algorithm with a different number of way-
points that can be explicitly requested, inferred from the topological graph, or both. Short
(<5 m) and long (up to 5 m) trajectories are planned on the onboard companion computer
in less than 700 ms.

4.2. Local Planner

The corrections of a simulated obstacle avoidance experiment are shown in Figures 6.
The trajectory replanning is due to the presence of two unknown cylindrical obstacles,
represented in red in the top-down view and in white in the gazebo environment. Obstacles
are placed in the simulation such that the desired trajectory (in green) intersects them. When
obstacles are detected, the local planner module makes the drone deflect the reference
trajectory, sending additive speed commands to the global planner. The parameters of the
local planning module are tuned in simulation to guarantee UAV readiness in avoiding the
detected obstacles and at the same time to ensure compliance with the desired kinematic
constraints in terms of the maximum speed limits of the vehicle. From the plots in Figure 7,
it is apparent that the vehicle does not violate the kinematic constraints of the global planner
(±0.5 m/s) when no obstacles are detected; in the presence of obstacles, the vehicle must
not exceed the sum of the limits of the global and local planner (±1.1 m/s).

Drones 2023, 7, 471 14 of 18

(a) (b)

Figure 6. Local Planner module performing obstacle avoidance starting from the local position [0, −1]
in simulation. The desired trajectory in green is the reference provided to the quadrotor, while the
real (corrected by obstacle avoidance) trajectory is in blue. (a) Trajectory due to obstacle avoidance,
top view and (b) scenario viewed in Gazebo Simulator.

Figure 7. Vehicle speed expressed in the local coordinate frame during the obstacle avoidance
experiment in Gazebo Simulator. The vehicle respects the speed thresholds set both in the absence
and in the presence of obstacles.

4.3. Overall System in Real Environment

The proposed framework was used during the competition in the indoor environment
of the 2022 Leonardo Drone Contest. With the help of the Rviz tool, we developed a
graphical user interface (Figure 8) to monitor the progress of the mission and the status of
the drone in real time. On the right of the GUI, the operator can see the streams from the
forward-facing camera and the undistorted down-facing camera, which are enabled for
searching markers. In the center it can be seen where the drone is located with respect to
the map, which is known a priori. For each planning, the selected nodes of the roadmap
are colored in red while the computed trajectory of the global planner is shown in green.
The cyan sphere indicates the current reference position for the low-level tracking control.
The unknown obstacle mapped by the detector module is represented by concentric red
and green cylinders. On the left panel, the operator has the possibility of deciding which
box the drone has to land in by typing the coordinates on the interface.

Drones 2023, 7, 471 15 of 18

Figure 8. RVIZ GUI used to monitor the drone’s mission in real-life experiments. In the right
column, both camera FOVs are shown. In the central window, the environment’s known obstacles
are represented with voxels and an unknown obstacle is depicted with a dark red and green cylinder.
The drone’s trajectory and reference points are shown in light green and red, respectively.

The expected performance was verified in the real scenarios in terms of both readiness
to avoid unknown obstacles and ability to return to the desired trajectory when no more ob-
stacles were detected. Figure 9 show a sequence of manoeuvres along the planned trajectory
in the presence of an unknown obstacle.

(a) (b) (c)

Figure 9. A sequence of images during the tracking of a reference trajectory in the presence of an
unknown obstacle. The UAV detects the obstacle (a), sends speed commands to the global planner to
change the planned trajectory (b), and returns to the previous trajectory after avoiding the obstacle (c).

5. Conclusions

This paper has presented a versatile solution for addressing complex autonomous
tasks, specifically focusing on the case of the 2022 Leonardo Drone Contest. The pro-
posed vision-based framework demonstrates the ability to navigate efficiently in partially
unknown GNSS-denied real-world environments. By leveraging an offline-computed topo-
logical graph and online obstacle avoidance, the system effectively handles both planned
and unpredicted obstacles.

The complexity of the mission tasks was tackled by using a Finite State Machine
that effectively activates the needed modules of the stack. The entire software stack was
designed, developed, and tested entirely in the ROS framework, with the middleware
exploited on the drone companion computer to run and arrange the communication among
all the software modules.

Localization and navigation capabilities were initially tested in simulation and their
robustness was subsequently validated in real-world scenarios, specifically, the Leonardo
Drone Contest challenge, further confirming the effectiveness of the proposed system.
The proposed framework and the choices related to the hardware and the sensors represent

Drones 2023, 7, 471 16 of 18

a widely tested innovative solution that ensures autonomous flight in real-world GNSS-
denied environments even in partially unknown scenarios.

In summary, this work provides a comprehensive and adaptable solution for au-
tonomous tasks that has demonstrated its efficacy in challenging environments, thereby
setting a foundation for further advances in the field of UAV autonomy.

Author Contributions: Conceptualization, M.M., M.T.L., E.P.H.-A., G.B. and M.S.; methodology,
M.M., M.T.L., E.P.H.-A. and G.B.; software, M.M., M.T.L., E.P.H.-A. and G.B.; validation, M.M., M.T.L.,
E.P.H.-A. and G.B.; resources, E.P.H.-A., M.S. and C.A.A.; writing—original draft preparation, M.M.,
M.T.L., E.P.H.-A., G.B. and M.S.; writing—review and editing, M.M., M.T.L. and M.S.; supervision,
M.S.; project administration, M.S.; funding acquisition, M.S. and C.A.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not yet publicly available at the time of writing but they will.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
MAV Micro-Aerial Vehicle
UGV Unmanned Ground Vehicle
GNSS Global Navigation Satellite System
ROS Robot Operating System
RViz ROS visualization tool
SAR Search And Rescue
FSM Finite State Machine
FCU Flight Control Unit
FPGA Field-Programmable Gate Array
RS RealSense
LiDAR Light Detection and Ranging
IMU Inertial Measurement Unit
VIO Visual Inertial Odometry
FOV Field Of View
EKF Extended Kalman Filter
TOPP Time-Optimal Path Parametrization
APF Artificial Potential Field
ESC Electronic Speed Controller
GCS Ground Control Station
GUI Graphical User Interface

References
1. Silano, G.; Baca, T.; Penicka, R.; Liuzza, D.; Saska, M. Power Line Inspection Tasks with Multi-Aerial Robot Systems via Signal

Temporal Logic Specifications. IEEE Robot. Autom. Lett. 2021, 6, 4169–4176. [CrossRef]
2. Agha, A.; Otsu, K.; Morrell, B.; Fan, D.D.; Thakker, R.; Santamaria-Navarro, A.; Kim, S.K.; Bouman, A.; Lei, X.; Edlund, J.; et al.

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge.
arXiv 2021. [CrossRef]

3. Hudson, N.; Talbot, F.; Cox, M.; Williams, J.; Hines, T.; Pitt, A.; Wood, B.; Frousheger, D.; Lo Surdo, K.; Molnar, T.; et al.
Heterogeneous Ground and Air Platforms, Homogeneous Sensing: Team CSIRO Data61’s Approach to the DARPA Subterranean
Challenge. Field Robot. 2022, 2, 595–636. [CrossRef]

4. Rouček, T.; Pecka, M.; Čížek, P.; Petříček, T.; Bayer, J.; Šalanský, V.; Azayev, T.; Heřt, D.; Petrlík, M.; Báča, T.; et al. System
for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in the DARPA Subterranean Challenge.
arXiv 2021. [CrossRef]

http://doi.org/10.1109/LRA.2021.3068114
http://dx.doi.org/10.48550/ARXIV.2103.11470
http://dx.doi.org/10.55417/fr.2022021
http://dx.doi.org/10.48550/ARXIV.2110.05911

Drones 2023, 7, 471 17 of 18

5. Tranzatto, M.; Dharmadhikari, M.; Bernreiter, L.; Camurri, M.; Khattak, S.; Mascarich, F.; Pfreundschuh, P.; Wisth, D.;
Zimmermann, S.; Kulkarni, M.; et al. Team CERBERUS Wins the DARPA Subterranean Challenge: Technical Overview
and Lessons Learned. arXiv 2022. [CrossRef]

6. Balaram, B.; Canham, T.; Duncan, C.; Grip, H.F.; Johnson, W.; Maki, J.; Quon, A.; Stern, R.; Zhu, D. Mars helicopter technology
demonstrator. In Proceedings of the 2018 AIAA Atmospheric Flight Mechanics Conference, Kissimmee, FL, USA, 8–12 January
2018; p. 0023.

7. Alarcón, E.P.H.; Ghavifekr, D.B.; Baris, G.; Mugnai, M.; Satler, M.; Avizzano, C.A. An Efficient Object-Oriented Exploration
Algorithm for Unmanned Aerial Vehicles. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems
(ICUAS), Athens, Greece, 15–18 June 2021; pp. 330–337. [CrossRef]

8. Herrera-Alarcón, E.; Satler, M.; Vannucci, M.; Avizzano, C. GNGraph: Self-Organizing Maps for Autonomous Aerial Vehicle
Planning. IEEE Robot. Autom. Lett. 2022, 7, 10721–10728. [CrossRef]

9. Shen, S.; Michael, N.; Kumar, V. Autonomous multi-floor indoor navigation with a computationally constrained MAV. In
Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 20–25.
[CrossRef]

10. Tomic, T.; Schmid, K.; Lutz, P.; Domel, A.; Kassecker, M.; Mair, E.; Grixa, I.; Ruess, F.; Suppa, M.; Burschka, D. Toward a fully
autonomous UAV: Research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 2012, 19, 46–56.
[CrossRef]

11. Fraundorfer, F.; Heng, L.; Honegger, D.; Lee, G.H.; Meier, L.; Tanskanen, P.; Pollefeys, M. Vision-based autonomous mapping and
exploration using a quadrotor MAV. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems,
Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 4557–4564. [CrossRef]

12. Meier, L.; Tanskanen, P.; Heng, L.; Lee, G.H.; Fraundorfer, F.; Pollefeys, M. PIXHAWK: A micro aerial vehicle design for
autonomous flight using onboard computer vision. Auton. Robot. 2012, 33, 21–39. [CrossRef]

13. Meier, L.; Honegger, D.; Pollefeys, M. PX4: A node-based multithreaded open source robotics framework for deeply embedded
platforms. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015;
pp. 6235–6240. [CrossRef]

14. Loianno, G.; Brunner, C.; McGrath, G.; Kumar, V. Estimation, Control, and Planning for Aggressive Flight With a Small Quadrotor
With a Single Camera and IMU. IEEE Robot. Autom. Lett. 2017, 2, 404–411. [CrossRef]

15. Ge, R.; Lee, M.; Radhakrishnan, V.; Zhou, Y.; Li, G.; Loianno, G. Vision-based Relative Detection and Tracking for Teams of Micro
Aerial Vehicles. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto,
Japan, 23–27 October 2022; pp. 380–387. [CrossRef]

16. Thakur, D.; Tao, Y.; Li, R.; Zhou, A.; Kushleyev, A.; Kumar, V. Swarm of Inexpensive Heterogeneous Micro Aerial Vehicles.
In Proceedings of the Experimental Robotics; Siciliano, B., Laschi, C., Khatib, O., Eds.; Springer International Publishing: Cham,
Switzerland, 2021; pp. 413–423.

17. Liu, X.; Chen, S.W.; Nardari, G.V.; Qu, C.; Ojeda, F.C.; Taylor, C.J.; Kumar, V. Challenges and Opportunities for Autonomous
Micro-UAVs in Precision Agriculture. IEEE Micro 2022, 42, 61–68. [CrossRef]

18. Moon, H.; Martinez-Carranza, J.; Cieslewski, T.; Faessler, M.; Falanga, D.; Simovic, A.; Scaramuzza, D.; Li, S.; Ozo, M.;
De Wagter, C.; et al. Challenges and implemented technologies used in autonomous drone racing. Intell. Serv. Robot. 2019,
12, 137–148. [CrossRef]

19. Rojas-Perez, L.O.; Martinez-Carranza, J. Metric monocular SLAM and colour segmentation for multiple obstacle avoidance in
autonomous flight. In Proceedings of the 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems
(RED-UAS), Linköping, Sweden, 3–5 October 2017; pp. 234–239. [CrossRef]

20. Li, S.; Ozo, M.M.; De Wagter, C.; de Croon, G.C. Autonomous drone race: A computationally efficient vision-based navigation
and control strategy. Robot. Auton. Syst. 2020, 133, 103621. [CrossRef]

21. Kaufmann, E.; Gehrig, M.; Foehn, P.; Ranftl, R.; Dosovitskiy, A.; Koltun, V.; Scaramuzza, D. Beauty and the Beast: Optimal
Methods Meet Learning for Drone Racing. In Proceedings of the 2019 International Conference on Robotics and Automation
(ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 690–696. [CrossRef]

22. Jung, S.; Cho, S.; Lee, D.; Lee, H.; Shim, D.H. A direct visual servoing-based framework for the 2016 IROS Autonomous Drone
Racing Challenge. J. Field Robot. 2018, 35, 146–166. [CrossRef]

23. Foehn, P.; Brescianini, D.; Kaufmann, E.; Cieslewski, T.; Gehrig, M.; Muglikar, M.; Scaramuzza, D. AlphaPilot: Autonomous
drone racing. Auton. Robot. 2022, 46, 307–320. [CrossRef]

24. Roggi, G.; Meraglia, S.; Lovera, M. Leonardo Drone Contest 2021: Politecnico di Milano team architecture. In Proceedings of the
2022 International Conference on Unmanned Aircraft Systems, ICUAS 2022, Dubrovnik, Croatia, 21–24 June 2022; pp. 191–196.
[CrossRef]

25. Mohta, K.; Watterson, M.; Mulgaonkar, Y.; Liu, S.; Qu, C.; Makineni, A.; Saulnier, K.; Sun, K.; Zhu, A.; Delmerico, J.; et al. Fast,
autonomous flight in GPS-denied and cluttered environments. J. Field Robot. 2018, 35, 101–120. [CrossRef]

26. Mohta, K.; Sun, K.; Liu, S.; Watterson, M.; Pfrommer, B.; Svacha, J.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Experiments in
Fast, Autonomous, GPS-Denied Quadrotor Flight. In Proceedings of the 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 7832–7839. [CrossRef]

http://dx.doi.org/10.48550/ARXIV.2207.04914
http://dx.doi.org/10.1109/ICUAS51884.2021.9476764
http://dx.doi.org/10.1109/LRA.2022.3195192
http://dx.doi.org/10.1109/ICRA.2011.5980357
http://dx.doi.org/10.1109/MRA.2012.2206473
http://dx.doi.org/10.1109/IROS.2012.6385934
http://dx.doi.org/10.1007/s10514-012-9281-4
http://dx.doi.org/10.1109/ICRA.2015.7140074
http://dx.doi.org/10.1109/LRA.2016.2633290
http://dx.doi.org/10.1109/IROS47612.2022.9981115
http://dx.doi.org/10.1109/MM.2021.3134744
http://dx.doi.org/10.1007/s11370-018-00271-6
http://dx.doi.org/10.1109/RED-UAS.2017.8101672
http://dx.doi.org/10.1016/j.robot.2020.103621
http://dx.doi.org/10.1109/ICRA.2019.8793631
http://dx.doi.org/10.1002/rob.21743
http://dx.doi.org/10.1007/s10514-021-10011-y
http://dx.doi.org/10.1109/ICUAS54217.2022.9836103
http://dx.doi.org/10.1002/rob.21774
http://dx.doi.org/10.1109/ICRA.2018.8463214

Drones 2023, 7, 471 18 of 18

27. Quigley, M.; Mohta, K.; Shivakumar, S.S.; Watterson, M.; Mulgaonkar, Y.; Arguedas, M.; Sun, K.; Liu, S.; Pfrommer, B.;
Kumar, V.; et al. The open vision computer: An integrated sensing and compute system for mobile robots. In Proceedings of the
IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 1834–1840. [CrossRef]

28. Oleynikova, H.; Lanegger, C.; Taylor, Z.; Pantic, M.; Millane, A.; Siegwart, R.; Nieto, J. An open-source system for vision-based
micro-aerial vehicle mapping, planning, and flight in cluttered environments. J. Field Robot. 2020, 37, 642–666. [CrossRef]

29. Kompis, Y.; Bartolomei, L.; Chli, M. Fully Autonomous Live 3D Reconstruction with an MAV: Hardware- and Software-Setup,
2021-12-02. In Proceedings of the 9th International Conference on 3D Vision (3DV 2021), Online, 1–3 December 2021. [CrossRef]

30. Sandino, J.; Vanegas, F.; Maire, F.; Caccetta, P.; Sanderson, C.; Gonzalez, F. UAV framework for autonomous onboard navigation
and people/object detection in cluttered indoor environments. Remote Sens. 2020, 12, 3386. [CrossRef]

31. Stephens, B.; Nguyen, H.N.; Hamaza, S.; Kovac, M. An Integrated Framework for Autonomous Sensor Placement With Aerial
Robots. IEEE/ASME Trans. Mechatron. 2022, 28, 38-49. [CrossRef]

32. Campos-Macías, L.; Aldana-López, R.; de la Guardia, R.; Parra-Vilchis, J.I.; Gómez-Gutiérrez, D. Autonomous navigation of
MAVs in unknown cluttered environments. J. Field Robot. 2021, 38, 307–326.

33. Ko, C.; Han, S.; Choi, M.; Kim, K.S. Integrated path planning and tracking control of autonomous vehicle for collision avoidance
based on model predictive control and potential field. In Proceedings of the 2020 20th International Conference on Control,
Automation and Systems (ICCAS), Busan, Republic of Korea, 13–16 October 2020; pp. 956–961.

34. Nieuwenhuisen, M.; Droeschel, D.; Beul, M.; Behnke, S. Autonomous navigation for micro aerial vehicles in complex GNSS-denied
environments. J. Intell. Robot. Syst. 2016, 84, 199–216. [CrossRef]

35. Nikolic, J.; Rehder, J.; Burri, M.; Gohl, P.; Leutenegger, S.; Furgale, P.T.; Siegwart, R. A synchronized visual-inertial sensor system
with FPGA pre-processing for accurate real-time SLAM. In Proceedings of the 2014 IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 431–437. [CrossRef]

36. Werner, S.; Krieg-Brückner, B.; Herrmann, T. Modelling navigational knowledge by route graphs. In Spatial Cognition II; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 295–316.

37. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of the IEEE International
Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2520–2525. [CrossRef]

38. Pham, H.; Pham, Q.C. A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis. IEEE Trans.
Robot. 2018, 34, 645–659. [CrossRef]

39. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the 1985 IEEE International
Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 500–505.

40. Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. Rotors—A modular gazebo mav simulator framework. RObot Oper. Syst. Complet.
Ref. 2016, 1 , 595–625.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICRA.2019.8794472
http://dx.doi.org/10.1002/rob.21950
http://dx.doi.org/10.3929/ethz-b-000520507
http://dx.doi.org/10.3390/rs12203386
http://dx.doi.org/10.1109/TMECH.2022.3202116
http://dx.doi.org/10.1007/s10846-015-0274-3
http://dx.doi.org/10.1109/ICRA.2014.6906892
http://dx.doi.org/10.1109/ICRA.2011.5980409
http://dx.doi.org/10.1109/TRO.2018.2819195

	Introduction
	Competition Details and Proposed System Overview
	Related Works

	System Overview
	Hardware Overview
	Software Overview

	Core Modules of the Navigation Stack
	Offline Path Planning
	Online Trajectory Planning
	Local Planning for Obstacle Avoidance
	Trajectory Reference Tracking and Low-Level Control
	UGV Tracking
	Mission Planner

	Evaluation and Experiments
	Global Trajectory Planner
	Local Planner
	Overall System in Real Environment

	Conclusions
	References

