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Abstract—This paper constitutes an industrial experience re-
port about the use of data center optimization strategies for
softwarized network services within the Vodafone resource man-
agement unit for the management of virtualized network infras-
tructures. The problem of optimum virtual machine placement as
needed in the network operator context is detailed, and different
solving strategies are proposed and discussed, including heuristics
based on genetic optimization. Also, experimental results are
presented that compare these strategies with one another from
the standpoint of optimality and execution times, using a data-set
made of some of the real problems that had to be solved in the
past few years by Vodafone, in order to optimize its capacity
planning decisions. The presented experimental results highlight
that an optimum solver leads to excessively high computation
times for large problems, whereas simple heuristics may exhibit
significant loss in optimality at reduced computation times.
Genetic optimization, on the other hand, constitutes a very
interesting trade-off between these two extremes. The data-set
used for the provided results is published under an open data
license, for possible reuse in future research works on the topic.

Index Terms—VM placement, NFV, Optimization, Networking

I. INTRODUCTION AND RELATED WORK

In the last decade, the world of telecommunications and
networking has undergone a deep transformation, with the
introduction of new network paradigms [1] such as software-
defined networking (SDN) [2] and network function virtual-
ization (NFV) [3]. These were introduced to build novel net-
working infrastructures with higher flexibility in management
of physical resources and enhanced ability to dynamically
reconfigure their capabilities according to the instantaneous –
continuously changing – conditions of the network traffic. This
transformation is putting the foundations to tackle the new
challenges brought about by novel high-bandwidth and ultra-
reliable low-latency communications as needed in mobility
scenarios supporting modern and future use-case domains,
such as factory automation and Industry 4.0, smart cities,
automotive and transportation.

Therefore, Telco companies and network operators had to
rethink, redesign and rebuild their own networking infrastruc-
tures, and their associated daily operations practices [4], [5].
In this scenario, end-to-end network services are realized with
a set of network functions (i.e., virtual network functions -
VNFs) deployed in form of either virtual machines (VMs) or
Containerized Network Functions (CNFs) within private cloud
data centers of the company. These are managed according
to cloud computing principles, such as flexible management

of the physical resources and dynamic provisioning based on
continuous workload tracking to apply horizontal elasticity to
a number of scalable VNFs.

The VNF allocation problem is very important for network
operators [6] because it is at the heart of fundamental trade-
offs that need to be sought between the expected performance
of the deployed services and the available budget for expand-
ing the infrastructure over time. Indeed, an optimal allocation
of VNFs allows for both reducing capital expenditure (CapEx)
for the data centers (DCs), and optimizing the quality of
service (QoS) perceived by clients of the deployed services.

In general, in a 5G scenario, it is possible to orchestrate
softwarized network functions both in the form of VMs and
containers. When comparing these, traditional VMs provide a
higher degree of isolation and security, and a richer functional-
ity set, whilst containers exhibit lower overheads, relying on a
single operating system kernel for a whole physical machine,
resulting in a less bloated software stack. However, traditional
machine virtualization has been adopted for longer in cloud
computing, resulting in a more mature and consolidated set
of tools and industrial practises for the management of large
physical infrastructures, and many of their performance short-
comings are nowadays well addressed with para-virtualization
and hardware acceleration. Therefore, large industrial infras-
tructures still rely on VMs, while the recent advent of well-
designed and easy-to-use container management frameworks
such as Docker and Kubernetes1 is leading to a progressive
shift towards CNFs, especially for ultra low-latency services.

Paper Contribution: In this paper, we consider the prob-
lem of optimum placement of VMs within the Vodafone NFV
infrastructure in Europe, a.k.a., European Vodafone Network
Virtual Infrastructure (NVI). This is composed of 12 Operating
Companies (OpCos), each managing one or more DCs in
which VNFs (so all the VMs that compose a VNF) have to
be spawned according to a planning file called virtual bill of
materials (vBOM) and the listed constraints.

Related Work: The problem of optimum placement of
services in distributed infrastructures has been widely studied
in the research literature. For example, a taxonomy of VM
placement techniques in Cloud Computing can be found in [7],
while [8] constitutes a useful survey of load-balancing algo-
rithms to be used along with various VM placement strategies.
Some authors [9] studied specifically the problem of minimiz-
ing the number of used hosts while balancing the workload

1More information is available at https://kubernetes.io/.
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across the used hosts; others studied the problem in the context
of federated cloud providers [10], or focused on probabilistic
formulations of the problem [11], sometimes in the more
general context of service-oriented computing [12], or focused
on optimized placement for HPC-alike workloads [13] in
cloud infrastructures, designing a customized scheduler that
is topology-aware and hardware-aware, and can limit noisy
neighbors problem in deployed VMs.

A number of authors focused also on the specific problem
of VNF placement within NFV infrastructures, in which the
data-intensive nature of the hosted software components re-
quires to properly consider network-awareness in the problem
formulation [14]–[16]. Often, the problem is formulated in
terms of a Mixed-Integer Linear Programming (MILP) op-
timization problem, or even a Boolean Linear Programming
(BLP) one [15], solved using standard MILP solvers. Some
authors [17] also proposed relatively easy but practical mech-
anisms for VNF placement that can be readily used in the
well-known OpenStack2.

Recently, some authors [18] proposed also to use reinforce-
ment learning (RL) to realize an energy-aware VM placement
strategy for cloud data centers, while others mixed RL with
fuzzy logic [19]. Others proposed [20] to use Genetic Algo-
rithms (GA) to optimize the placement of VNF service chains.

Finally, it is worth to mention that, VMs or VNFs co-located
on the same physical servers may undergo increased levels
of temporal interference causing performance instability and
degradation, especially when adopting aggressive consolida-
tion strategies. Therefore, some authors [21], [22] studied the
placement problem in presence of additional mechanisms to
control and mitigate the degree of performance degradation,
such as using techniques at the operating system or hypervisor
level, coming from the realm of real-time systems.

Contributions: This paper follows up on the above men-
tioned research, comparing a few approaches for optimum
VNF placement, and precisely: i) a traditional BLP-based tack-
ling of the optimization problem which is solved exactly using
the CPLEX commercial solver; ii) a much faster heuristic
algorithm providing a quick solution to the problem that is
often far from optimality; iii) a novel solver based on a Genetic
Algorithm (GA), which achieves interesting trade-offs between
these two. The paper discusses results obtained applying these
solvers to real problem instances that arose in the context
of the Vodafone NVI management and operations, focusing
on the achievable trade-offs between accuracy and the needed
computational complexity. With respect to other cited works,
our contribution includes also a more specific problem mod-
eling required to tackle the real-world application demands
in the context of NVI. The data-set used for evaluations, i.e.,
the set of optimum placement problems used for obtaining the
results in Section V, are published with an open data license
model, and made available for general reuse by researchers
investigating on similar topic through their future research.

2More information at: https://www.openstack.org/.

Paper Overview: The paper is structured as follows: in
Section II, we introduce the scenario motivating the problem
focus; in Section III, we explain the vBOM structure and its
placement constraints; in Section IV, we present the possible
algorithms that can be used to solve our problem; in Section V,
we provide an experimental comparison among the different
introduced approaches; finally, in Section VI, we present a few
conclusions and ideas for future research on the topic.

II. SCENARIO AND PROBLEM STATEMENT

The goal of this work is to propose effective solutions
for the placement problem in the context of an industrial
Network Virtualized Infrastructure (NVI), like the Vodafone
one. The components to be placed are provided in the form of
a vBOM table, containing the list of VMs implementing the
VNF, along with their nominal resource requirements in terms
of required virtual CPU cores, volatile and storage memory,
and networking throughput. Additionally, there are also other
constraints that encode the structure of the NVI. Indeed, to
address robustness and performance demands of a NVI, a
number of affinity and anti-affinity constraints have to be
satisfied while considering the placement problem.

Currently, the placement of each VNF is done by the
Vodafone planners from the NVI capacity planning and man-
agement team using a commercial solver. The objective of
the placement tool is to place the list of VMs defined in
the input vBOM file into a set of blades, occupying the
minimum possible number of blades in the process, without
overloading the underlying physical resources, or, sometimes,
under a controlled over-provisioning policy. The tool currently
uses a heuristic greedy algorithm for VM placement that
performs a single placement at a time, performing essentially
a first-fit placement of the VMs in the order provided by the
vBOM specification. The current scenario is represented in
Figure 1(a). The planner runs the tool, which takes three files
as input: i) the master vBOM, ii) a problem configuration
file detailing options to be used during the optimization (see
Section III), and iii) a “catalog” configuration file describing
the characteristics of the new hardware to be considered.

In the new scenario, depicted in Figure 1(b), the capacity
optimizer is deployed within the Google Cloud Platform [23],
which is hosting various components of the solution: a web
GUI, a set of back-end solvers, including the CPLEX [24]-
based and the GA-based optimizers as described below in
Section IV. The back-end solvers take as input, in addition
to the files mentioned above, also iv) the RVTool export
representing the current physical status of blades occupied in
the data centers under consideration. The web GUI allows for
uploading a set of different problem configurations, launching
the solvers, and retrieving the computed solutions, which are
stored in a dedicated repository. The application supports
multiple users concurrently using the system and launching
different optimizations simultaneously. The new architecture
allows for solving more placement problems simultaneously
and store the output results in the cloud. Section III provides

https://www.openstack.org/


(a) Current scenario in which the planner
runs the placement tool in her own PC.

(b) Intelligent dimensioning scenario where the planner is supported by the GCP
and the placement is evaluated with placement algorithms running in the Cloud.

Fig. 1: As-is vs proposed scenario.

details on the vBOM placement solving strategies imple-
mented at the moment in the new solver.

III. VBOM PLACEMENT PROBLEM

In this section the problem to be solved and its compo-
nents will be described formally. In particular, we describe
the modeling problem that is characterized by the objective
function, the resource requirements (i.e., CPU cores, memory,
and network bandwidth), and the structural constraints.

We consider a VNF deployment plan including a set V of
Nv VNF components to be deployed: V = {1, 2, . . . Nv}.
In turn, each VNF component i ∈ V is characterized by
a set Ii of VMs implementing the functionality, all with
homogeneous resource requirements. These can either con-
stitute multiple instances over which the traffic for the VNF
component is spread by a load-balancer, or multiple replicas
of the same functionality that are kept in sync with each
other, so to handle faults of one or more VMs (e.g., using
primary/secondary replication and redundancy schemes). The
exact load-balancing and VM replication strategy does not
impact on our problem formulation, where we just consider
that each VM j ∈ Ii belonging to the same VNF component
i ∈ V is characterized by the same amount of computational,
storage and network bandwidth requirements. In what follows,
for ease of notation we assume, without loss of generality, that
VMs for different VNF components have all different indexes:
∀i1, i2 ∈ V, i1 ̸= i2 =⇒ Ii1 ∩ Ii2 = ∅. The VMs have to be
placed on a set H of Nh physical hosts: H = {1, 2, . . . , Nh}.

In order to represent the placement of a single VM j on a
host h, Boolean variables {xj,h} are introduced:

xj,h =

{
1 if VM j on host h
0 otherwise.

(1)

The placement problem requires that each VM must be placed
on exactly one host. This can be expressed as:

∀i ∈ V, ∀j ∈ Ii,
∑
h∈H

xj,h = 1. (2)

In the following, the ingredients necessary to build the
optimum placement problem are reported:

1) Objective: In order to formalize the placement problem
within an optimization framework, it is necessary to specify
the “objective” function to be optimized.

For the industrial case study proposed in this work the
focus is on reducing the number of hosts necessary to fulfil
the deployment of the NVI. Using a boolean variable uh to
represent whether a host h has been used in the placement,
the cost function is given by the following expression:

Jh =
∑
h∈H

uh. (3)

Specifically, uh = ∨jxj,h, where ∨j is the logical or operator
applied along the index j.

2) Resource Requirements: In the following, the demands
of a VNF i ∈ V in terms CPU, Memory and Network
Bandwidth are expressed by DCPU

i , DMEM
i and DNET

i re-
spectively. Similarly, the availability of resources on each Host
h ∈ H is given by LCPU

h , LMEM
h and LNET

h . The placement
constraints, due to the availability of limited resources on each
host, can be described as follows:

• CPU

∀h ∈ H :
∑
i∈V

DCPU
i

∑
j∈Ii

xj,h

 ≤ LCPU
h ; (4)

• Memory

∀h ∈ H :
∑
i∈V

DMEM
i

∑
j∈Ii

xj,h

 ≤ LMEM
h ; (5)



• Network Bandwidth

∀h ∈ H :
∑
i∈V

DNET
i

∑
j∈Ii

xj,h

 ≤ LNET
h . (6)

3) Structural Constraints: Structural constraints control
how the VMs should be placed with respect to one another.
Constraints referring to the VMs of a single VNF component
are called “self-affinity” rules, while constraints extending
to VMs belonging to different VNF components are called
“cross-affinity” rules.

Formally, the constraints to be considered in the industrial
context under consideration are of the following types:

• Self Anti-Affinity constraint (AAF): The Virtual Machines
belonging to VNFs with this type of constraint should be
placed on separated hosts. If the set of VNFs that should
satisfy this constraint is represented by V AAF ⊂ V , the
constraint can be written formally as

∀i ∈ V AAF , ∀h ∈ H :
∑
j∈Ii

xj,h ≤ 1 (7)

• Self Affinity constraint (AFF): Indicating by V AFF ⊂ V
the set of VNFs with the AFF property, the constraint
requires each VNF to have all of its VMs placed on the
same host:

∀i ∈ V AFF , ∀h ∈ H :
∑
j∈Ii

xj,h ∈ {0, |Ii|}, (8)

where | · | denotes the set cardinality operation.
• Cross Anti-Affinity constraint (CAAF): Given a set of

VNF, it requires that any VM of one of the VNFs
should not be placed on a host occupied by any of the
VMs of the other VNFs. Calling by V CAAF the set of
(iα, iβ) couples of VNFs undergoing this constraint, the
formalization is given by:

xjα,h + xjβ ,h ≤ 1, (9a)
∀h ∈ H, (9b)

∀(iα, iβ) ∈ V CAAF , (9c)
∀jα ∈ Viα , ∀jβ ∈ Viβ (9d)

• Cross Affinity constraint (CAFF): Given a set of VNFs,
every VM of every VNF in the set needs to be co-
located on the same host. Calling by V CAFF ⊂ V the
set of tuples undergoing the constraint, the formalization
is given by: ∑

i∈V CAFF ,j∈Ii

xj,h ∈ {0, |ICAFF |}, (10)

where |ICAFF | =
∑

i∈V CAFF |Ii|, ∀h ∈ H .
• Master-Slave constraint (AMS): Virtual Machines desig-

nated to the VNF with AMS should be subdivided into
two equal groups such that no VM from one group is
co-located with a VM of the other group. The AMS
constraint is reduced to a Cross Anti-Affinity constraint,
for which the definition was given in Eq. 9.

• Cluster constraint: this optional constraint specifies that
the physical infrastructure is logically partitioned in clus-
ters of the same given size, normally 64 hosts, and that
a relatively large vBOM with several VNF components
needs to be partitioned across such an infrastructure in
a way that ensures that entire VNF components are
placed entirely within one of the available clusters, i.e.,
that the VMs of a VNF component cannot be placed
across two or more clusters; this partitioning/splitting
of large vBOMs into clusters was traditionally done
manually by placement experts, but the CPLEX-based
and the GA-based optimizers we realized are capable of
performing these operations automatically, optimizing the
target objective function.

Regarding the self-affinity and cross-affinity constraints,
in addition to the “hard” interpretation of them as detailed
above, we also allow for a “soft” interpretation of them.
This means that soft affinity constraints become a nice-to-
have property in the final solution, but they can be sacrificed
to achieve reduced numbers of hosts. Therefore, the solver
can be configured to replace soft affinity constraints with
an additional term in the objective function that allows for
achieving, as a secondary objective, the minimization of the
number of affinity constraints that are broken in the solution.

IV. SOLVERS

Optimal Placement is usually achieved by leveraging clas-
sical optimization techniques, such as Mixed Integer Linear
Programming (MILP). Specifically, given the nature of the
problem, it is a Boolean Linear Programming (BLP). These
type of approaches are characterized by the possibility to give
guarantees on the solution quality, but they are also known
to be quite slow and computationally prohibitive. For this
reason, there are efforts to find alternative solutions employing
heuristic approaches, such as Machine Learning (ML) or
Computational Intelligence, which can provide a good trade-
off between optimality and computational performance. In this
work the placement problem will be tackled with the classical
MILP approach and then a comparison with an alternative
approach that employs Genetic Optimization is proposed.

A. Standard MILP solvers

Standard MILP solvers, such as open-source ones like
GLPK3 and Coin-OR CBC4, or commercial ones like CPLEX5

by IBM or Gurobi6, allow for tackling the placement problem
by formulating it as a Mixed Integer Linear Programming
(MILP) optimization problem. MILP solvers allow for ex-
pressing a problem using their custom interfaces and APIs.
However, these tools usually have also a command-line solving
tool that takes as input a MILP problem in a standard lp
format, a textual algebraic format that is human-readable, thus
being also a useful debugging tool.

3https://www.gnu.org/software/glpk/
4https://www.coin-or.org/Cbc/
5https://www.ibm.com/analytics/cplex-optimizer
6https://www.gurobi.com/



Implementation: In this work, the problem formulation
used with the MILP approach is based directly on the linear
formulation shown in Section III. As far as the implementation
is concerned, we realized a tool capable of using the CBC and
CPLEX solvers, encoding the problem in the lp file format
and invoking the command-line solver provided by the tools.

B. Heuristic Solver

Heuristic solvers are simple and computationally efficient.
With respect to a standard MILP solver, that require to cast
everything in a linear form, a heuristic solver may be simpler
to realize. Given their nature of being lightweight and easy to
implement, they are quite useful in practical applications, but
they lack optimality guarantees since they can easily get stuck
in local minima.

1) Implementation: In this work, the implemented a Heuris-
tic Solver based on the the “First Fit” algorithm, where the
VMs are allocated, one after the other, in the first feasible spot
available on the hosts. The solution feasibility is dictated by
the same constraints described in Section III.

C. Genetic Optimization

The Genetic Optimization approach (or genetic algorithm
- GA) shares with the Heuristic Solver the simpler modeling
phase with respect to the Standard MILP approach, but adds a
better heuristic search to improve the convergence properties
towards a minimum, overcoming the problem mentioned for
the pure Heuristic Solvers.

Implementing a Genetic Optimizer requires selecting the
features that encode candidate solutions and the evolution
process that leads to the optimum. Following the modeling
of the problem presented in Section III, it would come natural
to encode the placement of the VMs by a vector where every
entry i gives the Host on which the i-th VM has been placed.

The Genetic Optimizer works by propagating and modifying
an initial population of different candidate solutions, favoring
the survival of better candidates with respect to a “fit function”.
In this case, the fit function used to select the best candidates
is the number of hosts used to allocate all the VMs.

To increase the probabilities of success, it is necessary to
handle a big-enough population of possible candidates. The
risk of increased computation time is usually tackled by re-
curring to simple and inexpensive operations for manipulating
the population of candidate solutions.

1) Implementation: The Genetic Optimizer is implemented
as an iterative procedure applied to a population of candidate
solutions. The optimization starts with the random generation
of a population P0 of Ns candidate solutions. In our specific
case the P0 is obtained by performing a First Fit allocation
randomly scrambling the order in which the VMs are placed
Ns times. Once P0 is generated, the algorithm starts the
iterative phase. At every iteration k, the current population
Pk is modified to explore better candidates as follows:

1) Obtain an extended population P−
k+1 by adding new

candidate solutions to Pk;

2) Compute the fit value for each candidate of P−
k+1;

3) Generate a Pk+1 population, sampling the Ns best ele-
ments in terms of their fit value from the P−

k+1.
The generation of new candidates to extend the current

solution is made by using solutions from the original pop-
ulation. Precisely, starting from a candidate solution, the
algorithm searches for a pair of VMs that can be swapped with
respect to the hosts on which they are placed. In the current
implementation the search for a pair is completely random.
A new solution is then generated, swapping the found pair of
VMs and trying to compress the obtained solution by moving
the other VMs in the free spaces that could have been created
by the swap. The process is visually represented in Figure 2,
where a placement on 3 Hosts undergoes the swapping and
compression steps, as described in the GA algorithm.

Fig. 2: Generation of new candidates and compression step in
the proposed GA implementation.

GA solvers are known to be computationally heavy due
to the high number of attempt they make in order to select
the best candidates. The implementation proposed in this
work allows also a way to early stop the solver in case
no improvement is foreseen in the current population. MILP
approaches have the possibility to quantify the gap between the
current solution and a best one obtained via relaxation and use
that to stop the solver earlier. Heuristic solvers do not know
how far are from the optimum, for this reason it is necessary to
evaluate heuristically whether it is worth continuing exploring



new solutions. In the approach proposed with this work, the
idea is that if the population becomes too uniform in terms
of fit value it could be a sign that the solver found a good
solution. In practice the algorithm monitors the max spread of
the fit function along the population and stops the iterations
when the spread is under a given configurable threshold.

The algorithm has some hyper-parameters that can be tuned,
such as the size of the population Ns, the number of new can-
didates generated from each candidate of the old population,
the number of iterations to be applied on the population and
the threshold for the early stopping feature.

V. EXPERIMENTAL RESULTS

The proposed approach has been evaluated by using data
coming from the planning needs of the Vodafone operator,
concerning its NFV infrastructure. Real vBOMs, coming from
the Vodafone network, have been collected and the associ-
ated placement problems have been solved using the three
approaches previously mentioned: Simple Heuristic, MILP
and the proposed Genetic Optimization. The vBOMs differ
in terms of number of VNFs to be placed, number of VMs
implementing them and number of constraints to be satisfied.
An open data-set including a number of vBOMs we have
optimized, has been made publicly available7. The goal of
the experiment is to evaluate the performance of the proposed
Genetic Optimizer with respect to state-of-the-art solvers, such
as an optimum modeling using MILP, and a simplistic greedy
heuristic, in solving placement problems.

The MILP solver is realized using CPLEX libraries. In order
to avoid very long solving times, a termination procedure was
triggered whenever the computation exceeded 600 seconds.
We allowed a “gentle” termination, guaranteeing at least a fea-
sible solution and making sure partial solutions are completely
evaluated.

The Heuristic Solver implements a First Fit placement that
is run only once for each problem.

The GA is run with a population of 50 candidates and
a max of 25 iterations. These values have been found after
a preliminary test campaign on the dataset to evaluate the
exploration/exploitation/solving-time trade-off of the GA. The
preliminary tests were also used to check the convergence
property of the GA solver, running the biggest problem of
the dataset multiple times and verifying the stability of the
outcome. For every original candidate 4 new candidates are
generated in the swapping phase.

The Heuristic Solver and the GA have been implemented
from scratch in Python, leveraging the Numpy package to
improve the computations with vectorized operations.

The placement problems have been carried out considering
a target network infrastructure composed by homogeneous
machines, each having the following hardware specifications:

• CPUs: 44;
• RAM: 420 GB;
• Network Bandwidth: 15000 Mbit/s.

7http://retis.sssup.it/∼tommaso/papers/ic2e22.php

Heuristic MILP GA
VNF: 220
VM: 1611
AAF: 1475
AFF: 0

209 (2.443) 183 (3892.295) 183 (72.891)

VNF: 122
VM: 780
AAF: 487
AFF: 0

166 (0.85) 153 (629.860) 154 (8.479)

VNF: 47
VM: 294
AAF: 154
AFF: 0

38 (0.044) 34 (11.291) 34 (1.246)

VNF: 34
VM: 140
AAF: 140
AFF: 0

28 (0.034) 26 (1.051) 26 (0.482)

VNF: 43
VM: 144
AAF: 74
AFF: 0

16 (0.032) 15 (2.466) 15 (0.495)

VNF:10
VM: 50
AAF: 50
AFF: 0

17 (0.012) 17 (0.023) 17 (0.108)

TABLE I: Some experimental results: for every test case
we report the number of hosts computed by the solvers; in
parenthesis the time (seconds) needed to find the solutions.

The experimental evaluation of the different placement
approaches has been run on a dedicated server equipped with
a Intel(R) Xeon(R) CPU E5-2640 v4 @2.40GHz and 64 GB
of RAM.

A. Experimental Evaluation

Table I reports some of the results obtained during the
experiments and it confirms what was mentioned in the
previous sections. As a matter of fact, the Heuristic Solver
is definitely the faster solver compared to the other two,
but, when the placement problem involves several constraints,
it can return sub-optimal solutions. As an example, in the
placement problem involving 220 VNFs, the Heuristic Solver
reported a number of required hosts that could have been
reduced by 12% using the other approaches. The classical
MILP approach, while providing the best results together with
guarantees regarding the solution optimality, is significantly
slower than the other approaches. This was expected, since
MILP problems are NP hard. The fact that there are cases
where the MILP solving time is greater than the time-limit
is due to our “gentle” implementation of the abort procedure,
where we preferred to bring to an end the current relaxation
step. The proposed Genetic Optimizer, provides solutions that
are comparable with the ones returned by MILP, just with a
considerable reduction in the time required to obtain them.
The lower computation times of the Heuristic and Genetic
approaches, were also expected. Indeed, they are leveraging
high level information about the problem to be solved to drive
efficiently towards feasible solutions, whilst the classical MILP
is unaware of the high level description of the problem and
just deals with the low-level mathematical formulation.

http://retis.sssup.it/~tommaso/papers/ic2e22.php
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Fig. 3: Comparison of the computation times using the GA and the MILP approaches as a function of the number of VMs
and Constraints in a placement problem.
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Fig. 4: Detail of the results, showing the behavior of the GA and MILP approaches for small problems.

An interesting observation can be made looking at Fig. 3,
where the computation times of the GA and the MILP are
plotted together for all the experiments. Indeed, even if the
GA provides a good improvement for big problems, for very
simple ones, the MILP can be actually faster than the GA.
A closer look at this behavior can be given in Fig. 4 which
focuses on smaller problems. This is possibly due to the
computationally efficient implementation of the MILP. In our
case, even if attention has been paid to vectorize part of
the computations to leverage optimized Python libraries, our
proposed algorithm still suffers from a Python implementation,
which is less efficient with respect to what could be achieved

with other languages. Apart from this observation, which can
be easily tackled with a better implementation, it is interesting
to notice how the proposed approach is leading to interesting
results with medium-big size problems that occur in industrial
applications.

VI. CONCLUSIONS AND FUTURE WORK

This paper formalized the VNF placement problem as being
investigated in the context of NFV infrastructure management
for the Vodafone network operator. We have compared the
execution time and optimality of the solution achieved by
using traditional BLP-based solution strategies, with a novel
GA-based solver. Results have been presented applying these



tools on real vBOM problems coming from recent deploy-
ments performed within the network operator. The data used
for the experimentation has been made openly available for
download and re-use by other researchers willing to perform
further research on the topic.

The presented techniques are being integrated in production
code that is used by the Vodafone NVI capacity planning and
optimization team for their periodic operations.

Following up on the research being presented in this paper,
a number of further investigations are possible. For example,
seeking for optimal solutions with the CPLEX-based approach
becomes easily cumbersome for particularly large infrastruc-
ture sites. Indeed, in some cases, we end-up with a BLP
problem that takes days to be solved, even if in the majority
of the cases the best solution output after 1 hour is already
considered “good enough”, as the solver finds an optimality
gap below 5%. For large vBOMs, an optimal CPLEX-based
approach might be applied on smaller problems, by doing
some heuristic partitioning of the problem into smaller ones.
Or, we could apply the GA-based solver that drops optimality
in favour of a greatly reduced solving time, still managing
to find a solution relatively close to the optimal one found
in much more time by CPLEX, as shown Section V in this
paper. MILP solvers usually benefit from initial guesses, and
this could lead to a further interesting evaluation where the GA
is used in combination with CPLEX to tackle large problems.

Moreover, the presented GA-based heuristic can be im-
proved and extended, for example adding additional mutations
to be applied to the population of solutions within each Genetic
Algorithm step, in order to increase the chances to discover
solutions with a better objective function.

Furthermore, the set of constraints to be considered is still
being evolved within the Vodafone NVI infrastructure, as
required for example by high-performance VNFs requiring
NUMA-aware placement or specific management of hyper-
threading throughout the physical infrastructure. Adding fur-
ther constraints and case studies will be interesting to in-
vestigate how the nature of the problem with its different
constraints can impact the solvers performance.
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