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SUMMARY
Objective. The diagnosis of benign lesions of the vocal fold (BLVF) is still challenging. The 
analysis of the acoustic signals through the implementation of machine learning models can 
be a viable solution aimed at offering support for clinical diagnosis. 
Materials and methods. In this study, a support vector machine was trained and cross-validated 
(10-fold cross-validation) using 138 features extracted from the acoustic signals of 418 patients 
with polyps, nodules, oedema, and cysts. The model’s performance was presented as accuracy 
and average F1-score. The results were also analysed in male (M) and female (F) subgroups. 
Results. The validation accuracy was 55%, 80%, and 54% on the overall cohort, and in M 
and F, respectively. Better performances were observed in the detection of cysts and nodules 
(58% and 62%, respectively) vs polyps and oedema (47% and 53%, respectively). The re-
sults on each lesion and the different patterns of the model on M and F are in line with clini-
cal observations, obtaining better results on F and more accurate detection of polyps in M. 
Conclusions. This study showed moderately accurate detection of four types of BLVF us-
ing acoustic signals. The analysis of the diagnostic results on gender subgroups highlights 
different behaviours of the diagnostic model.

KEY WORDS: artificial intelligence, machine learning, benign lesions of vocal folds, 
dysphonia

RIASSUNTO
Obiettivo. La diagnosi delle lesioni cordali benigne è ancora una sfida. L’analisi dei segna-
li vocali attraverso l’applicazione di modelli di Machine Learning potrebbe rappresentare 
una valida soluzione nell’offrire un supporto alla diagnosi clinica. 
Materiali e metodi. In questo studio una Support Vector Machine è stata addestrata e 
sottoposta a validazione incrociata 10 volte usando 138 caratteristiche estratte dai segnali 
acustici di 418 pazienti affetti da polipi, noduli, edema di Reinke e cisti. Le prestazioni del 
modello sono state espresse in termini di accuratezza e punteggio F1 medio. I risultati sono 
stati inoltre analizzati nei sottogruppi maschi (M) e femmine (F). 
Risultati. L’accuratezza era del 55%, 80% e 54% rispettivamente nel campione totale, nei 
maschi e nelle femmine. Le performances migliori sono state ottenute nel riconoscimento 
delle cisti e dei noduli (58% e 62% rispettivamente), rispetto ai polipi e agli edemi (47% e 
53% rispettivamente). I risultati per ciascuna lesione e i differenti pattern del modello sono 
in linea con le caratteristiche cliniche nei sottogruppi maschi e femmine per i migliori ri-
sultati ottenuti nel gruppo femminile e una sensibile discriminazione dei polipi nei maschi. 
Conclusioni. Questa ricerca ha dimostrato una capacità di riconoscimento dei quattro tipi 
di lesioni cordali benigne in base ai segnali acustici moderatamente accurata. L’analisi dei 
risultati diagnostici nei sottogruppi divisi per genere evidenzia i diversi comportamenti del 
modello diagnostico. 
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Introduction
The development of artificial intelligence (AI), the evolution 
of voice technology, progress in audio signal analysis, and nat-
ural language processing/understanding methods have opened 
the way to numerous potential applications of voice, such as 
the identification of vocal biomarkers for diagnosis, classifica-
tion, patient remote monitoring, or to enhance clinical prac-
tice  1. Especially at the beginning of the applications of AI, 
most studies used automatic systems based on machine learn-
ing (ML) on voice recordings to classify healthy subjects ac-
cording to age and gender 2,3. More recently, research focused 
on the role of the audio signal of the voice as a signature of the 
pathogenic process. Dysphonia indicates that some changes 
have occurred in voice production 4. The overall prevalence of 
dysphonia is approximately 1% even if the actual rates may be 
higher depending on the population studied and the definition 
of the specific voice disorder  5. The impact of a voice disorder 
has been increasingly recognised as a public health concern 
because it influences the quality of physical, social, and oc-
cupational aspects of life by interfering with communication 6. 
Voice health may be assessed by several acoustic parameters. 
The relationship between voice pathology and acoustic voice 
features has been clinically established and confirmed both 
quantitatively and subjectively by speech experts 7. The auto-
matic systems are designed to determine whether the sample 
belongs to a healthy or non-healthy subject. The exactness of 
acoustic parameters is linked to the features used to estimate 
them for speech noise identification. Current voice searches 
are mostly restricted to basic questions even if with broad per-
spectives. Dankovicova et al. 8 demonstrated that ML analy-
sis can recognise pathological speech with high classification 
accuracy. In the literature, the studies on vocal biomarkers 
have mainly been performed in the fields of neurodegenera-
tive disorders (Parkison’s and Alzheimer’s diseases) 6. On the 
contrary, the literature on vocal biomarkers of specific vocal 
fold diseases is anecdotal and related to functional vocal fold 
disorders or rare movement disorders of the larynx 9 (Tab. I).
The most common causes of dysphonia are benign lesions of 
the vocal fold (BLVF). The prevalence has been reported to 
be 2.5%-7.7% in national epidemiologic studies in the United 
States and South Korea 10,11. Currently, videolaryngostrobos-
copy is the gold standard for the diagnosis of BLVF 12. How-
ever, laryngoscopy is an invasive and expensive procedure. 
Moreover, it is not generally available in primary care units 
increasing the risk of delayed diagnosis and treatment. BLVF 
can interfere with vocal folds closure, introducing asymme-
try to the vocal folds, and producing severely rough voices 
and aperiodic acoustic waveforms 13. The traditional acoustic 
analysis is suitable only for nearly periodic signals and allows 
the clinician to have a quantifiable preliminary status for treat-

ment follow-up, but it does not provide information for dif-
ferential diagnosis or inter-individual comparison. In recent 
years, research has been oriented towards two principal aims, 
namely nonlinear dynamic acoustic analysis and the individu-
ation of quantitative instrumental tools for voice assessment 14.
Novel ML algorithms have recently improved the clas-
sification accuracy of selected features in target variables 
compared to more conventional procedures thanks to the 
ability to combine and analyse large data-sets of voice 
features  15,16. Even if the majority of studies focus on the 
diagnosis of a disorder where they differentiate between 
healthy and non-healthy subjects, we believe that a more 
important task is frequently differential diagnosis, where 
one needs to choose between two or more different dis-
eases. Even though this is a challenging task, it is of crucial 
importance to move decisional support to this level. To our 
knowledge, the differential discrimination of BLVF using 
automatic audio data processing methods has been poorly 
studied to date. Moreover, there is no dataset of off-the-
shelf audio recordings from dysphonic patients affected by 
BLVF available online. The main aim of this work is the 
study, development, and validation of ML algorithms to 
recognise the different BLVF from digital voice recordings. 
As a side result, the analysis of features’ importance for the 
diagnostic models and their pathophysiological relevance 
was obtained. 

Materials and methods
We collected the audio recordings of dysphonic patients af-
fected by BLVF who referred to the Phoniatric Unit of the 
Fondazione Policlinico Universitario A. Gemelli - IRCCS 
of Rome from June 2015 to December 2019. All voice sam-
ples were divided into the following groups based on the 
endoscopic diagnosis: vocal fold cysts, Reinke’s oedema, 
nodules and polyps. We excluded patients younger than 18 
years or older than 65 years, with previous laryngeal or thy-
roid surgery, speech therapy, pulmonary diseases, gastro-
oesophageal reflux, laryngeal movement disorder or recur-
rent laryngeal nerve paralysis. We also excluded non-native 
Italian speakers. The audio tracks were obtained by asking 
to pronounce with usual voice intensity, pitch and quality 
the word /aiuole/ three times in a row. Voices were acquired 
using a Shure model SM48 microphone (Evanston IL) po-
sitioned at an angle of 45° at a distance of 20 cm from the 
patient’s mouth. The microphone saturation input was fixed 
at 6/9 of CH1 and the environmental noise was < 30 dB 
sound pressure level (SPL). The signals were recorded in 
“.nvi” format with a high-definition audio-recorder Com-
puterized Speech Lab, model 4300B, from Kay Elemetrics 
(Lincoln Park, NJ, USA) with a sampling rate of 50 kHz 



Artificial intelligence and recognition of benign lesions of vocal folds

319

frequency and converted to “.wav” format. Each audio file 
was anonymously labelled with gender and type of BLVF.

Analysis pipeline
All the following analyses were performed using MatLab 
R2019b, the MathWorks, Natick MA, USA. The analysis 
pipeline included signal pre-processing, features extrac-
tion, screening of the features, and model implementation 
(Fig. 1).

Signal pre-processing
The unvoiced segments of signals were removed through 
a threshold-based algorithm, which accounts for the signal 
loudness and computed using the MathWorks built-in func-
tion acousticLoudness. This function implements two differ-
ent methods accounted in the ISO 532 standard which allow 
estimation of loudness as perceived by persons with onto-
logically normal hearing under specific listening conditions. 
More specifically, three different features characterising the 

Table I. The list of researches that used ML analysis of voice recordings.

Author and reference Size of sample Study aim Method of analysis Author’s key findings

Li et al. 2 Training data set: 472 speakers; 
development data set: 300 

speakers

To present an automatic 
speaker age and gender 
identification approach 

which combines different 
methods at both acoustic 

and prosodic levels to 
improve the baseline 

performance

Baseline subsystems: 
GMM based on mel-
frequency cepstral 

coefficient features, SVM 
based on GMM mean 
supervectors and SVM 

based on 450-dimensional 
utterance level features; 

four subsystems

Minimum 3.1% and maximum 
5.6% improvement of accuracy 
compared to the SVM baseline 

system

Berardi et al. 3 From the archive of voice 
recordings given at Brigham 
Young University of a single 

individual spanning about 50 
years were used

To investigate the 
progressive degeneration 
of a single talker’s voice 
quality by comparing the 

results of a computer 
model trained on actual 

age with a model trained on 
perceived age with the goal 

of determining acoustic 
features related to the 

perception of aging voice

The acoustic features were 
used to train two random 
Forest regression models. 

One model used actual 
(chronological) age as the 
response variable with the 
other using estimated age

The ML model estimated the 
age of the talker as

well as the human listeners. 
The acoustic feature related to 
the perception of aging voice is 

the fundamental frequency

Dankovicova et al. 7 1560 speech features extracted 
and used to train the classification 

model

To utilise ML methods to 
recognise dysphonia

The classifiers, used: 
K-nearest neighbors, 

random Forest plots, and 
SVM

91.3% classification accuracy

Zhan et al. 8 6148 smartphone activity 
assessments from 129 individuals

Ability of the mPDS to 
detect intraday symptom 

fluctuations, the correlation 
between the mPDS and 
standard measures, and 
the ability of the mPDS to 
respond to dopaminergic 

medication

ML based approach 
to generate a mPDS 

that objectively weighs 
features derived from each 

smartphone activity

Effective and objective 
Parkinson disease severity 

score derived from smartphone 
assessments

Suppa et al. 9 60 patients with adductor-type 
spasmodic dysphonia pre-BoNT-A 
therapy and 60 healthy subjects; 
35 patients were evaluated after 

BoNT-A therapy

To evaluate with cepstral 
analysis and ML adductor 
spasmodic voices and to 
compare the results with 
those of healthy subjects; 
to investigate the effect of 

BoNT-A

Cepstral analysis and ML 
algorithm classification 

techniques

ML and cepstral analysis 
differentiate healthy subjects 
and adductor-type spasmodic 

dysphonic voices. ML 
measures correlated with the 
severity of dysphonia pre and 

post-BoNT-A therapy

Asci et al. 15 Voice samples of 138 younger 
adults and 123 older adults 

collected at home using 
smartphones

To examine the age-
related changes in voice in 

ecological setting

ML analysis through a SVM ML analysis demonstrates the 
effect of ageing on voice

ML: Machine Learning; mPDS: mobile Parkinson disease score; BoNT-A: botulinum neurotoxin A; SVM: support vector machine; GMM: Gaussian mixture model.
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human features are implemented, i.e. the dependency on 
frequency, the concept of critical band and spectral masking 
(the hearing feature for which frequencies can be swamped 
by a louder tone with close frequency). Further details on the 
implementation of these methods can be found in the fol-
lowing references 17,18. Afterwards, a 1024-point Hamming 
window was used to segment the signals, with half-window 
overlap, to reduce the spectral leakage. 

Feature extraction
On the segmented signal, 66 different features in the time, 
frequency, and cepstral domain were extracted. Next, seven 
statistical measures were computed on the extracted fea-
tures, namely: mean, standard deviation, skewness, kurto-
sis, 25th, 50th, and 75th percentiles. In addition, jitter, shim-
mer, and tilt of the power spectrum were obtained from the 
whole unsegmented signal (see supplementary material).

Feature screening
Feature screening was applied using biostatistical analyses 
on the whole dataset to reduce the extended number of fea-
tures to give as input to the classifier. Two statistical tests 
were used to screen relevant features for the classification 
task: the one-way analysis of variance (ANOVA), when 
all the groups were normally distributed, and the Kruskal-
Wallis test, otherwise. The groups’ normality was veri-
fied with the Kolmogorov-Smirnov test. For all the tests, 
a p-value < 0.05 was considered significant. An overview 
of the screened features entering the classification model is 
presented in Figure 2.

Model implementation
A non-linear Support Vector Machine (SVM) with a Gauss-
ian kernel was the algorithm chosen in this work. The clas-
sifier was trained on the whole dataset (Mtot) and the male 
(Mm) and female (Mf) subsamples separately. On the three 

models, 10-fold cross-validation was used both for param-
eter optimisation and further feature selection. Specifically, 
two hyper-parameters of the model were set using a grid-
search and in a range 1-1000, the box-constraint C, which 
is a regularisation parameter, and the kernel parameter γ, 
which controls the radius of influence of the kernel. Addi-
tionally, a sequential feature selection (SFS) algorithm was 
implemented to find an optimal feature set. Lastly, a class 
balancing method was employed to overcome the unbal-
anced frequencies of the pathological classes. The augmen-
tation algorithm of the Synthetic Minority Oversampling 
Technique 19 was utilised for this purpose.
The classification performance was measured through the 
accuracy and the average F1-score. Both metrics were pro-
vided for the description of the overall classification perfor-
mances and those obtained on gender subgroups.

Results
Data were collected on 418 patients with a mean age of 48 
years (range 19-65 years), 349 of whom (83.5%) were fe-
males. The classification domain included four pathologi-
cal groups: among recruited patients, 69 (16.5% - 12 males 
and 57 females) were diagnosed with vocal fold cysts, 112 
(26.8% - 12 males and 100 females) with Reinke’s oedema, 
141 (33.7% - 12 males and 129 females) with nodules and 96 
(23.0% - 33 males and 63 females) with polyps (Tab. II). 
The seven statistical descriptors calculated for each of the 
66 extracted features led to a total number of 462 features. 
Three additional features (jitter, shimmer, and tilt of the pow-
er spectrum) were computed on the whole signal, for a total 
of 466 features. Given the extensive number of features ex-
tracted (overcoming the number of patients), a first statistical 
screening was performed. From the statistical tests, 138 of 

Figure 1. Analysis pipeline.

Figure 2. Overview of statistically significant features after the screening 
process.
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466 features were significantly associated with the outcome 
and were thus fed into the SVM model. In Figure 1, a sum-
mary of the analysis pipeline and the number of patients and 
features in each step is provided.
On the overall model Mtot, the optimised 4 classes classi-
fier showed an accuracy of 55.0% and an average F1-score 
of 0.54. When splitting the sample by gender, an accuracy 
and average F1-score of 80% and 0.78 were obtained for 
Mm, and 54% and 0.54 for Mf, respectively. These results 
are summarised in Table III, along with the single pathol-
ogy accuracies. In Figure 3, the confusion matrices for the 
developed models are presented.

Discussion
In this work, an SVM was trained and cross-validated with 
the aim to obtain differential diagnosis of BLVF types giv-
en the acoustic signals of 418 patients, obtaining a global 
accuracy of 55.0%.
Compared to the majority of studies in the literature, our re-
sults showed reduced performance, although it is worth notic-
ing that only a few have focused on pathological groups only 
for differential diagnosis 20,21. Even the comparison with the 
latter authors’ works should be done in light of the differences 
among the studies. Namely, non-pathological cases were also 
included, with the exception of Pham et al. 19 in which deep 
learning algorithms were applied, different pathological cases 
were tested and different types of the acoustic signal were pro-
cessed (sustained vowels or combinations of them). 
The taxonomy of the types of BLVF is still in evolution, as 
well as the tools and technologies available for diagnosis. 
For these reasons, and due to overlapping characteristics 
of the groups, differential diagnosis can be challenging 22. 

Thus, supporting the clinical experience with a tool based 
on objective data can be crucial, and acoustic signals are 
promising non-invasive solutions for such a purpose.
Going into detail about the specific types of BLVF, the model 
had better performance on cysts and nodules (58% and 62% 
accuracy, respectively), and less so for recognition of polyps 
and oedema definition of identity (47% and 53% accuracy, 
respectively). While more investigation should be dedicated 
to these results, a possible explanation of these differences 
may be due to the diverse effects of the above-mentioned le-
sions on phonation. In fact, while polyps and oedema tend to 
be very mobile during phonation, cysts and nodules are usu-
ally less mobile 23 and this may have an effect on the features 
obtained from the acoustic signals.
Lower accuracy could also be due to different ages of pa-
tients, to fact that the pathological samples were at different 
stages of disease evolution, or because the morphological 
features varied and impacted differently on acoustic param-
eters (e.g. size, the ratio of vocal lesion base to the width of 
the lesion, the implantation site etc.). In future studies, the 
system with a larger dataset and new classification model 
could be used to classify the stage of the disease. 
Another aspect we considered in our analyses was the dif-
ference in results obtained on gender split. Differences 
between male and female voices and acoustic are related 
to many factors, such as physiology, anatomy, and even 
sociology and psychology, in terms of identity definition 
and behavioural characteristics 24. In this regard, as a result, 
differences in frequency content between genders could 
emphasise the effects in the voice of different pathologies. 
In this work, where only features extracted from the spectral 
analysis entered the model, it is reasonable to obtain very dif-
ferent behaviours of the model on the two subgroups. Specifi-

Table II. Sample numerosities on the whole dataset and pathology and gender-specific.

Overall sample Pathology-specific samples (N)

Cysts Oedemas Nodules Polyps

Overall sample 418 69 112 141 96

Gender-specific 
numerosity

Males   69 12   12   12 33

Females 349 57 100 129 63

Table III. Classification results.

Models Overall sample Pathology-specific accuracy

Accuracy F1-score Cysts Oedema Nodules Polyps

Mtot 0.55 0.54 0.58 0.53 0.62 0.47

Mm 0.80 0.78 0.75 0.67 0.83 0.85

Mf 0.54 0.54 0.63 0.54 0.53 0.49
Mtot: Whole dataset; Mm: male dataset; Mf: female dataset.
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cally, the results showed an accuracy of 79.7% in the model 
trained on males and 54.4% in the models trained on females. 
The overall F1-score and accuracy and the pathology-specific 
accuracies suggest how better performances can be obtained 
in the male group, with respect to females. In fact, particularly 
high accuracies of 83% and 85% were obtained on detection 
of nodules and polyps, respectively (Tab. III). The promising 
results on polyp detection, in opposition to the poor accuracy 
obtained on the Mf (49%), may be explained by the fact that 
BLVF, and especially vocal polyps, present a higher incidence 
in the male population 25. Nevertheless, these results, and more 

generically the role of gender in differential diagnosis, should 
be deepened further. Indeed, while reading these last findings, 
the sample size of the male subgroup should be taken into ac-
count as a limitation reducing the generalisability of the results.
To optimise the overall accuracy, other improvements could 
involve the training of other classification algorithms and the 
application of nested cross-validation for a better generalisa-
bility of the results 26. Additionally, a larger prospective data-
set could allow for the exploration of deep learning solutions 
and a complete selection of the features through automatic 
methods, avoiding the need for biostatistical screening. In 
future works, introducing novel features for classifiers or 
identifying the best performing ones can provide new infor-
mation. More sophisticated features capturing hidden pat-
terns or nonlinear relationships can significantly boost pre-
diction accuracy. We believe that the clinical usefulness of 
the classification accuracy achieved by our model could be 
understood by comparing with further studies how our algo-
rithm performs to those of human experts and non-experts.
Above all, given the promising results in diagnostic prob-
lems obtained from clinical and endoscopic high-speed 
videos  27, we believe that a bimodal analysis system that 
integrates both audio recording and video-endoscopic im-
aging data would be helpful to improve accuracy and to 
explain the correlations of the SVM.
Finally, our preliminary work overall suggests that machine 
learning, in combination with telemedicine, could provide 
a strategy to support screening between BLVF and malig-
nant glottic lesions. Undoubtedly, a larger data set is need-
ed before reaching such a target but this could be a concrete 
development.

Conclusions
This work focused on the development and cross-validation 
of a diagnostic model for the identification of four different 
BLVFs: polyps, cysts, nodules, and oedema. Although further 
efforts could be deployed on the technical implementation, 
when larger datasets will be available, the results appear prom-
ising, with an overall accuracy in the automatic differential di-
agnosis of 55.3%. Moreover, the behavioural patterns of the 
models developed on the gender subgroups were particularly 
interesting. Specifically, a good sensitivity was found in polyp 
detection for males (85%), and in general better performance 
in the detection of each BLVF type than in females. Given 
these results and the analysis of the literature, future research 
should focus on the combined use of clinical and instrumental 
data for the development of diagnostic models of BLVF.
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