
Learning Heuristics for Efficient Environment Exploration
using Graph Neural Networks

Edwin P. Herrera-Alarcón1,2, Gabriele Baris2, Massimo Satler2, Carlo A. Avizzano2, and Giuseppe Loianno1

Abstract— The robot exploration problem focuses on maxi-
mizing the volumetric map of a previously unknown environ-
ment. This is a relevant problem in several applications, such as
search and rescue and monitoring, which require autonomous
robots to examine the surroundings efficiently. Graph-based
planning approaches embed the exploration information into a
graph describing the global map while the robot incrementally
builds it. Nevertheless, even if graph-based representations are
computational and memory-efficient, the exploration decision-
making problem complexity increases according to the graph
size that grows at each iteration. In this paper, we propose
a novel Graph Neural Network (GNN) approach trained with
Reinforcement Learning (RL) that solves the decision-making
problem for autonomous exploration. The learned policy repre-
sents the exploration expansion criterion, solving the decision-
making problem efficiently and generalizing to different graph
topologies and, consequently, environments. We validate the
proposed approach with an aerial robot equipped with a
depth camera in a benchmark exploration scenario using a
high-performance physics engine for environment rendering.
We compare the results against a state-of-the-art planning
exploration algorithm, showing that the proposed approach
matches its performance in terms of explored mapped volume.
Additionally, our approach consistently maintains its perfor-
mance regardless of the objective function used to explore the
environment.

I. INTRODUCTION

Recent years have shown an increasing interest in raising
the autonomy of mobile robots, especially aerial and ground
solutions. These machines must be capable of autonomously
exploring and scanning partially or fully unknown environ-
ments to resolve search and rescue or monitoring tasks.
However, obtaining this level of autonomy requires high
robustness and efficiency in the high-level decision-making
process. Autonomous exploration is an intensely studied
problem in robotics that has been addressed with numerous
methods. Several aerial robot solutions [1], [2], [3] have
shown to be particularly suited to solve complex or dan-
gerous exploration tasks due to their low cost, ease of use,

1The authors are with the New York University, Tandon School
of Engineering, Brooklyn, NY 11201, USA. email: {eph6953,
loiannog}@nyu.edu.

2The authors are with the Perceptual Robotics Laboratory at the
IIM Institute, Department of Excellence in Robotics and A.I., Scuola Su-
periore Sant’Anna, 56100 Pisa, Italy. email: {e.herreraalarcon,
g.baris, m.satler, c.avizzano}@santannapisa.it.

This work was supported in part by the NSF CAREER Award
2145277, the DARPA YFA Grant D22AP00156-00, the Technology Inno-
vation Institute, Qualcomm Research, Nokia, and NYU Wireless. Giuseppe
Loianno serves as consultant for the Technology Innovation Institute. This
arrangement has been reviewed and approved by the New York University
in accordance with its policy on objectivity in research.

Fig. 1: Functional concept of graph-based exploration plan-
ners with a frontier-based (left) and a sampling-based (right)
method. A tree (graph) is expanded following specific grow-
ing criteria and later evaluated in terms of a defined infor-
mation gain that characterizes the next target to visit. Given
a graph, our GNN module (top) can identify the best next
segment to continue the exploration.

flexibility to navigate in 3D space, and efficient information-
gathering ability.

More specifically, when stating the exploration problem,
graph-based planners have improved the efficiency of the
exploration algorithms, where even small-scale robots with
SWaP (Size, Weight, and Power) constraints can explore and
reconstruct environments [4], [5]. Exploration approaches
can be classified into two main categories, as depicted in
Fig.1,

• Frontier-based methods continuously explore the
boundaries between known and unknown space, maxi-
mizing the exploration scenario.

• Sampling-based methods explore new paths in the cur-
rently explored map and select the most informative
ones based on an objective function.

In both cases, route graphs are employed to abstract and
represent the exploration problem using this simple, but
effective formalism [6]. Nevertheless, as pointed out by
the authors in [7], the exploration task in frontier-based
methods takes more time to explore an unknown environment
because their criterion chooses low-cost solutions that are
usually near the current position. Conversely, sampling-based
methods as Next-Best-View (NBV) [8] exploit an objective

2023 21st International Conference on Advanced Robotics (ICAR)
5-8 December 2023. Abu Dhabi, UAE

979-8-3503-4229-1/23/$31.00 ©2023 IEEE 86

20
23

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 A

dv
an

ce
d

Ro
bo

tic
s (

IC
AR

) |
 9

79
-8

-3
50

3-
42

29
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
AR

58
85

8.
20

23
.1

04
06

72
0

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

function formulation to search for robot poses with the best
viewpoint. The continuous evaluation of the viewpoint with
the highest value is an intensive computation process that
may also postpone the exploration of small areas to later
stages. Therefore, there is no preferred option between those
exploration approaches. The most effective one generally
relies on the expected behavior within the task and the
environment characteristics (i.e., the environment’s structure
and topology).

Both algorithms are prone to continuously growing com-
putation times proportional to the scale of the exploration
environment. Consequently, robots will struggle to meet real-
time requirements, especially when exploring large areas.
This work proposes a novel decision-making module for
exploration algorithms designed using a GNN trained using
RL where the learned policy efficiently chooses the explo-
ration tree expansion. The advances in machine learning,
particularly GNNs, have opened up new ways to exploit
graph structures for addressing several problems, from multi-
robot perception [9] to robot planning [10], [11]. Moreover,
these methods have proved to be effective for classifica-
tion [12], [13], link prediction [14], and state relational
association [15], [16]. GNNs are usually trained employing a
supervised method, but such an approach bounds the learning
process capability to the performance of the ground truth
used in the training phase. Conversely, RL can be leveraged
to train GNNs [17], [18], increasing its generalization capa-
bilities and hence improving its performance.

More in detail, RL used in conjunction with GNNs shows
promising results in solving decision-making problems with-
out explicitly generating a dataset with the expected behav-
ior to be learned. GNNs exhibit relational reasoning and
combinatorial generalization capabilities. GNNs are naturally
suited to represent directional and un-directional graphs’
spatial structures. They can be generalized to different graph
sizes and topologies, making them suitable for solving com-
plex exploration graphs. The proposed work aims to solve
the underlying policy expansion problem in sampling-based
planners exploiting modern GNN methods.

The contributions of this work are the following:
• A novel GNN approach able to choose the explo-

ration tree expansion problem generalizing over arbi-
trary graph topologies.

• A modular training approach where the decision-making
module learns from heuristics on combinatorial prob-
lems, which is subsequently embedded in a sampling-
based planner.

• A comparison against a state-of-the-art exploration al-
gorithm using a conventional decision-making module
shows how the proposed approach matches the perfor-
mance of this algorithm in terms of spatial explored
volume while being more efficient and building more
accurate maps.

The work is organized as follows: Section II overviews
different planning solutions used to explore unknown en-
vironments. The methodology is presented in Section III,
whereas simulated experiments are shown and analyzed in

Section IV. Finally, Section V summarizes the results and
future project developments.

II. RELATED WORKS

The fundamental goal of an autonomous exploration task
is mapping an unknown environment and classifying the
space as occupied or free. Depending on the specific applica-
tion, the exploration task can focus on speed [19], [20], ob-
ject search [21], [22], 3D reconstruction and inspection [23],
[24].

Sampling-based planners use cost-utility formulations
to determine the robot’s exploration behavior, maximiz-
ing exploration-related objective functions associated with
the aforementioned objectives. The authors in [1] propose
Cauchy-Schwartz quadratic mutual information to evaluate
trajectories during exploration, whereas in [25], a Shan-
non mutual information formulation in Truncated Signed
Distance Fields (TSDF) for active exploration is presented.
Also, [26] proposed a 3D Reconstruction Gain based on the
TSDF that was later implemented in an online informative
path planning algorithm based on RRT∗. In this case, the
algorithm continuously expands an exploration tree, keeping
non-executed parts of newly generated sampled viewpoints
alive, proving through experiments to overcome costly RRT
computation and addressing local minimum problems.

Other global planning approaches have been proposed to
escape local minima problems presented at dead-ends during
exploration. In [27], the authors propose the Autonomous Ex-
ploration Planner (AEP), a hybrid strategy mixing frontier-
based and sampling-based algorithms adopted for global
and local exploration, respectively. In addition, also [28]
proposes a hybrid strategy, using the fast marching method
to choose the next exploration goal among frontier points.
Conversely, the authors in [29] present GLocal, a two-
stage planning approach that leverages a submap structure
to compute efficiently global frontiers in a 3D changing
volumetric map. Instead, the planning structure presented
in [20] consists of a local receding horizon component and
a global sparse topological graph computed online to enable
high-speed aerial flight in large-scale unknown environments.
Finally, the approach proposed in [30] demonstrates a better
scaling performance than other planning approaches as the
environment increases by choosing the closest node with an
information gain above a minimum threshold.

In recent years, learning-based solutions have also be-
come popular in addressing robot planning and navigation
problems [31], [32], [33], [34], [35] due to their ability to
generalize to environments of different sizes while being
computationally efficient. Related to the exploration task,
the approach in [33] builds a topological map using obser-
vations obtained from previously collected data for visual
goal navigation, whereas in [36], the authors proposed the
use of an unsupervised clustering algorithm for obtaining a
topological graph of the environment to be used for efficient
run-time path planning. The work in [37] tackles the problem
of learning sampling-based local exploration planning. The
method is based on Conditional Variational AutoEncoders

87

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Planner structure with its submodules. The blue
submodule is where the key contribution of this work is
located. The dotted line is used for clarity due to the lines
crossing.

(CVAE) to learn informed multi-modal sampling distribu-
tions from occupancy maps, whose performance manages to
match and overcome conventional methods while reducing
the computational load.

More recently, GNNs have been introduced in robot ex-
ploration tasks such as learning sampling distributions to
generate the trajectory tree [38], reducing collision check-
ing [39], coupling a frontier-based exploration problem under
localization uncertainty [40], [41] with virtual landmarks to
predict the robot’s optimal sensing action in belief space, or
for centralized learning and decentralized decision-making
in multi-robot exploration [42].

This work uses an attention-based GNN trained using a
policy-based method that returns a stochastic policy about
where to go next. Sampling-based policies maximize an
objective function determining the exploration’s behavior.
Instead, the proposed policy is learned from small-scaled,
randomly generated problems to be later implemented di-
rectly in a growing state-action space as the exploration tree.

III. METHODOLOGY

We train a GNN using RL to learn how to solve a routing
problem. As depicted in Fig 2, with a blue submodule, the
learned policy is used as the expansion criterion for the
exploration tree in a sample-based planner. This approach
generalizes to unknown topologies while training the policy
modularly and without an expert algorithm. In the following
subsections, we describe in detail our approach.

A. Overview and Problem Description

The exploration problem discussed in this work involves
exploring a bounded 3D unknown space. The objective is
to find an efficient and collision-free sequence of robot
poses ξn that classifies the initial unknown space as either
free or occupied. The classified space is described using a
discretized map Md composed of voxels, representing the
continuous space with cubical volumes.

Fig. 3: Architecture of the Attention-based GNN. The En-
coder embeds the i inputs in N sequential layers, each
composed of a Multi-head attention layer and a Feed-forward
sublayer. The Decoder uses the graph and node embeddings,
with a Multi-head attention layer and a Single-head attention
layer, to compute the output probabilities of each node.

The sampling-based planning structure depicted in Fig. 2
shows the components that compose the exploration algo-
rithm. On the one hand, the trajectory generator is respon-
sible for expanding the trajectory tree while guaranteeing
mission constraints (i.e., the drone’s maximum velocity and
distance from obstacles). On the other hand, the trajectory
evaluator computes expected gains, costs, and values for the
expanded trajectory segments. Specifically, the expansion ex-
ploration policy has to validate the best branch according to
node value criteria until the environment is entirely classified
as free or occupied. Each sample node, robot configuration,
has a corresponding value, V , depending on its gain and cost,
Vn = f(Gn, Cn). Whereas the cost is usually defined as a
numerical description of the trajectory segment (either length
or time), the gain is defined due to the occupancy map Md.
Actually, the gain quantifies the set of visible and unmapped
voxels from the candidate configuration ξ.

The selection complexity increases with the duration of
a mission as the exploration graph continues to grow due
to the additionally collected information by the robot. The
essential idea of our approach is to improve the robot’s
decision-making process to choose the best node sequence
in the graph efficiently. Learning graph heuristics will save
significant time at each decision-making step by finding a
path from the robot’s current position within every accessible
part of the map. Additionally, a decision-making module
such as the proposed GNN can better adapt to the different

88

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

situations that can arise during the exploration mission.
For instance, classic decision-making modules maximize
objective functions, meaning the same criterion is going to
be used for all the decisions made during the exploration
task. Several state-of-the-art algorithms have successfully
implemented strategies such as the closest distance or the
highest gain node; however, stochastically speaking, there is
no unique criterion to approach the exploration of unknown
environments better.

B. Decision-making Module

In Fig. 3, the overall architecture of the decision-making
module is shown. From the input features xn, for each of
the inputs n = {1, ..., i}, to the output probability vector
p, which decides where to expand the current tree and
add adjacent trajectory segments to the target segment. Our
approach is based on a neural network architecture that uses
a Transformer-style attention mechanism (similar to Graph
Attention Networks) but without positional encoding, so the
resulting node embeddings are invariant to the input order.
This approach has been proven to be successful in solving
combinatorial optimization problems [18].

1) Encoder: Composed with N sequential layers con-
sisting of Multi-Head Attention (MHA), weighted message
passing between nodes, and node-wise Feed-Forward (FF)
sublayer. The attention mechanism during neighborhood ag-
gregation allows each node to weigh its neighbors based on
their relative importance. In addition, each sublayer adds a
skip-connection and batch normalization (BN) layer. For the
following notation, vectors are written in bold font.

The input dimensional features xn are fit into dimensional
node embeddings h0

n through linear projection.

h0
n = W xxn + bx, W x ∈ Rdh×dx . (1)

The message value passing is weighted through attention
weights anj that are computed from compatibility values
unj . The compatibility, u, between nodes depends on the
key kn of each neighbor node related to the own attention
query qn of each node embedding

kn = W khn. W k ∈ Rdk×dh ,
qn = W qhn W q ∈ Rdk×dh ,

unj =

{
qn

⊤kj√
dk

if n adjacent to j

−∞ otherwise
,

anj =
eunj∑i
j eunj

(2)

vn = W vhn W v ∈ Rdv×dh ,

Then, a combination of value messages vj is computed for
each attention head hn

′ =
∑

j anjvj, where each head has
different parameters. Multiple attention heads M allow nodes
to communicate different messages between neighbors.

MHAl
n(h

l−1
1 , ..., hl−1

i) =

M∑
m=1

WO
mhnm

′,

BN(hn) = ωBN ⊙BN(hn) + bBN,

ĥn = BN(hl−1
n +MHAl

n(h
l−1
1 , · · ·hl−1

i)), (3)

where the FF layer calculates node-wise projections,
whereas BN uses element-wise product together with a BN
without affine transformation (BN)

FF l(ĥn) = W ff,1ReLU(W ff,0ĥn + bff ,0) + bff ,1,

hl
n = ωbn ⊙BN(ĥn + FF l(ĥn)) + bbn. (4)

The input dimensional feature vector xn is defined by a
position in the 3D euclidean space, the value of the node,
and a cost related to its distance. Also, the node embeddings
dimension is dh = 128, while the dimensions of the keys
and values depend on the number of heads in the attention
layer, dk = dv = dh

M . In addition, the MHA layer uses 8
heads, whereas the dimension of the FF layer is 128.

2) Decoder: Structured with an architecture similar to
the Encoder but simpler, it uses an MHA sublayer to
compute the information of a context embedding but without
skip-connections, FF , and BN . Subsequently, a single-head
attention layer is used to obtain the probabilities related to
each input node. The decoder inputs are all singular node
embeddings and a temporary context embedding, h(N)

(c) . The
temporary context embedding is a horizontal concatenation
of the mean of the last layer of node embeddings 1

i

∑i
n=1 h

N
n

(graph embedding), the embedding of the current pose hN
0

and a minimum price constraint Pt.
The temporary context embedding is generated to obtain

an attention context query q(c), from the overall problem.
Then, a new context embedding is computed using a MHA
with messages from each node embedding hN

n of the last
layer for the keys and value messages, while the query comes
from h

(N)
(c) . Therefore, we employ the same paradigm as in

eq. (2), but referenced with the subindex (c) as shown in
Fig. 3 and without skip-connections, FF , and BN .

From the resultant context embedding, h(N+1)
(c) , we obtain

a new context query that is used to calculate the compatibility
of each node. However, the compatibility value is slightly
modified by clipping its values with a tanh function,

u(c)j = C · tanh

(
q(c)

⊤kj√
dk

)
.

Finally, the probabilities are calculated from the mentioned
compatibility values, pn = e

u(c)n∑
j e

u(c)j
for each node, from

which the resultant probability vector is obtained p. Refer-
enced eqs. (1), (3), (4) are depicted in Fig. 3, as the variation
of the attention query using only the context embedding.

3) Training the model: Routing problems generally re-
quire sequential decision-making to minimize a problem-
specific cost function (in our case, the value function defining
the exploration behavior). We define the problem as a partic-
ular case of the prize-collecting traveling salesman problem
(PCTSP), trading off the penalties of unvisited nodes with
the collected price while choosing only one node to go. The
previously described architecture is trained using RL. The
reason for choosing RL rather than a supervised approach is
to avoid limiting the learning performance to the teacher’s

89

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 REINFORCE Algorithm with Rollout Baseline

Require: number of epochs E, steps per epoch T , batch
size B, significance α

1: Initialize θ
2: θBL ← θ ▷ Greedy Rollout Policy
3: for epoch = 1,...,E do
4: for step = 1,...,T do
5: sk ← RandomInstance() ▷ ∀k ∈ {1, ..., B}
6: πk ← SampleRollout(sk, pθ) ▷ ∀k ∈ {1, ..., B}
7: πBL

k ← GreedyRollout(sk, pθBL) ▷
∀k ∈ {1, ..., B}

8: ∇L ←
∑B

k=1(L(πk)− L(πBL
k))∇θ log pθ(πk)

9: θ ← Adam(θ,∇L)
10: end for
11: if OneSidedPairedTTest() < α then
12: θBL ← θ
13: end if
14: end for

capacity (i.e., imitating an optimal solver), allowing better
generalization capabilities.

The GNN model is parametrized and described with θ,
where given a problem instance s, the model returns a
probability distribution vector p = pθ(π|s) from which to
pick the solution π. The model is trained by minimizing
the loss L(θ|s) = Epθ(π|s)

[
L(θ)

]
, defined as the expectation

of the solution π given problem s, using gradient descent
as shown in Algorithm 1. We used the gradient estimator
defined in [43] with baseline b(s), where b(s) is defined as
the cost of a solution from a deterministic greedy rollout of
the policy given by the best model so far.

∇L(θ|s) = Epθ(π|s)[(L(π)− b(s))∇logpθ(π|s)]. (5)

A proper selection of the baseline reduces gradient in-
variance, consequently increasing the learning speed. The
baseline estimates the difficulty of a problem instance s, such
that it can relate to the cost L(π) to estimate the advantage of
the solution selected by the model. In this work, we use the
same baselines implemented in [18] for the PCTSP, where
during the first epoch, an exponential baseline is used to
stabilize the learning with the parameter β

b(s) = β · b(s) + (1− β) · L(π)

The dataset on which the GNN is trained is generated us-
ing normalized randomly generated samples with positions,
gains, and penalties with values between 0 and 1. The value
of the minimum price constraint Pt is 1, considering all the
values are normalized.

C. Planner Structure Embedding

At every planning time step t, the robot is given a local
map of the environment where the task is identifying the next
configuration ξn to reach. Each configuration possibility is
depicted with a node that contains a trajectory associated
with a gain, cost, and value. Once the current trajectory
segment ends the execution, the learned policy chooses the

Fig. 4: Example of the proposed planning pipeline. The tree
is expanded during the mission, and each node is embedded
with exploration information. The nodes are processed by
the GNN, which returns the next node to visit.

Parameter Value Parameter Value
graph size 20 embedding dim. (dh) 128
epoch size (T) 1280000 validation size 10000
batch size (B) 2048 batch size for baseline eval. 1024
FF layer dim. 128 encode layers (N) 3
tanh clipping (C) 10.0 learning rate model 0.0001
significance (α) 0.05 learning rate decay 1.0
seed 1234 number epochs (E) 100

exp. avg. baseline decay (β) 0.8

TABLE I: Hyperparameters used for training.

next best adjacent segment based on the values related to
each trajectory, and the trajectory tree is updated.

The trajectory tree is expanded using a random sampling
method such as RRT, which is different from other state-
of-the-art planning methods that use RRT*. The RRT*
algorithm reduces the number of candidates at each iteration
because it already includes an optimization process that
rewires the branches following a length reduction criterion.
Therefore, we chose to use the classic RRT algorithm, which
constitutes a more fair comparison with our approach and
will allow to better appreciate the decision-making module’s
capabilities and usefulness.

The exploration tree information embedded into the input
dimensional features xn is the position of the nodes in the
3D space, their computed value Vn = f(Gn, Cn) as the
prize, and their cost as the penalty. All values are normalized
to remain coherent with the dataset in which the GNN is
trained. In addition, not the entire exploration tree is given
to the GNN model at each iteration, but rather a local map
from the current pose (root) to a graph depth of dimension
3, considering the continuous increase of random samples.

Then, after the node is chosen, following the receding hori-
zon sampling-based planner fashion, the robot only executes
the first edge of the tree towards the best viewpoint, after
which the process is repeated.

IV. EXPERIMENTS

A. System Setup

To evaluate the effectiveness of the proposed solution,
we perform tests in a simulated environment, using PX4
Software in the Loop (PX4-SITL) and compare the proposed
approach with a robust planner for Autonomous Exploration.

90

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

Parameter Notation Value
Camera FoV [ah, av] 80°, 50°

Max. Acceleration 0.75m s−2

Max. Velocity 0.75m s−1

Max. Yaw Rate 0.5 rad s−1

Camera Range dplanner
max 3.0m

TABLE II: Parameters used during the experiments.

Module Parameter Notation Value
Voxel size r 0.2m

Mapping Ray length 2.0m
TSDF Integrator Merged
Collision Radius R 0.5 m

Local Sampling Count nlocal 10
Local Sampling Radius rlocal 1.5m

Planning Edge Length lmax 1.5m
Updating Radius rupdate 3.0m

Ray Sub-sampling Factor fsub 3.0

TABLE III: Parameters of the mapping and planning modules
used during the experiments.

PX4-SITL is based on RotorS simulator [44], a Gazebo-
based simulation environment that provides reliable multi-
rotor models. However, the advantage of using PX4-SITL is
that it allows us to test the complete flight stack, which per-
mits to quickly understand real-world operating conditions
and therefore facilitates the transition to experiment with
real robotic platforms. The drone is equipped with a stereo
camera that provides real-time feedback on the simulated
environment by building a map using depth images.

For the sampling-based path planner, we use an open-
source modular framework from [26], adapted to PX4-SITL
as in [22]. The framework’s modularity allows us to test
the variation in the exploration performance by changing the
decision-making module with respect to different configura-
tions and settings.

The GNN is trained on a 3D problem using the framework
provided by [18]. We train with an Nvidia RTX 3090 using
the hyperparameters in Table I. The overall training took
approximately 3 hours, for an average epoch of 140 seconds.
Our inference implementation consists of two components:
a GNN server and a proxy module. The GNN server is a
Python module that runs an instance of the trained GNN. The
Python module receives the input from a socket, provides
it to the GNN, parses the results, and returns the solution
back to the caller. The caller is implemented as a C++
module, interacting with the other modules in the planning
framework, preparing the input for the GNN, and managing
the results. In addition, for a fair comparison, the inference
used by our method is implemented on the CPU rather than
the GPU.

B. Evaluation Environment

We test the proposed approach to the Receding Horizon
NBV planner (RH-NBVP) [8]. The same system constraints
are applied for all experiments to both algorithms for a fair
comparison. The values of the constraints are summarized in
Tables II and III. The decision-making module with whom

(a) NBV - RG. (b) GNN - RG.

(c) NBV - FG. (d) GNN - FG.

Fig. 5: Volummetric representation of the environment after
15 minutes of autonomous exploration. (Single Experiment)

we compare is the classic policy that chooses the segment
with the highest value in its overall subtree to be the next
node to reach (Maximum Gain).

We tested the algorithms using two different cost-utility
formulations. The first formulation is based on the TSDF
map of the reconstructed environment to estimate the impact
a viewpoint has on already existing and unknown surfaces,
Reconstruction Gain (RG), while the second formulation is a
Frontier Gain (FG), which appraises unknown voxels which
are next to occupied voxels (frontier voxels).

The selected synthetic environment consists of a 40× 40
m maze-like environment with a maximum flight height of
2.5 m. This scenario is a testbed challenging well-known
environment presented in the literature [26], [30]. In addition,
under the premise that exploration algorithms will eventually
explore the whole environment, the duration of the simulated
experiments is limited to 15 min to resemble the average
autonomy of a standard UAV system.

For each experiment, we save the map every 60 s to track
the exploration progress evaluated as the ratio between the
explored and the overall space. We perform 12 simulations
for each exploration algorithm due to the stochastic nature of
the planners. The metric used to evaluate the performance is
the volume mapped and the traveled distance needed to map
it. In addition, a comparison is made related to the decisions
made by each decision-making module at each iteration.

C. Results

From a qualitative point of view, Fig. 5 shows the vol-
umetric representations of the mapped environment at the
end of an exploration mission for each of the given gain
formulations and decision-making modules. Instead, quan-
titative data is presented in Fig. 6, depicting the evolution
of the experiments where the average behavior is plotted

91

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

Fig. 6: Evolution of the exploration progress comparing a
classic selector policy (Maximum Gain) and a learned policy
(GNN). The experiments depict the Average Mapped Volume
(left side) and the Traveled Distance (right side) using two
definitions of gains: RG (first row) and FG (second row).

with a dashed line within a shade that depicts the variance
performance of all the experiments.

Comparing Fig. 5a with 5b, and also Fig. 5c with 5d, it is
possible to notice some misplaced voxels in the walls of the
maze environment for the experiments with the classic policy.
Analyzing the experiments related to the RG formulation
in Fig. 6a and 6c, it can be seen that the learned policy
manages to map a volumetric volume that matches the
amount obtained by the maximum gain policy. However, the
learned policy also covers more distance which can explain
a better refinement in the resultant map, which explains the
lower number of misplaced voxels. In addition, it is important
to highlight the consistency (low variability) in the explored
mapped volume using the proposed decision-making module,
whose performance is more reliable independent of the gain
formulation used to address the problem. This behavior
can also be observed in the experiments related to the FG
formulation, seen in Fig. 6b and 6d, noticing that the GNN
makes decisions that cover a larger distance while having a
smaller variance in the mapped volume.

The results of the experiments per iteration are summa-
rized in Table IV. On average, in the RG formulation, the
selected subsequent configuration by the GNN is 0.471 m
longer than the maximum gain policy, while in the FG formu-
lation is 0.083 m longer. Therefore, the learned policy often
chooses nodes at a larger spatial distance compared to the
classic policy. In addition, considering that the configurations
chosen by the GNN are more distant, additional time is
needed to reach the goal considering the imposed kinematic
constraints. Therefore, the GNN makes an inferior number

Feature Max. Gain GNN
RG Number of decisions 442.42± 33.13 431.83± 16.28

Distance per decision 0.737± 0.636m 1.208± 0.804m
FG Number of decisions 298.33± 7.83 296± 13.40

Distance per decision 1.112± 0.795m 1.195± 0.811m

TABLE IV: Comparison of the Exploration Results with
respect to each formulation gain.

of decisions with respect to the Maximum Gain algorithm,
while managing to map a similar volume of the environment
and refine its surfaces in the same amount of time.

We also notice that in the same way as the classic
algorithm, our decision-making module is prone to get stuck
in local minima. This is mainly because its decision-making
process corresponds to the information given by the local tree
at the specific iteration and without considering the global
spatial graph. Therefore, there is a missing notion of the
overall exploration mission. In addition, the GNN has no
memory of its previous decisions, which can be used in the
future to improve its performance.

V. CONCLUSIONS

In this paper, we presented a novel strategy for decision-
making on a sampling-based online path-planning algorithm.
This work presents advancements toward learning strong
heuristics in scenarios where no optimal strategies exist such
as the exploration of unknown environments.

The exploration tree is a generalized topological data
structure that represents the chronology of an exploration
mission, embedding relevant information about the states of
interest that have yet to be visited. Through our approach,
exploiting GNN algorithms trained with RL, the autonomous
robot exploration policy is shaped to make decisions at each
planning step based on the tree sample available at that
iteration. The policy learned is flexible in deciding among
a variable number of possibilities generated at each step,
different topologies, while preserving a consistent perfor-
mance independent of the gain formulation with whom the
environment is being explored.

The ability of the GNNs to generalize to multiple graph
topologies and sizes makes them prone to extend the infer-
ence to the whole graph so that decisions can be constantly
made continuously reviewing the entire exploration process
since its starting. Future research will address the local
minima and memory problems by embedding the whole
exploration tree into the GNN. Also, we are interested in de-
ploying the proposed approach on an aerial robot and testing
it in other autonomous tasks, such as surface reconstruction.

REFERENCES

[1] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel,
N. Michael, and V. Kumar, “Information-theoretic planning with
trajectory optimization for dense 3d mapping.” in Robotics: Science
and Systems, vol. 11. Rome, 2015, pp. 3–12.

[2] P. Tripicchio, M. Satler, M. Unetti, and C. Avizzano, “Confined spaces
industrial inspection with micro aerial vehicles and laser range finder
localization,” International Journal of Micro Air Vehicles, vol. 10,
no. 2, pp. 207–224, 2018.

92

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

[3] M. Popović, G. Hitz, J. Nieto, I. Sa, R. Siegwart, and E. Galceran,
“Online informative path planning for active classification using uavs,”
in IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 5753–5758.

[4] L. Campos-Macı́as, R. Aldana-López, R. de la Guardia, J. I. Parra-
Vilchis, and D. Gómez-Gutiérrez, “Autonomous navigation of MAVs
in unknown cluttered environments,” Journal of Field Robotics,
vol. 38, no. 2, pp. 307–326, 2021.

[5] Y. Kompis, L. Bartolomei, and M. Chli, “Fully autonomous live 3d
reconstruction with an mav: Hardware- and software-setup,” 2021-12-
02, 9th International Conference on 3D Vision (3DV) 2021.

[6] S. Werner, B. Krieg-Brückner, and T. Herrmann, Modelling Naviga-
tional Knowledge by Route Graphs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 295–316.

[7] M. Juliá, A. Gil, and O. Reinoso, “A comparison of path planning
strategies for autonomous exploration and mapping of unknown envi-
ronments,” Autonomous Robots, vol. 33, no. 4, pp. 427–444, 2012.

[8] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart,
“Receding horizon ”next-best-view” planner for 3d exploration,” in
IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 1462–1468.

[9] Y. Zhou, J. Xiao, Y. Zhou, and G. Loianno, “Multi-robot collaborative
perception with graph neural networks,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 2, pp. 2289–2296, 2022.

[10] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks
for decentralized multi-robot path planning,” in 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 11 785–11 792.

[11] E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro, “Multi-robot cov-
erage and exploration using spatial graph neural networks,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 8944–8950.

[12] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” International Conference on
Learning Representations (ICLR), 2018.

[13] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in AAAI, 2018, pp.
4438–4445.

[14] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Advances in Neural Information Processing Systems,
2018, pp. 5165–5175.

[15] B. Kim and L. Shimanuki, “Learning value functions with relational
state representations for guiding task-and-motion planning,” in Con-
ference on Robot Learning (CoRL), 2019.

[16] T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Perez,
and L. P. Kaelbling, “Planning with learned object importance in large
problem instances using graph neural networks,” in AAAI Conference
on Artificial Intelligence, 2020.

[17] H. Dai, E. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Proceedings of
the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17, 2017, p. 6351–6361.

[18] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” in International Conference on Learning Repre-
sentations (ICLR), 2019.

[19] T. Cieslewski, E. Kaufmann, and D. Scaramuzza, “Rapid exploration
with multi-rotors: A frontier selection method for high speed flight,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 2135–2142.

[20] M. Collins and M. Nathan, “Efficient planning for high-speed mav
flight in unknown environments using online sparse topological
graphs,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2020, pp. 11 450–11 456.

[21] T. Dang, C. Papachristos, and K. Alexis, “Autonomous exploration and
simultaneous object search using aerial robots,” in IEEE Aerospace
Conference, 2018, pp. 1–7.

[22] E. Herrera-Alarcón, D. Bagheri-Ghavifekr, G. Baris, M. Mugnai,
M. Satler, and C. Avizzano, “An efficient object-oriented exploration
algorithm for unmanned aerial vehicles,” in International Conference
on Unmanned Aircraft Systems (ICUAS), 2021, pp. 330–337.

[23] G. Hardouin, J. Moras, F. Morbidi, J. Marzat, and E. Mouaddib, “Next-
best-view planning for surface reconstruction of large-scale 3d envi-
ronments with multiple uavs,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020, pp. 1567–1574.

[24] S. Song and S. Jo, “Surface-based exploration for autonomous 3d mod-
eling,” in IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 4319–4326.

[25] K. Saulnier, N. Atanasov, G. Pappas, and V. Kumar, “Information
theoretic active exploration in signed distance fields,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2020, pp.
4080–4085.

[26] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto,
“An efficient sampling-based method for online informative path
planning in unknown environments,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 1500–1507, 2020.

[27] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Efficient
autonomous exploration planning of large-scale 3-d environments,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1699–1706,
2019.

[28] P. Zhong, B. Chen, S. Lu, and X. Mengand Y. Liang, “Information-
driven fast marching autonomous exploration with aerial robots,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 810–817, 2022.

[29] L. Schmid, V. Reijgwart, L. Ott, J. Nieto, R. Siegwart, and C. Cadena,
“A unified approach for autonomous volumetric exploration of large
scale environments under severe odometry drift,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 4504–4511, 2021.

[30] D. Duberg and P. Jensfelt, “UFOExplorer: Fast and Scalable Sampling-
Based Exploration With a Graph-Based Planning Structure,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 2487–2494, 2022.

[31] A. Singla, S. Padakandla, and S. Bhatnagar, “Memory-based deep
reinforcement learning for obstacle avoidance in uav with limited envi-
ronment knowledge,” IEEE Transactions on Intelligent Transportation
Systems, pp. 1–12, 11 2019.

[32] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without
a single real image,” in Robotics: Science and Systems(RSS), 2017.

[33] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine,
“Ving: Learning open-world navigation with visual goals,” in IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 13 215–13 222.

[34] J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary tasks and explo-
ration enable objectgoal navigation,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 16 097–16 106.

[35] A. Devo, J. Mao, G. Costante, and G. Loianno, “Autonomous single-
image drone exploration with deep reinforcement learning and mixed
reality,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
5031–5038, 2022.

[36] E. Herrera-Alarcón, M. Satler, M. Vannucci, and C. Avizzano, “Gn-
graph: Self-organizing maps for autonomous aerial vehicle planning,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 721–
10 728, 2022.

[37] L. Schmid, C. Ni, Y. Zhong, R. Siegwart, and O. Andersson, “Fast
and compute-efficient sampling-based local exploration planning via
distribution learning,” IEEE Robotics and Automation Letters, vol. 7,
no. 3, pp. 7810–7817, 2022.

[38] A. Khan, A. Ribeiro, V. Kumar, and A. G. Francis, “Graph
neural networks for motion planning,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.06248

[39] C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 4274–4289, 2021.

[40] F. Chen, J. D. Martin, Y. Huang, J. Wang, and B. Englot, “Autonomous
exploration under uncertainty via deep reinforcement learning on
graphs,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020, pp. 6140–6147.

[41] F. Chen, P. Szenher, Y. Huang, J. Wang, T. Shan, S. Bai, and B. En-
glot, “Zero-shot reinforcement learning on graphs for autonomous
exploration under uncertainty,” in IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 5193–5199.

[42] H. Zhang, J. Cheng, L. Zhang, Y. Li, and W. Zhang, “H2gnn:
Hierarchical-hops graph neural networks for multi-robot exploration
in unknown environments,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 3435–3442, 2022.

[43] R.J.Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3–4,
p. 229–256, may 1992.

[44] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Robot operating
system (ros): The complete reference (volume 1),” A. Koubaa, Ed.
Cham: Springer International Publishing, 2016, pp. 595–625.

93

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on March 07,2024 at 11:41:51 UTC from IEEE Xplore. Restrictions apply.

