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Looking for synergies in healthy upper limb motion:
a focus on the wrist

F. Masiero*, I. Fagioli, L. Truppa, A. Mannini, L. Cappello, and M. Controzzi*

Abstract— Recent studies on human upper limb motion high-
lighted the benefit of dimensionality reduction techniques to ex-
trapolate informative joint patterns. These techniques can sim-
plify the description of upper limb kinematics in physiological
conditions, serving as a baseline for the objective assessment
of movement alterations, or to be implemented in a robotic joint.
However, the successful description of kinematic data requires a
proper alignment of the acquisitions to correctly estimate kine-
matic patterns and their motion variability. Here, we propose a
structured methodology to process and analyze upper limb kine-
matic data, considering time warping and task segmentation to
register task execution on a common normalized completion time
axis. Functional principal component analysis (fPCA) was used to
extract patterns of motion of the wrist joint from the data collected
by healthy participants performing activities of daily living. Our
results suggest that wrist trajectories can be described as a linear
combination of few functional principal components (fPCs). In
fact, three fPCs explained more than 85% of the variance of any
task. Wrist trajectories in the reaching phase of movement were
highly correlated among participants and significantly more than
trajectories in the manipulation phase (p<0.01). These findings
may be useful in simplifying the control and design of robotic
wrists, and could aid the development of therapies for the early
detection of pathological conditions.

Index Terms— Upper limb kinematics, functional data
analysis, factorial analysis, neurorehabilitation, motor dis-
orders, wrist, postural synergies

I. INTRODUCTION

Upper limb mobility is essential in the execution of activities
of daily living (ADLs), and its impairment or loss can reduce an
individual’s quality of life and independence [1], [2]. Modeling able-
bodied upper limb movement is important in neurorehabilitation
research, as it gives the opportunity to develop diagnostic tools
and therapies to preserve and restore functional abilities in impaired
individuals [3], [4]. For example, studies of upper limb motion in
healthy individuals can aid the development of (i) rehabilitation
protocols [4]–[6], (ii) objective metrics for clinical evaluation [7]–
[9], and (iii) design rules and control strategies for assistive devices,
such as prostheses [10]–[12] and exoskeletons [13], [14].

While kinematic analysis in lower limb mobility (i.e., gait analysis)
is an established tool for clinical evaluation [15], [16], the analysis
of upper extremity kinematics for clinical purposes is still an open
challenge [17]. There are three main disadvantages in performing
motion analysis for the upper limb. First, there is no single most
relevant functional activity (akin ground-level walking for lower
extremities) [18]. In this regard, while part of the literature focused
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on selecting relevant ADL tasks [19], [20], other studies aimed at
proposing functional tasks for clinical assessments [21], [22] or at
identifying task primitives [23]. The wide variety of possible func-
tional tasks hinders from standardizing a motion analysis protocol.
Second, upper limb functional activities show a large execution
variability (as opposed to the stereotypical gait pattern for lower
extremities) [24]. Such variability is primarily due to less stringent
constraints for task accomplishment and the redundant number of
degrees of freedom of the upper limb’s kinematic chain [25]. Finally,
the lack of standardized objective metrics obtained via kinematic
analysis restrains from communicating relevant clinimetric outcomes,
thus deserving further investigations [17], [26].

Past research addressed upper limb motion modeling from a kine-
matic point of view, by focusing on ranges of motion (RoMs) [27]–
[29], joint kinematics [30], [31], or kinematic metrics to compare
impaired and healthy individuals [32], [33]. Upper limb motion has
been addressed also from the neuromuscular point of view, for exam-
ple by defining models based on muscular synergies extracted from
electromyographic activity [34], [35]. None of these works studied
the temporal features of human upper limb motion, i.e., the actual
shape of the joint trajectories during the task execution. Analyzing
the profile of a joint trajectory could allow to spot important details
such as the number and temporal location of the angular peaks [36].
This information is lost if the whole trajectory is used to retrieve
numbers resuming its behavior (e.g., its RoM or mean value). By
contrast, the temporal trend of human joint movements still allows
for the extraction of summary metrics, keeping additional objective
information that could describe the behavior of a sample population.

Recent studies investigated human upper limb motion from a
kinematic viewpoint by leveraging data dimensionality reduction
techniques. These techniques can simplify the description of upper
limb kinematics in physiological conditions, serving as a baseline to
evaluate possible discrepancies induced by a pathology [37], or be
implemented in a robotic assistive device [38], [39]. For instance,
Averta and colleagues used functional principal component analysis
(fPCA) [40] and repeated principal component analysis (R-PCA)
[41], for investigating dominant modes of variation of functional
data in time. Instead, Gloumakov and colleagues [42] adopted
an agglomerative clustering technique, grouping tasks in motion
categories based on similarity measures between motions. Those
approaches allowed to extract temporal features, which cannot be
otherwise observed with other data analysis techniques (e.g., principal
component analysis), that are only able to capture the static features
of a movement [43]. These studies compared task executions without
showing evidence of a segmentation process during the data analysis.
Although they normalized the time axis of the individual subject, they
were not able to bring and compare kinematic data in a common
completion time axis. Without the correct temporal alignment, the
information extracted from data may be altered, introducing artifacts
in the estimate of kinematic patterns and in the quantification of
motion variability [44], [45]. Moreover, these studies were limited in
presenting primitives extracted from the whole dataset, without any
further analysis based on task features such as grasp type and task
goal.

The aims of our study are to: (i) provide a structured data
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Fig. 1. (a) Experimental setup of the SHAP and the stereophotogrammetric system used for the kinematics recording. From a sitting position,
participants performed 14 tasks (Table I). Starting from a rest position (hand palm facing the table), the participant (1) pressed the switch, (2)
completed the task, (3) pressed the switch again, and (4) moved back to the rest position. (b) Calibration pose (i.e., n-pose) and marker placement
on the right arm of the participant. (c) Summary of a sample task execution (task #5) shown through video frames taken from the head camera.

analysis framework to analyze upper limb kinematic data, and (ii)
investigate the natural kinematic patterns of the wrist during activities
of daily living in healthy participants. To achieve these goals, we
recorded the upper limb movements of healthy participants, extracting
joint trajectories and segmenting them in reaching and manipulation
trends. After segmentation, data were temporally aligned, enforcing
temporal alignment also in the retrieved sub-phases (reaching and
manipulation), and analysed using fPCA and correlation analysis.

Our method was applied to the wrist focusing on retrieving kine-
matic patterns in groups of tasks characterized by same grasp type
(cylindrical, precision, lateral) or task goal (self-touching, involving
object manipulation). With the correlation analysis we aimed to assess
inter-subject variability when performing the same task or when
performing different tasks belonging to the same category (i.e., with
the same grasp type or task goal).

The proposed data analysis framework can be used to compactly

describe joint trajectories as a combination of functional principal
components. Extracting this information from many participants
allows to trace a baseline behavior to compare individuals from
different populations (e.g., with a different pathology). The analysis
of the wrist also proved that most of the correlation was concentrated
in the reaching phase, suggesting that its patterns could be good
kinematic indicators for healthy individuals and providing repeatable
patterns associated to grasp type (e.g., cylindrical) and task goal (e.g.,
self-touching tasks).

Our results may also be relevant for the prosthetic field, consoli-
dating the importance of designing wrist rotators (implementing PS),
but also highlighting the importance of FE for the completion of
self-touching tasks. In this view, this work provides reference wrist
trajectories that can be considered either in the mechanical design of
underactuated robotic wrists or for the control of a multi-articulated
robotic wrist based on postural synergies.
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Fig. 2. Diagram of the data processing and analysis framework. After the acquisition of kinematics data (e.g., through a stereophotogrammetric
system), a reference frame for each body segment is defined. By computing the relative orientation among adjacent segments, the temporal trends
of the joint DoFs are extracted. These are segmented to retrieve only the informative regions of the task executions. Finally, before data analysis,
the execution of each trial is temporally aligned through a warping procedure to highlight relevant features among multiple repetitions.

TABLE I
LIST OF TASKS

ID Description

SELF-CONTACT TASKS

1 Touch controlateral armpit
2 Touch chest
3 Touch controlateral temple
4 Touch controlateral hip

ABSTRACT TASKS

5 Replace triangle
6 Replace plate
7 Replace ball
8 Replace cylinder
9 Replace cup

INTERACTION TASKS

10 Turn key
11 Turn door handle
12 Open and close zip
13 Page Turning
14 Drinking from glass

Executed tasks, grouped in three categories. Self-contact tasks do not involve
the use of objects, whereas abstract and interaction tasks are adapted from
the SHAP and they involve the use of objects.

II. MATERIALS AND METHODS

A. Experiments

Thirteen unimpaired right-handed volunteers (age range: 22 – 30
years, 9 males and 4 females) with no diagnosed motor disorders were
enrolled in this study. The study was performed in accordance with
the Declaration of Helsinki and approved by the Ethics Committee
of the Scuola Superiore Sant’Anna (approval number 2/2017). All
participants gave written informed consent before participating in
the study. Participants were sit at a table and were instructed to

TABLE II
BONY LANDMARKS

Symbol Description

H2 MCP joint of index finger
H5 MCP joint of little finger
LE Lateral Epycondyle
ME Medial Epycondyle
US Ulnar styloid
RS Radial styloid
CC Middle point between RS and US
GH Glenohumeral rotation center

List of the bony landmarks (markers) used to construct local anatomical frame
coordinate systems.

repeatedly complete a trial consisting of the execution of a set of
14 tasks, provided in a random order (Fig.1a,c) and representative of
the ADLs (Table I). In the instructions, the experimenter emphasized
that the whole movement should be performed in a natural fashion.
The tasks were selected based on a set of movements driven by the
studies of grasping taxonomies [46], [47], and upper limb workspace
analysis [48], [49]. These were subdivided into self-contact tasks (#1-
4), abstract tasks (#5-9), and interaction tasks (#10-14), adapted from
[50], [51]. In particular, tasks from 5 to 14 were selected or adapted
from a standard functional test, i.e., the SHAP [5]. Participants were
asked to repeat each task ten times, and each repetition, or trial,
consisted in the following sequence of actions: from a fixed starting
position with the palm facing the table, the participant pressed a
switch, performed the task, pressed again the switch, and moved back
to the starting position.

Upper limb movements were tracked with a system based on
optical reflective markers attached to the upper limb body segments.
To position the markers, we followed the ISB guidelines for the
whole upper limb kinematic chain [52], except for the hand/wrist
system, for which we used a custom configuration inspired by the
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TABLE III
BODY FRAMES DEFINITION

Hand Frame Forearm Frame Upper arm Frame

OH = CC OF = US OU = GH

yH=
H5+H2

2
−OH yF=

LE+ME

2
−OF yU=OU−

LE+ME

2
yH=

yH

∥yH∥
yF=

yF

∥yF∥
yU=

yU

∥yU∥

v=H2−OH v=US−RS v=
LE+ME

2
−US

v̂=
v

∥v∥
v̂=

v

∥v∥
v̂=

v

∥v∥

xH=
yH × v̂

∥yH × v̂∥
xF=

v̂ × yF

∥yF × v̂∥
zU=

v̂ × yU

∥yU × v̂∥

zH=xH × yH zF=xF × yF xU=yU × zU

Reference frame definition for each body segment. Upper arm frame
construction is taken from [52]. Hand and forearm frames are custom.
Marker names are reported in Table II, and v is an auxiliary vector.

TABLE IV
EXPLAINED VARIANCE IN ALL TASKS AND TASKS WITHOUT AN OBJECT

FE RUD PS

All tasks
fPC1 73 63 67
fPC2 82 78 86
fPC3 90 86 93

No Objects
fPC1 69 75 86
fPC2 84 83 94
fPC3 93 91 98

Explained variance retrieved by applying fPCA to all the tasks together (top)
or tasks without an object (down). Values are reported for each DoF (FE,
RUD, and PS) and increasing number of fPCs (up to three).

TABLE V
EXPLAINED VARIANCE IN GRASPING TASKS

FE RUD PS
R M R M R M

Power
fPC1 83 59 87 80 84 88
fPC2 94 88 97 93 98 97
fPC3 98 94 99 97 99 99

Precision
fPC1 82 46 93 48 90 45
fPC2 94 70 98 82 98 70
fPC3 98 85 99 90 99 91

Lateral
fPC1 68 80 84 65 88 59
fPC2 90 97 93 90 98 86
fPC3 96 99 98 95 99 94

Explained variance retrieved by applying fPCA on grasping tasks (#5-14),
which are grouped based on the grasp type [46]. Values are reported for each
DoF (FE, RUD, and PS) and increasing number of fPCs (up to three), both
for reaching (R) and manipulation phase (M).

work of Murgia et al. [53] (Fig.1b). Before the experimental sessions,
each participant was asked to keep a static n-pose to calibrate the
participant-specific marker positions (Fig.1b). Participants were asked
to wear an action camera on their forehead, recording at 60 fps
the task execution from their perspective. These recordings were
used to group the tasks by fitting the observed grasps into three
categories: power grasp, lateral grasp, and precision (pinch) grasp.
Reflective markers were also placed on the objects used during the
experiment in order to segment reaching and manipulation phases.
We used 6.4 mm Reflective Pearl Markers to track the hand of
the participants, and 9.5 mm Reflective Pearl Markers to track the
remaining upper limb chain and the objects. The markers’ position
in space was recorded with a sampling frequency of 100 Hz through
an eight-camera stereophotogrammetric system (Vicon MX3, Oxford,
U.K.). The system was calibrated before each experimental session
to achieve submillimetric resolution in the target workspace.

B. Data Analysis

Markers’ positions were imported in MATLAB R2019b (Natick,
Massachusetts, USA) and used to reconstruct the kinematics of the
upper limb body segments. Using the marker definitions reported in
Table II, we built three reference systems in the hand, forearm, and
upper arm, according to the expressions presented in Table III. Then,
we extracted the time series of the wrist degrees of freedom (DoFs)
from the rotation matrices describing the relative orientation between
adjacent body segments. In particular, the extracted DoFs were
flexion/extension (FE), pronation/supination (PS), and radial/ulnar
deviation (RUD). FE and RUD were extracted from the relative
orientation between the hand and forearm, and PS was extracted from
the relative orientation between the forearm and the upper arm.

Each task was segmented in trials using a switch signal acquired
through a NI DAQ USB-6009 connected to a computer running Lab-
VIEW 2017 and synchronized to the stereophotogrammetric system.
The ten repetitions of each task were temporally aligned using a time-
warping procedure, i.e., the elastic regression algorithm proposed
by Tucker et al. [45] (see Appendix I). This allowed to achieve
temporal alignment of salient events of the tasks, independently of
their execution times. To align all three DoFs of the wrist in a trial,
the warping function from the time series of the DoF exhibiting the
widest angular span was used to align the two remaining DoFs.
For instance, for task #1 (touching the contralateral temple) and
participant #1, we used the PS time series to derive the temporal
misalignment of the trials (i.e., the warping function, Fig.2). The
derived warping functions were then used to align the FE and RUD
time series of that specific task (Fig.2). For a certain task, the DoF
chosen for the alignment may not be the same for every participant.

Trials involving the use of an object (tasks #5-14) were further
segmented into a reaching phase and a manipulation phase using the
object’s markers position before undergoing to time warping. For
instance, abstract tasks (#5-9) were segmented in correspondence to
the minimum euclidean distance between the marker on the object
and the center of the hand. The temporally aligned curves were then
averaged in order to obtain a mean curve for each task performed
by a participant. All the obtained curves (both unsegmented and
segmented) were finally resampled to achieve a common normalized
time axis (as percentage of the task completion) for comparison.

Two analyses were then performed: a functional Principal Compo-
nents Analysis (fPCA), and a correlation analysis. fPCA is a statistical
method used to study the dominant variation modes in temporal series
(see Appendix II). To perform this analysis, we used the PACE
package [54], implementing the fPCA by conditional expectation.
We ran the algorithm on the average curves, considering: (i) all tasks
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Fig. 3. (Left) Average angular excursion of FE (blue), PS (red), and RUD (green) for self-contact tasks (no object) and tasks with the same grasp
type (power, precision, lateral), divided in reaching (R) and manipulation (M). (Right) A detailed view of the mean curve (black) and first fPC (blue
and red shapes) for FE and PS in self-contact tasks.

together (as presented in previous studies [40]–[42]), (ii) all the self-
touching tasks, and the (iii) reaching and (iv) manipulation phases
for all the tasks associated to a specific grasp type.

For the correlation analysis, we used the Spearman’s rank corre-
lation coefficient, r. This coefficient assesses how well an arbitrary
monotonic function can describe a relationship between two variables
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Fig. 4. Average reaching phase temporal trends of the wrist DoFs while
performing tasks involving power (blue) or lateral (red) grasps. Similar
trends can be observed for both grasp types and for all DoFs.

without making assumptions on their frequency distribution (nonpara-
metric statistic). The correlation coefficient was used to assign a score
to the similarity of the analyzed nonlinear time series representing
the wrist DoFs trajectories. Accordingly, for the groups (ii), (iii) and
(iv), we computed different correlation matrices. We investigated two
types of correlations: (1) the correlation of the same task performed
by different participants (i.e., i-th and j-th participant), and (2) the
correlation between tasks from the same group (i.e., (ii), (iii) and
(iv)).

To confirm the outcomes of the correlation analysis, a statistical
analysis on the distribution of the correlation coefficients moduli (|r|)
of reaching and manipulation trajectories was performed. After the
verification of the non-normality of the data (i.e., using the Lilliefors
test) we conducted a non-parametric one-sided test (i.e., the Wilcoxon
rank sum test) on the two distributions (reaching and manipulation
phases) grouping the tasks based on the grasp type and the DoF.

III. RESULTS

The fPCA computed on the whole set of tasks allowed us to infer
that the first fPC, by itself, accounts for 73%, 63%, and 67% of the
variation with respect to the mean function for FE, RUD, and PS,
respectively (Table IV). Considering three fPCs led to an explained
variance above 85% for every DoF (Table IV).

In the self-touching tasks (tasks #1-4), the variance explained by
the first fPC was 69%, 75%, and 86%, respectively for FE, RUD,
and PS (Table IV). The explained variance was more than 80% for
two fPCs and more than 90% for three fPCs, with a peak of 98% for
PS (Table IV).

In grasping tasks (tasks #5-14), the reaching phase was charac-
terized by values of explained variance larger than the manipulation
phase (Table V). The first fPC always accounted for more than 80%
of the variance, except for the FE in lateral grasp, for which the
explained variance was 68%. The second and third fPCs always led
to more than 90% and 95% of explained variance, respectively.

Angular excursions are summarized in Fig.3 for FE, PS, and RUD
for different task groups (i.e., tasks involving a specific grasp type or
self-touching tasks). Notably, the reaching phase (R) always involved
an angular excursion larger than the manipulation phase (M). This
difference was more pronounced in FE and RUD, which had a very
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Fig. 5. (a) Correlation among self-touching tasks for the PS (left panel) and FE (right panel) trajectories. Because of their symmetry, only the lower-
left half of the correlation matrix is shown. Both correlation matrices show the correlation coefficient, r, between the i-th and the j-th subject. The
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correlation when considering the FE. (b) Temporal trends of the average curves for tasks #1-4, offering visual evidence of the correlation values in
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are relative to reaching trajectories, the red ones to manipulation trajectories. The statistical significance between pairs of distributions is indicated,
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limited excursion in precision and lateral grasp. Tasks without an
object, being those not segmented in different task phases (reaching
and manipulation), exhibited a clear symmetric shape around the 50%
of the completion time.

The functional principal components extracted for curves related to
the manipulation phase explained lower variance with respect to those
extracted for the reaching phase, independently of the grasp type

(Table V). For instance, in the case of precision grasp, the explained
variance for the manipulation phase accounted by the first fPC was
around 40% smaller than the reaching phase, for all DoFs. The use of
three fPCs still led to an explained variance larger than 85%. Notably,
in the case of power grasp and lateral grasp, the use of only two fPCs
allowed to infer more than the 85% of the explained variance.

Similar time trends were observed for all DoFs in the reaching
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phase of power and lateral grasp (Fig.4). In detail, the RUD followed
a monotonic decreasing trend with an inflexion point at around 40%
of the completion time. A mirrored shape was observed for the
PS, with an inflexion point close to the 50% of task completion.
Interestingly, the FE showed the same non-monotonic pattern. The
angular ranges involved were also comparable (Fig.3,4).

The results of the correlation analysis unveiled common patterns
of movement between tasks. When considering self-contact tasks,
FE proved to be highly correlated among participants. Few excep-
tions were observed, e.g., participant #13 performing task #1 and
participants #6 and #7 performing task #2 (Fig.5a, right panel). In
general, the PS trend for tasks #1-3 was positively correlated among
participants, and negatively correlated with respect to task #4 (Fig.5a,
left panel). As shown in (Fig.5b), the trends of the correlated tasks
(#1-3) are similar in shape, and they resemble the flipped shape of the
negatively correlated task (#4). By comparing the distribution of the
modulus of the correlation coefficient (|r|, to consider correlation
independently on the sign) and grouping tasks based on the grasp
type, we found that the reaching trajectories were more correlated
than manipulation trajectories (Fig.5c). In fact, median correlation
coefficients of reaching trajectories were significantly larger than
those computed for manipulation trajectories (p < 0.01, Fig.5c). The
only exception was FE during lateral grasps, for which we observed
the opposite result (p < 0.05).

Although the distributions of the absolute values of the correlation
coefficients for the RUD trajectories were comparable to the ones
involving the PS, no relevant pattern was observed. More in general,
we did not find any kinematic pattern in the manipulation curves (for
any DoF).

IV. DISCUSSIONS AND CONCLUSIONS

The aims of this study were to (i) provide a structured methodology
for the analysis of upper limb motion, and to (ii) employ it to
analyze wrist patterns in healthy participants performing tasks of
daily living. We decided to apply the proposed methodology solely
to the kinematics of the wrist, although the same methodology could
be applied to other joints. Our interest for the wrist was motivated by
its importance in the completion of the ADLs [55], whose study and
substitution was largely overlooked in past research in the prosthetic
field [56], [57]. Gaining useful insights on the wrist behavior in
relation to grasp types and task goals could help in the design of novel
robotic wrists, mimicking the kinematics of their natural counterpart
while keeping a compact design (as imposed in the prosthetic field
application). Instead, from the neurorehabilitation perspective, finding
kinematic descriptors of upper limb kinematics in physiological
conditions provides a baseline to evaluate possible discrepancies
induced by a pathology [41]. Our analysis framework is compatible
and (to some extent) complementary to metrics proposed in other
kinematic studies [17], [36], meaning that its use does not prevent the
extraction of standard descriptors (e.g., RoM, jerk, average velocity).
Other investigators recently proved that the combination of these
methodologies could contribute to the inference of motor disabilities
[37].

We built our dataset exploiting the SHAP test, which is a clinically
validated hand function test for the assessment of musculoskeletal and
neurological conditions [5]. Data were recorded with a stereopho-
togrammetric system, which is known to be a reference standard
for its high resolution and accuracy [58]. Nonetheless, the proposed
data analysis methodology is compatible with other motion tracking
technologies (e.g., IMUs, cameras) [59], [60].

After the extraction of the wrist DoFs, we temporally aligned the
executions of the tasks for all subjects. The successful implementation

of temporal alignment required many repetitions, motivating us
to record 10 times the execution of each task. Differently from
previous studies [40]–[42], we also exploited task segmentation to
enforce the temporal alignment for the whole dataset in a unique
common normalized time axis. This is crucial, since the lack of
temporal alignment (also between different tasks), can lead to unfair
comparisons, resulting in the wrong estimation of kinematic patterns
and their variability. We then analyzed the preprocessed data using
fPCA and correlation analysis. We analyzed the executed tasks both
dividing them by grasp type (i.e., power, precision, and lateral),
considering task goal (i.e., self-touching tasks and tasks involving
objects manipulation), and by separately considering each phase (i.e.,
reaching and manipulation).

Functional PCA summarizes kinematic trajectories as a linear com-
bination of few principal components (Fig.2). In tasks that required
handling an object, we found that PS was the predominant DoF, both
in the reaching and manipulation phase (Fig.3). In fact, PS showed the
highest angular range (also in relative terms, i.e., with respect to the
overall joint RoM), and its trend could be explained by fewer fPCs.
This justifies the tendency in upper limb prosthetics in developing
powered wrist joints that only implement PS. In self-contact tasks,
FE was the DoF exhibiting the highest angular excursions (Fig.3). In
those tasks, FE and PS patterns of movement were highly correlated
among different participants (Fig.5a). Interestingly, a strong negative
correlation was observed for the PS between task #4 and tasks #1-
3. This may be due to the different location of the target body part
(inferior part of the body or superior part of the body). In addition,
the use of a single fPC could effectively summarize the PS trend
(Table IV). From the neurorehabilitation perspective, these results
suggest that wrist rehabilitation protocols should mostly target FE
and PS. Unexpectedly, RUD was uninformative, exhibiting a very
small angular excursion and no relevant kinematic pattern (except in
the reaching phase of self-touching tasks, Fig.4). This outcome may
be due to the selected set of tasks; however, independently on this
outcome, having its trend at disposal could still serve as a baseline for
comparing the same tasks performed by impaired individuals. Future
studies with additional data may help discern the role of this DoF in
ADLs.

Our results confirmed that the wrist movements in daily living
activities could be effectively summarized using fPCA, i.e., more
than 85% of the explained variance could be explained using only
three fPCs. These findings would not have been so relevant if the
temporal alignment was not considered as a data preprocessing step.
Even if temporal alignment has been used in previous works [40],
[42], our study introduces a further time alignment step thanks to
task segmentation. In fact, part of the novelty of this work was the
direct analysis of distinct phases of task completion. We analyzed
the execution of tasks involving an object considering reaching
and manipulation phases, separately. This allowed us to infer that
univocal patterns of movement of the wrist were concentrated during
the reaching phase of tasks that require the same kind of grasp,
while it was more difficult to observe patterns of movement in
the manipulation phase. In fact, the reaching curves showed to
(i) be more correlated (Fig.5c) and (ii) have less inter-participant
variability (Table V) with respect to the manipulation curves. These
results demonstrate that factors typically influencing task completion
(e.g., object positioning, object contact location, and anthropometric
differences) did not significantly affect the variability of the reaching
phase in the workspace range of the SHAP (around 1 m3). Since
the goal of the manipulation phase is to achieve a target pose of the
manipulated object, it is reasonable to observe a larger variability
in this phase. This is inherited by the redundancy of the human
upper limb kinematic chain, capable of producing different spatial and
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temporal trajectories associated to the same final goal (e.g., depending
on the grasp location achieved during reaching).

The obtained outcomes suggest that wrist reaching patterns are
good kinematic indicators for healthy participants and may be used
as references to diagnose neurological pathologies. Furthermore, our
results highlighted the importance of task segmentation (in reaching
and manipulation phases), which allowed to understand where most
of the task repeatability was located.

Our experiment targeted only tasks involving the dominant hand.
Bimanual tasks were not taken into consideration because they are
known to be more complicated in terms of repeatability and grasp
modality. Including bimanual tasks in a biomechanical study may be
the starting point of a future work. Our analysis was also limited to
a small number of healthy participants, performing a set of tasks
starting from a unique workspace location. Future improvements
of our investigation will consider extending the available dataset
(e.g., including also non-healthy participants), addressing the effect
of starting position (which might have affected the observed RoMs),
collecting more tasks executions, and analyzing the remaining upper
limb joints. For example, using the same experimental setup and
applying the presented methodology to the whole upper limb kine-
matic chain could be a valuable instrument to study compensatory
movements in upper limb amputees [55], [57].

To conclude, we proposed a structured methodological framework
to study upper limb joint kinematics. The methodology is structured
in the sense that it (i) can compare different tasks (performed by
different subjects) in a common completion time axis (leveraging
task segmentation) and (ii) allows to extract objective metrics from
kinematic data. By applying this framework to the study of the
wrist, we showed that it is feasible to extract biomechanical patterns
related to grasp type and task goal. While our methodology could be
integrated into the data analysis pipeline of a rehabilitation protocol,
the patterns obtained could serve as a baseline for describing the kine-
matics of healthy participants, helping to diagnose motor disorders
(by comparing participants kinematics’ to the healthy dataset), and
aiding the development and control of robotic assistive devices (e.g.,
by implementing such profiles in the robotic joint motion). Further
research should be performed to investigate the use of the proposed
framework in clinical settings, and for the prototyping and control of
the next generation assistive devices.
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APPENDIX I
TEMPORAL ALIGNMENT USING ELASTIC REGRESSION

The variability exhibited by different observations of the same
time-series (e.g., the repetitive execution of a task performed by the
same subject) can be expressed in terms of amplitude (y-axis) and
phase (x-axis) variability. Many existing techniques for functional
data analysis neglect phase variability, implicitly assuming that the
observed functions are already temporally aligned. Time-warping
refers to the process of aligning data along their time axis, thus
reducing phase variability. Phase variability among the original curves
is captured by the warping functions.

Here, we summarize a time-warping technique based on elastic
regression [45]. Without loss of generality, let q be a continuous real-
valued function in the normalized domain [0, 1], and let Q denote

the set of all such functions. Let Γ be the set of warping functions:

Γ =
{
γ : [0, 1] → [0, 1]

∣∣ γ(0) = 0, γ(1) = 1
}
.

The elements of Γ are boundary-preserving, invertible, and differ-
entiable (i.e., diffeomorphisms). For any q ∈ Q and γ ∈ Γ, the
composition q ◦ γ denotes the time-warping of q by γ. In a pairwise
alignment problem, the goal is to align any couple of functions q1
and q2, in our case representative of different repetitions of the same
task. For the present alignment method, there is the need to introduce
f : [0, 1] → R, the square-root slope function (SRSF) of q:

f(t) = sign (q̇(t))
√

|q̇(t)| .

If we warp a function q by γ, the SRSF of q ◦ γ is f̃(t) =
f(γ(t))

√
γ̇(t). Therefore, it can be shown that for any q1, q2 ∈ Q,

and γ ∈ Γ, the isometry property holds:

∥f1 − f2∥ = ∥(f1, γ)− (f2, γ)∥,

where f1, f2 are SRSFs of q1, q2, respectively. This property suggests
a distance between functions that is invariant to their warpings:

Dy(q1, q2) = inf
γ∈Γ

∥f1 − (f2, γ)∥ .

Therefore, we can align the SRSFs of any two functions and then
map them back to Q to obtain the aligned functions.

The idea behind temporal alignment is to time-warp data with
respect to a representative time-series. From the aligned SRSFs, it
is possible to compute each aligned functions as:

q̃i(t) = qi(0) +

∫ t

0
f̃i(s)|f̃i(s)|ds .

The aligned data can then be processed with traditional functional
data analysis techniques, e.g., fPCA.

APPENDIX II
FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

Functional principal component analysis (fPCA) is used to discover
dominant modes of variation in functional data [44]. This data
analysis technique is able to capture relevant patterns if data are
temporally aligned (see Appendix I). Here, we summarize the basic
theory of fPCA applied to upper limb kinematics.

Let us assume a kinematic chain with l DoFs, in which the j-
th joint angle qj is described by a time-series with N available
observations, and j = 1, . . . , l. Let us also assume that each time-
series is defined over a common normalized time axis t ∈ [0, 1].
A generic signal representing the temporal profile of a joint can be
decomposed as a weighted sum of basis elements ξij(t), or fPCs:

qj(t) ≈ q̄j(t) +

smax∑
i=1

αi
j · ξ

i
j(t)

where αi
j are weights (or scores), smax is the number of basis

elements considered and q̄ is the average of q(t) across the N obser-
vations. The output of the fPCA, which is computed independently for
each joint, is a basis of functions {ξ1j , . . . , ξ

smax
j } that maximizes the

explained variance of upper limb motions collected in the dataset. The
first fPC ξ1j (t) is the function that solves the following optimization
problem:

max
ξ1j

N∑
k=1

(∫ 1

0
ξ1j (t) · q

k
j (t) dt

)2

such that ∥ξ1j (t)∥ =

∫ 1

0

(
ξ1j (t)

)2
dt = 1
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Subsequent fPCs ξsj (t) are the functions that solve the above op-
timization problem, with the additional constraint of orthogonality,
i.e., ∫ 1

0
ξsj (t)ξ

k
j (t) dt = 0, ∀k ∈ {1, . . . , p− 1}

where p refers to the number of the already computed fPCs. The
interested reader can find additional details in [44].
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