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1. Introduction

In the last decade, an increasing interest is observed toward an
interdisciplinary research field named “Materials Informatics”,
which lies between materials engineering and data science
and supports discovery, characterization, design, and develop-
ment of materials through artificial intelligence (AI) and

machine learning (ML) approaches[1,2]

and mechanical behavior of metals and
alloys, and connected technological devel-
opments are sensibly impacted by this cat-
egory of approaches.[3] They can, indeed,
help metallurgical industry in sustaining
the ever-increasing pressure toward the
production of materials facing extreme
conditions and/or providing optimal
trade-off among weight, strength, ductility,
corrosion resistance, toughness, as well as
production costs and environmental com-
patibility. For instance, AI can support
microstructural alloy tailoring and charac-
terization, by providing reliable estimates
of fundamental physical and mechanical
properties,[4] as well as monitoring of
qualitative performance of each production
step.[5,6]

In the steel field, the application of ML
for mechanical properties prediction is
per se not a novelty, and a paradigmatic
example is provided by the estimate of

the steel hardenability. Hardenability is the capability of steel
to improve its hardness by quenching into martensite at a certain
cooling rate after austenitizing at high temperature.[7,8] For a spe-
cific cooling rate, hardenability is known to depend mostly on the
steel metallurgy as well as on the austenite grain size.[9] The hard-
enability of a specific steel grade is usually characterized through
the so-called Jominy end-quench test,[10] which provides a curve
commonly known as Jominy profile. Being this test expensive
and time-consuming, since many decades researchers applied
numerical methods to estimate steel hardenability based on
its chemistry.

The first models exploited standard statistical approaches,
such as the multiplicator-based solution proposed by
Grossman in the 1940s,[11] or a parametric linear model intro-
duced in the 1960s, which is used as input steel metallurgy, aus-
tenite grain size, and quench end distance.[12] In the 1970s,
several authors worked on improving and generalizing the sem-
inal model of Grossmann.[13–16] Regression analysis was also
applied in this domain with a focus on the effects of microalloy-
ing elements.[17] In particular, the effect of the different chemical
elements on each point of the Jominy curve was investigated in
ref. [18] for a narrow range of Boron steels, and it was shown that
C, Si, Mn, P, and Cr influence the whole shape of the curve, while
Ni, Cd, B, and N mainly impact the sixth hardness value.
More recently, nonlinear regression was applied to estimate
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The possibility to estimate the Jominy profile of steel based on its chemical
composition is of utmost importance and high practical relevance for industries,
which enables a preliminary assessment of the suitability of a specific steel grade
to a particular application or to the requirements of a customer, by saving time
and resources as the Jominy end-quench test is costly and time-consuming.
More importantly, an estimator can be used in steel grade design, by supporting
the investigation of the most suitable chemistry to meet some given specifi-
cations. The article proposes a novel approach to estimate the hardenability
profile of medium-carbon quench hardenable steels, which exploits the potential
of deep learning to correlate the steel metallurgy to the entire shape of the curve
rather than to its single points, by thus being adaptable to a wide range of steel
grades while providing very accurate estimates. Moreover, the proposed
approach is suitable to implement a transfer learning paradigm, as it can exploit
the knowledge acquired by training on a specific dataset to adapt the model to
different steel grades for which less data or data holding different features are
available.
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the Jominy profile of gear steels.[19] Further investigations
exploited numerical analyses on the cooling path trend and
considered its thermodynamics.[20–22]

The parametric approach[12] was refined and improved in
subsequent studies. In the 1980s, a more complex parametric
model was elaborated exploiting a nonlinear equation to calculate
hardenability by considering the content of several microalloying
elements.[23] In the 1990s, a parametric analytical model was pro-
posed,[24] in which nonlinear equations provide an estimate of
the parameters based on the steel metallurgy, but this approach
is unsuitable to medium-carbon quench hardenable steels, as it
does not appropriately consider how alloying elements interact
with each other. An improved version of this model[25] considers
the interactions among alloying elements by means of empiri-
cally tuned interaction parameters, and is more accurate on hard-
enability curves of quenching and tempered steels, but proves to
be reliable only on a few steel grades, as the parameters’ tuning
approach is empirical and merely numerical and does not embed
any chemical or physical principle. In the same streamline, Jin
et al.[26] proposed a different parametric analytical function relat-
ing to hardness and distance from the quenched end, where a
few parameters are present, whose values can be derived from
the contents of C, Mn, Si, Cr, Mo, Ni, and B through further
analytical formulas. This model as well was validated on a quite
limited range of steels and the generalization of the formulas
proving the parameters in neither proved nor straightforward.

In the same years, a method bases on quench factor analy-
sis[27] was proposed to estimate the hardenability profile from
simulated cooling curves, which shows good accuracy mostly
for high hardness values.[28]

In general, it can be observed that “traditional” numerical
models estimating the hardenability curve show good perform-
ances only on a narrow range of steel grades considered for the
tuning of their parameters, but their generalization properties
are quite poor when applied for other grades, as the formulas
correlating such parameters with the steel metallurgy are often
empirical and hard to extend. Furthermore, often only some
points of the profile are estimated with good accuracy, as the
interactions among alloying elements are insufficiently
addressed, also because they still are not fully known.

To overcome these limitations, since the 1990s ML-based
models were investigated. In two pioneering articles,[29,30]

standard multilayer perceptron (MLP) neural networks (NN)
were adopted for a pointwise estimation of the hardenability pro-
file of some carbon steels based on their chemistry. Other similar
investigations were carried out a few years later on different
constructional steels[31,32] and, more recently, on special steel
grades.[33,34] Moreover, a work concerning a particular type of
pipeline steels used a NN that receives as inputs the contents
of some chemical elements and a few fundamental mechanical
properties (ultimate tensile strength, yield strength, percent elon-
gation) that are assessed via standard tests.[35]

However, all the methods to estimate the hardenability curve
poorly consider the correlations among hardness measurements
related to neighboring distance values. To overcome such issue, a
parametric method was proposed,[36] where the hardenability
profile was approximated via a parametric analytical relationship
linking hardness to distance from the quenched end, and wavelet
NNs correlated the steel chemical composition to the function

parameters. More recently, the same authors presented a hierar-
chical NN-based Jominy profile predictor,[37,38] which showed
remarkable features in terms of reliability, robustness, limited
computational burden, and maintainability. Such model
estimates the hardenability profile in a pointwise way through
a “cascade” of simple NNs, each one outputting one hardness
value of the Jominy curve and being fed with a few input
variables, which accounts for both influence of the microalloying
elements on the single profile points and correlation among the
neighboring hardness values, as previously computed hardness
values are used to calculate the following ones. Nonetheless,
training of this model requires the availability of a dataset hold-
ing “complete” Jominy profiles, i.e., curves formed by 15 points.

Recently, fuzzy systems were also adopted to estimate the
Jominy profile using the steel metallurgy,[39] but the research
work focused on structural steels for quenching and tempering.

A completely different approach is followed in ref. [40], where
the focus is on the estimate of the so-called total hardness, i.e., an
aggregated measure of hardenability, via standard NNs using as
inputs the contents of a few alloying elements, some heat treat-
ment parameters, and the so-called specific Jominy distance, i.e.,
the value of the distance from the quenched end where 50% of
the microstructure is martensite, which is a function of the C
content.

ML techniques have also been used also to extract the Jominy
profile based on the data provided by nondestructive characteri-
zation techniques applied to the Jominy sample, such as in
ref. [41], where a combination of parameters characterizing
the data provided by an eddy current and a hysteresis loop mea-
surement system are used to feed a generalized regression NN.
However, such measurement systems are not commonly used in
steelworks to characterize Jominy samples, while from an indus-
trial point of view tools that exploit data that are usually collected
during the standard operating practice are more relevant and eas-
ier to deploy. This is also one of the basic ideas inspiring the work
described in this article.

To sum up, with respect to standard analytical models, ML-
based approaches provide the consistent advantage of better gen-
eralization capabilities and native solutions for implementing
transferability (i.e., the learning procedures), but require a rele-
vant volume of data in a suitable format to be trained. Especially
pointwise models (i.e., the ones estimating single points of the
curve) can be sensitive to anomalous or erroneous data, if this
issue is not properly considered. Furthermore, uncomplete
experimental Jominy curves, which are very often found in
the industrial practice, can seldom be used, although they still
convey relevant and useful information. Moreover, retraining
of the model using new data follows basically the same procedure
of the former learning stage, and to somehow transfer the previ-
ously acquired knowledge, two solutions are available: 1) use of
the internal parameters of the previous version of the model as
starting point for the training, which can bias and negatively
affect the final performance of the learning procedure, as it
can get trapped into a “local minimum;” 2) exploit a larger dataset
containing both previously available and new data, which might
require relevant computational resources and still does not
ensure optimality of the results, especially if the newly available
data are limited in number.
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The present work aims at covering this gap, by proposing an
approach based on monodimensional (1D) convolutional neural
network (CNN) with a threefold aim: 1) to provide a more
accurate estimate of hardenability thanks to the ability of 1D
CNN in learning the effects of steel metallurgy on the shape
of the Jominy curve; 2) to improve robustness with respect to
anomalous data by relating the steel metallurgy to the overall
shape of the hardenability curve instead of its single points;
and 3) to implement a transfer learning (TL) paradigm exploiting
the knowledge acquired by training on a specific dataset for
adapting the model to different steel grades, for which less data
are available or data holding different features are provided.

As a further element of novelty of the present work, CNNs,
which belong to the large category of deep learning (DL)
approaches, have been never applied so far to steel hardenability
prediction, although DL is receiving an ever-increasing interest
in the scientific community to estimate of other mechanical
properties of steel.

2. Experimental Section

2.1. Materials

Several steel grades have been considered, all belonging to the
wider class of quenching and tempered steels for mechanical
constructions. The available data, where each sample refers to
a steel metallurgy and associated Jominy profile, were provided
by two different steelworks producing steel grades that are only
partly overlapping. Therefore, in practice, two different datasets
are available: DSA, formed by 1500 samples, and DSB, including
250 observations.

The Jominy test was developed according to the ASTM
standard for all the considered data.[8]

Some specimens after the Jominy test were subjected to an
optical metallographic analysis to assess the final microstructure
in correspondence to the obtained hardness measurements.

Table 1 reports the main statistical parameters of the chemical
composition of the steel samples considered in both datasets,
Figure 1 shows the related scatter plots, while Figure 2 highlights
the difference between the average values and punctual standard
deviation of the Jominy profiles included in the two considered

datasets. Table 2 depicts some exemplar metallurgies of steels
belonging to DSA and DSB. DSA mostly refers to carbon steels
generally classified in the commercial categories C15, C20,
C30, C35, C45, C50, C55, and C60, while DSB is related to micro-
alloyed steels commercially labeled as 41CrMo4, 36MnCr5, 35
MnCrB5, and 41Cr5.

2.2. CNNs

CNNs are a DL algorithm that is widely used in image[42] and
video recognition, natural language processing, and other appli-
cations that require the processing of sequential data. They are
intensively applied also in steel production for a quite wide range
of tasks, such as, for instance, shape and surface defects
detection and classification,[43–45] microstructure analysis and
classification,[46,47] prediction of the end point of the converter,[48]

and processing temperature data in continuous casting.[49]

The key idea behind CNNs is to use a series of convolutional
layers to extract features from an input image, followed by one or
more fully connected layers to classify the image. The convolu-
tional layers use a set of filters (also known as kernels or weights)
to scan across the input image, extracting local features at each
position.

The sequential composition of multiple convolutional layers
can lead CNNs to learn increasingly complex patterns and detect
structured objects in an image.

One of the main advantages of CNNs is their ability to auto-
matically learn hierarchical representations of data, where lower
level features (such as edges and corners) are combined to form
higher level features (such as shapes and objects). This makes
them particularly effective at tasks such as object recognition,
where the input images may contain complex and variable
backgrounds, lighting conditions, and object poses. CNNs are
also used to obtain high-resolution images or other forms of bidi-
mensional data from low-resolution images or measurements
matrices, such as in the exemplar application described in
ref. [50].

Overall, CNNs have proven to be highly effective in a wide
range of applications and have significantly advanced the state
of the art in areas such as image classification, object detection,
and semantic segmentation.

Table 1. Main statistical parameters (average value, standard deviation, and minimum and maximum values) of the contents of the relevant chemical
components for the steel grades considered in the present work.

Statistics C Mn Si P S Cr Ni Mo Cu Sn Al V Nb Ti B

DSA

Average value 0.37 0.98 0.26 0.016 0.027 0.48 0.098 0.043 0.17 0.009 0.018 0.0039 0.0018 0.023 0.00074

Standard dev. 0.09 0.25 0.19 0.0037 0.012 0.38 0.18 0.062 0.025 0.0014 0.0068 0.0089 0.0025 0.017 0.0011

Min. 0.16 0.64 0.18 0.007 0.007 0.08 0.01 0.01 0 0.004 0.002 0 0 0.006 0

Max 0.6 1.49 2.05 0.03 0.17 1.23 1.32 0.28 0.25 0.022 0.05 0.016 0.044 0.055 0.0032

DSB

Average value 0.37 1.17 0.25 0.015 0.017 0.28 0.052 0.022 0.16 0.009 0.021 0.0036 0.002 0.047 0.0018

Standard dev. 0.019 0.099 0.021 0.037 0.005 0.11 0.013 0.025 0.027 0.0015 0.0028 0.002 0.0016 0.001 0.00068

Min. 0.32 0.9 0.19 0.008 0.007 0.13 0.04 0.01 0.01 0.006 0.011 0 0 0.009 0

Max 0.44 1.44 0.32 0.028 0.026 0.62 0.12 0.015 0.24 0.017 0.03 0.008 0.006 0.055 0.003
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Figure 1. Scatter plots of the chemical compositions of the steel samples included in: a) dataset DSA; b) dataset DSB.

Figure 2. Pointwise average values and standard deviation of the Jominy profiles included in the two considered datasets.
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In the present work, a 1D convolutional layer is
adopted, which operates on 1D data that are commonly used
for processing 1D input data, such as time series, speech signals,
or sequential data. Like multidimensional layers, 1D convolu-
tional layers use filters that are, however, in only one dimension
and perform the convolution operation in only one dimension,
scrolling the input through its length and producing a 1D array
that is then passed to subsequent layers of the network
(Figure 3). Therefore, here 1D convolutional layers are used to
extract and learn the salient features from the processed
Jominy profiles.

2.3. Autoencoders

Autoencoders (AE) are a type of NN architecture used for unsu-
pervised learning and dimensionality reduction tasks. They are
designed to encode input data into a lower dimensional represen-
tation and then decode it back to its original form. The goal of an
autoencoder is to learn a compact data representation capturing
their important features. The architecture of an autoencoder con-
sists of two main and connected parts: an encoder and a decoder.
The encoder takes the input data and maps it to a lower dimen-
sional representation, often called latent space or latent domain.
which contains a compressed version of the input data. The

decoder takes this compressed representation and reconstructs
the original input data from it.

The encoder and decoder components are typically imple-
mented using NNs. The encoder network consists of one or more
hidden layers that progressively reduce the dimensionality of
the input data. The decoder network is designed to mirror the
encoder, with hidden layers that gradually increase the
dimensionality back to the original input shape.

During training, the autoencoder aims to minimize the recon-
struction error, which measures the difference between the orig-
inal input and the reconstructed output. This is typically achieved
by using a loss function such as mean squared error or binary
cross-entropy, depending on the nature of the input data.

In data and image preprocessing, AE are applied for various
purposes, such as dimensionality reduction and anomaly
detection. In the former application, by learning a compressed
representation of the data, AE can reduce the dimensionality
of high-dimensional input data, and this is particularly useful
for tasks such as, for instance, data visualization, variables selec-
tion,[51] feature extraction,[52] and denoising.[53] Within anomaly
detection tasks, AE can learn to reconstruct normal patterns in
the input data. When presented with anomalous or unfamiliar
data, the reconstruction error tends to be higher, making AE use-
ful for detecting anomalous data. AE have been widely used in

Table 2. Exemplar chemical compositions of the steels belonging to DSA and DSB. The rows highlighted in yellow correspond to the Jominy profiles
depicted in Figure 8.

Dataset C Mn Si P S Cr Ni Mo Cu Sn Al V Nb Ti B

DSA 0.45 0.72 0.21 0.012 0.017 0.16 0.07 0.01 0.18 0.008 0.014 0 0 0.01 0

0.365 1.24 0.27 0.01 0.017 0.3 0.05 0.02 0.14 0.007 0.02 0.006 0.002 0.043 0.0015

0.6 0.87 2.05 0.017 0.018 0.19 0.05 0.01 0.13 0.009 0.005 0.003 0.002 0.01 0

0.49 0.8 0.24 0.009 0.023 0.17 0.06 0.01 0.13 0.007 0.016 0.001 0.001 0.011 0

0.51 0.64 1.55 0.022 0.013 0.15 0.05 0.01 0.15 0.009 0.005 0.001 0.002 0.01 0

0.455 0.75 0.23 0.014 0.022 0.15 0.06 0.01 0.17 0.01 0.012 0.002 0.001 0.013 0

0.45 0.72 0.22 0.017 0.024 0.16 0.08 0.02 0.16 0.008 0.012 0.001 0.001 0.01 0

0.445 0.73 0.21 0.013 0.025 0.13 0.06 0.01 0.14 0.008 0.005 0 0.001 0.01 0

0.455 1.36 0.22 0.018 0.145 0.13 0.06 0.01 0.21 0.012 0.002 0.003 0.001 0.009 0

0.41 0.73 0.2 0.013 0.022 1.02 0.07 0.18 0.15 0.01 0.013 0.005 0.002 0.011 0

0.41 0.78 0.23 0.012 0.025 1.02 0.07 0.19 0.16 0.009 0.023 0.005 0.002 0.012 0

0.45 0.74 0.21 0.022 0.025 0.17 0.08 0.02 0.16 0.009 0.012 0.003 0.001 0.011 0

0.375 1.2 0.24 0.015 0.022 0.31 0.06 0.01 0.2 0.009 0.026 0.004 0.003 0.048 0.0016

0.2 1.29 0.23 0.017 0.027 1.16 0.07 0.02 0.21 0.01 0.021 0.004 0.003 0.01 0

0.17 1.2 0.23 0.012 0.022 1.05 0.07 0.01 0.023 0.01 0.022 0.005 0.003 0.011 0

DSB 0.395 1.43 0.2 0.015 0.016 0.44 0.07 0.01 0.2 0.009 0.014 0.002 0.002 0.01 0

0.405 0.96 0.23 0.018 0.016 0.15 0.07 0.01 0.24 0.01 0.022 0.003 0.003 0.052 0.0026

0.39 1.21 0.25 0.018 0.018 0.28 0.06 0.01 0.15 0.008 0.021 0.004 0.003 0.045 0.0015

0.345 1.34 0.24 0.02 0.015 0.32 0.06 0.01 0.23 0.009 0.02 0.004 0.003 0.048 0.0027

0.41 0.94 0.24 0.011 0.012 0.14 0.06 0.01 0.15 0.01 0.021 0.003 0.002 0.048 0.0028

0.435 0.97 0.25 0.012 0.013 0.15 0.06 0.01 0.15 0.008 0.021 0.002 0.002 0.055 0.0026

0.38 1.11 0.23 0.014 0.009 0.21 0.06 0.02 0.14 0.007 0.023 0.005 0.004 0.049 0.0026

0.36 1.13 0.27 0.013 0.014 0.57 0.07 0.07 0.15 0.009 0.023 0.006 0.003 0.05 0.0027

0.355 1.12 0.22 0.013 0.021 0.2 0.06 0.02 0.15 0.008 0.022 0.005 0 0.05 0.003
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various domains, including steel production and manufacturing,
and provide a powerful framework for learning meaningful rep-
resentations of data and extracting useful features.

2.4. Structure of the Jominy Profile Estimator

The basic idea behind the proposed approach to estimate the
Jominy profile to the steel metallurgy is similar to the one char-
acterizing some of the previously mentioned parametric Jominy
profile predictors, i.e., to relate steel metallurgy to the shape of
the Jominy curve rather than to the single hardness measure-
ments, and to subsequently tie such encoded shape to steel met-
allurgy. This approach is intended to improve the robustness and
generalization capability of the predictor. However, the novelty
here is that the “encoding” is not explicit, namely, it is not rep-
resented by a known mathematical formula, which shows limi-
tations due being a schematic representation of the profile. Here,
a first part of the model aims to learn the salient characteristics of
different Jominy profiles (the shapes), while another part of the
model aims to learn the relationship between chemistry and the
encoded curve shape and makes that relationship available in a
TL scenario.

TL is a ML approach where knowledge acquired from solving
one problem is applied to a different but related problem.[54]

Instead of training a model from scratch on a specific task,
TL leverages the knowledge gained from solving a task to
improve performance on a different one. TL has been success-
fully applied in various domains and applications also for the
steel sector, such as image analysis,[55–58] natural language proc-
essing,[59] and speech recognition.[60] It allows models to benefit
from previous knowledge and accelerate the development and
deployment of ML systems. The idea behind TL is that models

can learn general features or representations from a large
amount of data in one domain and then apply that knowledge
to a different but related domain with less data. By transferring
the learned representations, the model can effectively generalize
and adapt to the new task more quickly and accurately.

This approach could prove beneficial in training models for
novel steel variants when there is limited data available. It could
also be applied to adapt the model for use in diverse steel plants,
each having unique methods of gathering experimental data or
conducting tests, potentially leading to changes in the mentioned
relationship.

The Jominy curve estimator holds two main components:
1) an autoencoder (shown in Figure 4 and referred to as
AE_Jom in the following), which learns and encodes the different
shapes of the Jominy profiles in a latent domain L, which is more
compact than the standard 15-point profile space; 2) a deep neu-
ral network (DNN) (shown in Figure 5 and referred to as
DNN_Jom in the following), which provides the estimated
Jominy curve based on the steel composition using AE_Jom, spe-
cifically mapping such chemistry in the latent domain L.

AE_Jom is a modified autoencoder designed to learn a con-
densed representation of a given dataset consisting of Jominy
profiles, which “summarizes” the shape of the different profiles.
The primary objective of AE_Jom is to accurately reconstruct the
original profile from this compressed representation. This goal is
pursued by exploiting the distinctive feature of AE_Jom consti-
tuted by its initial layer that employs a 1D convolution followed
by a max-pooling operator to extract information on the input
Jominy curves. The autoencoder follows the convolutional layer
as an ensemble of NAE

l fully connected layers, symmetrically
arranged around the latent space L. This latent space serves as
compact representation of the original Jominy profiles (with

Figure 3. Exemplar 1D CNN for signal processing.
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hardness measured in the standard 15 points), encapsulating the
shape details of the Jominy curves thanks to the 1D convolutional
layer. The layers of AE_Jom employ a commonly used activation
function in autoencoder implementations, namely, the
LeakyRelu function. To sum up, AE_Jom shows two main sym-
metrical components, an encoder and a decoder: the former one
learns and stores a condensed representation of Jominy profile in
L, while the latter one reconstructs it.

Based on the variable section analysis performed in ref. [37],
the contents of all the 15 chemical elements reported in Table 1
are fed as input of all the models.

The hyperparameters of the entire JNetwork were optimized
by a grid-search process that evaluated the efficiency (in terms of
mean absolute error [MAE]) of each of the tested combinations
using the available training data. Candidate values were selected
according to the dimension of the data available for the selection
to avoid eventual overfitting issues. The optimal values of these
hyperparameters are shown in Table 3, while the tested values
are listed in Table 4.

During the grid search, all tested models were evaluated for
potential overfitting issues by monitoring their performance
on training and validation data. Specifically, in these tests, it
was noticed that the predictive model’s performance on
validation data (as compared to training data) deteriorated by
�0.05–0.15 hardness Rockwell C scale (HRC) (MAE), with a
slightly greater decline in more complex models. However, this
outcome does not indicate any specific overfitting issues in the
considered models and resulted in the choice of the previously
designated hyperparameters. The performance of the ten best
performing combinations–out of more than 6000 tested—of
these hyperparameters is shown in Table 5 in terms of the MAE
obtained on the training and validation datasets.

2.5. Training Procedure of the Estimator

The training procedure of the Jominy estimator is basically
divided into two parts. The first one trains the AE_Jom by using

Figure 4. The AE_Jom architecture.

Figure 5. The DNN_Jom architecture.
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a training dataset composed of Jominy curves to learn a compact
representation of Jominy profiles shapes. The second stage
learns a suitable mapping of steel metallurgy into L space. In
both steps, training exploits the adaptive moments estimation
algorithm which belongs to the family of stochastic optimization

methods, and is computationally efficient and well suited for
nonstationary objectives and problems with very noisy or sparse
gradients.

After the AE_Jom training stage, its decoder acquires the capa-
bility to reconstruct a Jominy profile stored by latent space L. In
the second training stage, such decoder is integrated into a DNN
called DNN_Jom (see Figure 5), which incorporates a sort of
“chemical encoder” that maps the chemical composition to its
corresponding L representation. By connecting the previously
trained decoder with this new encoder within DNN_Jom, the
DNN associates the steel metallurgy to the corresponding
Jominy profile. Subsequently, DNN_Jom is trained using an
experimental dataset derived from Jominy tests, which
comprises the metallurgies of various steel specimens and their
hardenability profiles. Noticeably, this second stage tunes only
the parameters in the encoder layers, while the decoder within
DNN_Jom keeps the same internal parameter values that were
obtained during the training of AE_Jom. These adjustments
aid in the mapping of chemical compositions to a latent repre-
sentation. This latent representation, when fed into the “frozen”
decoder, generates the estimated Jominy profile by leveraging the
knowledge acquired through TL.

3. Experimental Results

The effectiveness of the estimator has been assessed by conduct-
ing an experimental campaign using the two datasets described
in Section 2.1. The objective of these tests is to evaluate the accu-
racy of the model and its ability to implement TL as far as the
Jominy curve shape is concerned via the decoder, as explained
in Section 2.5.

To measure the performance of the estimator, two well-known
indexes are used: 1) The MAE, which is a direct measure of the
difference between estimated and real hardness value, regardless
of its sign, for the ith point of the Jominy profile is computed as

MAEi ¼
1

Dimts
⋅
X

Dimts
j¼1

���ĥi,j � hTi,j
��� (1)

where hi,j and hTi,j are, respectively, the estimated and target hard-
ness value at the distance di of the jth Jominy curve in the test

Table 4. Tested hyperparameters values for the tuning of the JNetwork
(Jom AE and DNN Jom).

Hyperparameter Tested values

Convolutional layer filters number 2, 3, 5, 10

Convolutional layer filters dimension 2, 3, 4

Pooling dimension 2, 3, 4

Latent space dimension 2, 3, 4, 5, 6

Jom AE—neurons per layer
(symmetrical with respect to L)

(10,10), (10,10,10), (20,10), (20,20),
(20,20,20), (30,30)

DNN Jom—neurons per layer (10,10), (10,10,10), (20,10), (20,20),
(20,20,20), (30,30)

Table 5. Performance achieved by the top-ten hyperparameters configurations in terms of MAE on dataset DSA for training and validation sets.

Latent
space dim.

Conv. layer
filters num.

Jom AE hid.
neurons

Conv layer
filter dim.

Pooling
dim.

DNN Jom hid.
neurons

MAE
Tr

MAE
Vd

4 3 (20, 20) 2 2 (20, 20) 0.85 0.96

4 3 (10, 10) 3 2 (20, 20) 0.88 0,98

3 2 (20, 20) 2 3 (20, 20) 0.82 0.98

4 4 (10, 10) 2 3 (20, 20) 0.83 0.98

3 3 (10, 10) 3 2 (20, 20) 0.82 0.98

4 4 (10, 10) 2 2 (20, 20) 0.85 0.98

5 2 (20, 20) 2 3 (20, 20) 0.84 0.98

4 3 (20, 20) 3 3 (20, 20) 0.88 0.98

3 4 (20, 20) 2 2 (20, 20) 0.88 0.98

5 2 (10, 10) 3 3 (20, 20) 0.87 0.99

Table 3. Hyperparameters values settings of the JNetwork (Jom AE and
DNN Jom).

Hyperparameter Value

Jominy AutoEncoder [Jom AE]

Convolutional layer filters number 3

Convolutional layer filters dimension 2

Pooling method Max

Pooling dimension 2

Number of dense layers (symmetrical respect to L) 2

Neurons per layer (symmetrical respect to L) [20, 20]

Dense layers activation function LeakyReLU

Latent space dimension 4

Deep Neural Network Jominy [DNN Jom—Chemical Encoder]

Number of dense layers 2

Neurons per layer [20, 20]

Dense layers activation function ReLU
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dataset holding Dimts samples. 2) The percentage absolute error
(e), which considers the relative error, for the ith point of the
Jominy profile is computed as

pei ¼
100
Dimts

�
X

Dimts
j¼1

���ĥi,j � hTi,j
���

hTi,j
(2)

The estimator ability to accurately predict the Jominy profile is
primarily evaluated using DSA. This dataset holds enough obser-
vations to support model training and a reliable evaluation of the
performance on validation and test datasets. To achieve this, DSA
is split into two parts: 80% of the data are exploited for training
and validation, while the 20% left are used for testing. These two
datasets have been used to select the values of some hyperpara-
meter of AE_Jom and DNN_Jom, namely, the number of layers
NAE

l and layers’ neurons in the symmetrical architecture of the
decoder and encoder of AE_Jom, the number of filters NAE

f
adopted in the 1D convolutional layer of AE_Jom, the number
of layers NDNN

l and neurons NDNN
n per layer in the encoder of

DNN_Jom, and the latent space dimension L within AE_Jom
and DNN_Jom.

Each combination of the above-listed hyperparameters has
been used to train and validate the corresponding model to find
the best performing one. The selection of the data combination
that yields a lower average prediction error across the points of
the Jominy curve is chosen to be compared to the performance
obtained by other NN-based approaches. Furthermore, to assess
the capability of the proposed estimator in a TL context, DSA and
DSB are jointly utilized. After training DNN_Jom using DSA as
previously described, the corresponding decoder is extracted and
embedded in a DNN_Jom trained with DSB. This allows for
leveraging knowledge extracted from DSA through the original
AE_Jom application.

The achieved results are compared to those obtained by the
sequential predictor described in ref. [37], by a NN of the
MLP type with one hidden layer (indicated in the following as
BaseMLP) including neurons with standard sigmoidal activation
function, analogous to the one proposed in ref. [30], and by a fully
connected DNN whose architecture has been optimized (in
terms of number of layers and neurons in each layer) like
DNN_Jom.

The comparison with BaseMLP is introduced, as ref. [30] is the
seminal work where NNs were first introduced to estimate the
hardenability profile based on the steel metallurgy, but some
adaptations are needed to cope with the available database,
namely, we designed a NN with 13 inputs and 15 outputs, as
in both adopted datasets the Jominy profiles are formed by 15
hardness measurements, and the number of neurons in the hid-
den layer NMLP

h has been selected by implementing a grid search
which took into account a basic rule for the design standard NNs,
i.e., to have a maximum total number of internal parameters,
which is about one-fourth of the total number of samples that
are used for the training. In the present case, the maximum pos-
sible value of NMLP

h is 10; therefore, the grid search considered
5 ≤ NMLP

h ≤ 10 and the best performance were obtained with
NMLP

h ¼ 9.

To evaluate the benefits in terms of knowledge transferability,
the proposed estimator is compared to models trained exclusively
exploiting DSB. In this context, the combination of hyperpara-
meters that achieves the highest accuracy employs two layers
for both the encoder and decoder sides of the AE_Jom
ðNAE

l ¼ 2Þ, where each layer is formed by 20 neurons, where
NAE

f ¼ 3, NDNN
l ¼ 2with 20 neurons in each layer and the latent

space dimension is L= 4.
This configuration of the predictor achieves an average MAE

value over the profile on DSA of 0.96 HRC, which is 16% lower
than the sequential model proposed in ref. [37], for which an
average MAE value achieved is 1.10 HRC.

In addition, as a further term of comparison, to show the
effectiveness of the encoder stage, a standard fully connected
DNN has been evaluated using DSA. The DNN architecture
has been optimized by testing various combinations of layer
numbers and hidden neurons, like the hyperparameter optimi-
zation process of the proposed estimator. The best configuration
in this case is a three-layer network holding 20 neurons in each
hidden layer, utilizing the ReLU activation function. This config-
uration achieves an average value of the MAE of 1.12 HRC.

Table 6 compares the MAE achieved by the four estimators on
each point of the Jominy curve on the test set extracted by DSA,
while Figure 6 propose a graphical comparison in terms of per-
centage error.

The effectiveness of the suggested TL method, which
involves reusing the decoder component of a previously trained
DNN_Jom, according to the TL procedure outlined in Section 2.5
has also been assessed using DSB. Also in this case, DSB was split
in two parts: 80% of the data were used for training and valida-
tion, while the 20% left are used for testing.

Initially, a direct approach has been adopted where DSB input
samples are fed to a DNN_Jom trained only on DSA, which
provided a MAE exceeding the value of 4 HRC along the whole

Table 6. Average MAE achieved on the test data set extracted by DSA at
each point of the Jominy profile by the three considered estimators.

MAE [HRC]

Distance [mm] Base_MLP Sequential DNN DNN_Jom

1.5 0.71 0.25 0.66 0.42

3 0.86 0.55 0.75 0.52

5 2.20 0.46 0.8 0.76

7 2.13 0.7 0.82 0.83

9 1.96 0.73 0.85 0.84

11 1.96 1 1.11 0.88

13 2.13 1.52 1.23 0.89

15 2.32 1.52 1.33 0.99

20 2.51 1.57 1.85 1.25

25 2.67 1.72 1.4 1.26

30 2.52 1.39 1.4 1.2

35 2.32 1.57 1.38 1.14

40 2.20 1.34 1.06 1.09

45 2.28 1.13 1.06 1.1

50 2.36 1.14 1.1 1.12
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profile. Such poor achievement is likely due to differences in
chemistry and profile shapes between the two datasets.

As a result, the proposed approach is encouraged, and part of
the DNN_Jom that was previously trained on DSA was retrained
according to the TL approach described in Section 2.5. Such
approach was compared to the sequential model[37] and to a fully
connected DNN trained exclusively on DSB. The DNN architec-
ture was optimized in a similar manner to DSA, resulting in a
smaller network consisting of two layers with ten neurons each,
activated by the ReLU function.

The average MAE value along the profile on the test data for
DNN_Jom (with TL training) is 1.09 HRC. The sequential model
exhibited an average MAE of 1.34 HRC (23% higher than the one
provided by DNN_Jom), and the fully connected DNN an average
MAE of 1.40 HRC (29% higher than the one provided by
DNN_Jom). Table 7 compares the performance of the three esti-
mators in terms of MAE achieved on each point of the Jominy
curve on the test set extracted by DSB, while Figure 7 propose a
graphical comparison in terms of percentage error.

To qualitatively depict the performance of the estimator,
Figure 8 exemplarily compares some experimental Jominy
profiles of far different shapes and their estimates provided by
DNN_Jom. The corresponding steel metallurgies and databases
are provided in Table 2. Figure 9 shows the microstructure
observed in correspondence to the fifth point (J5) of the
Jominy curve for the steel specimen used to obtain the profile
reported in Figure 8b: a fully martensitic structure (Nital etching)
is shown.

4. Discussion

Figure 6 and 7 show that the performances of all models decrease
with increasing values of the distance from the quenched end.
This behavior is due to the higher variability of the data, also
shown Figure 2, which depends on the fact that the farther
the specimen area from the hardened end, the coarser and more

inhomogeneous the microstructure, as upper bainite and banded
ferrite–pearlite microstructures are present. Consequently, the
measured hardness value heavily depends on the particular mea-
surement point, and a higher data dispersion is observed.

As expected, BaseMLP shows the worst performances espe-
cially on DSA, while on DSB its performances are comparable
only for the lowest distance value, where the data variability is
limited. This behavior is due to the fact that this model neglects
the correlation among hardness values measured in neighboring
points, which is the strength of the hierarchical estimator, and

Figure 6. Average percent error achieved in baseline mode on DSA by DNN_Jom.

Table 7. Average MAE achieved on the test data set extracted by DSB at
each point of the Jominy profile by the four considered estimators, being
DNN_Jom trained with the TL approach, while Base_MLP was simply
retrained.

Error [HRC]

Distance [mm] Base_MLP Sequential DNN DNN_Jom [TL]

1.5 0.72 0.84 0.97 0.78

3 0.74 0.80 1.18 0.80

5 0.70 0.92 0.78 0.82

7 0.69 0.80 0.99 0.80

9 0.81 1.22 0.95 1.01

11 1.39 1.14 1.54 1.14

13 2.22 1.91 2.07 1.44

15 2.31 1.78 1.85 1.45

20 2.00 2.23 2.56 1.53

25 1.48 1.36 1.75 1.06

30 1.35 1.36 1.24 1.13

35 1.37 1.41 1.52 1.09

40 1.42 1.56 1.32 1.02

45 1.43 1.44 1.19 1.16

50 1.44 1.32 1.1 1.09
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does not benefit from the high number of degrees of freedom
and the superior optimization procedures of DL architectures.
Moreover, it does not show any ability to elaborate a compact
representation of the profile, and this negatively affects its
generalization capability in a TL context.

On the larger dataset (DSA) the hierarchical estimator exhibits
superior performance in the initial part of the jominy curve,
which primarily pertains to a few specific components of the steel
metallurgy. However, in percentage value, the decrease of perfor-
mance conveyed by DNN_Jom over these points is negligible,

Figure 7. Average percentage error achieved on DSB by DNN_Jom trained according to the proposed TL approach.

Figure 8. Exemplar comparisons between experimental Jominy profiles of far different shapes and their estimates provided by DNN_Jom. The
corresponding steel metallurgies are provided in Table 2 (respectively, in a) row 1, b) row 2, c) row 16, and d) row 17).
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being hardness high in this area of the profile. Conversely,
DNN_Jom outperforms the sequential estimator in the central
part of the profile, which holds a significant industrial impor-
tance, being considered by most specifications for steel applica-
tions, and here the percentage error provided by DNN_Jom is
significantly lower. Moreover, DNN_Jom achieves more bal-
anced performances across the entire Jominy curve, showcasing
its ability to effectively learn the impact of steel metallurgy on the
overall profile shape. DNN_Jom also displays good qualitative
performance, as depicted in Figure 7.

When the TL approach is applied to apply the estimator to
the second dataset (DSB), DNN_Jom outperforms the other
estimators, by providing a slightly better accuracy on the initial
part of the Jominy curve, but a far higher accuracy around the
“flex point” on the profile, where the shape uncertainty is
highest. The underperformance of the sequential and DDN
estimators can be attributed to the limited number of data held
by DSB and used for networks training and validation, a limita-
tion that is overcome by the proposed TL approach, which lever-
ages valuable knowledge from the pretrained decoder, which is
also computationally more efficient than a standard DNN, as only
the encoder part needs to be retrained.

More importantly, it is not necessary that all the data included
in the database adopted for the TL training are as numerous and
as “complete” in terms of Jominy profile samples as the dataset
used for the first training stage. In other words, DSB can contain
less data than DSA and Jominy profiles comprising (reasonably)
less than 15 hardness measures, as the latent space L in the pre-
trained network already codifies the main elements of the curve
shape and the second training is mostly focused on mapping the
steel metallurgy in such latent space. This feature makes the pro-
posed TL approach very suitable to deployment in an industrial
environment, as the estimator can straightforwardly be adapted
to the evolution of the production while preserving the informa-
tion acquired through its usage.

The training time of the entire model is affordable and fully
compatible with practical applications. All tests were performed

on the same computing device, i.e., a standard PC holding an
Intel CORE i9 8th generation processor with 8 GB RAM. The
total training time with the available data and the identified opti-
mal configuration is 75-80 s (about 60% for AE_Jom training),
and such figure, compared to other literature approaches, is
not particularly high. Training times for the BaseMLPmodel vary
between 40 and 50 s, taking advantage of the low complexity of
this approach, which corresponds to a limited number of param-
eters to be updated during the learning phase. The time needed
for training the pure DNN is about 70–75 s, thus comparable
with the proposed solution. The sequential model, on the other
hand, requires a longer training time of around 90–120 s, prob-
ably due to the overheads of creating various NNs and handling
the information they exchange. In the TL context proposed in this
work, it is assumed that only the DNN_Jom needs to be trained,
where the decoder part parameters are frozen and, thus, do not
participate in the training, effectively streamlining the training
process. In this work, where the dataset used for assessing
the TL capabilities consists of a limited number of samples, this
process takes about 8–10 s. Finally, the volume of the data that
can be collected in the industrial practice concerning a steel
grade/family prior of a retraining of the system, even in large
steelmaking companies, is in the order of the hundreds or maxi-
mum a few thousands, and therefore the training time is
foreseen to be in the order of minutes even in the worst case.
As the training operation is not frequent, such time range is fully
adequate for practical purposes.

In the perspective of providing a practical tool to be used in
many steelworks worldwide to replace the Jominy end-quench
test and/or as a component of a more complex system supporting
the search or design of the most suitable steel metallurgy to
achieve a desired shape of the Jominy profile, the exploitation
of data coming from costly and/or not widespread analytical sys-
tems, such as, for instance, the one proposed by Akhlaghi et al.[41]

is not advisable, as the generation of a suitable database would be
expensive and time-consuming and the system would be usable
only in companies where the needed equipment is available.
Indeed, although not yet explored, the integration of information
concerning local crystal orientation or metallurgy associated to
the hardness values to be estimated is expected to improve
the accuracy of the model, also considering the outcomes of
some recent literature results.[61] In effect, the metallurgy data
that are used in the proposed approach are process data taken
on a liquid steel sample and not from the Jominy specimen.
On the other hand, this requires additional analytical efforts
and costs, which might balance the savings that are achievable
with the ML-based solution. Therefore, the practical and eco-
nomic viability of this kind of approach must be carefully
assessed and goes beyond the scope of the present work.

5. Conclusion

A novel DL approach to estimate the hardenability profiles of
medium-carbon quench hardenable steels based on steel metal-
lurgy is proposed, which exploits a monodimensional CNN and
an AE and is applicable to different steel grades. The basic idea
behind such estimator is to correlate the chemical composition to
the whole shape of the curve rather than to the single points. The

Figure 9. Microstructure observed at J5 on the steel specimen used to
obtain the Jominy profile reported in Figure 8b: fully martensitic structure
(Nital etching).
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main contribution of the estimator is twofold: 1) the superior per-
formances it exhibits compared to other efficient NN-based
approaches, which is enabled by DL; 2) the capability to elaborate
a compact representation of the curve, which is automatically
learned and stored in a first stage, and is not related to specific
analytical model, such as in traditional parametric approaches,
which might be suitable to a narrower range of steel grade
but is hard to generalize and extend. Such capability is exploited
in a TL approach, which enables adaptation of the estimator to
different steel grades with a limited number of additional data.

Therefore, the estimator is very suitable for practical use in an
industrial context, as its extension to a wide range of steel grades
can be implemented gradually and at limited computational and
experimental cost.

Ongoing and future work focuses on the exploitation of the
estimator in an optimization context, where, given a target
Jominy profile, the steel metallurgy is computed which
ensures its achievement by possibly minimizing the addition
of costly microalloying elements. Moreover, the possibility will be
investigated of a direct infusion of physical knowledge in the
component of the estimator relating the steel metallurgy to
the compact representation of the Jominy curve through hybrid
AI approaches such as, for instance, physics-informed NNs.
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[32] L. A. Dobrzański, W. Sitek, J. Mater. Process. Technol. 1999, 92–93, 8.
[33] M. Knap, J. Falkus, A. Rozman, J. Lamut, Arch. Metall. Mater. 2008,

53, 509.
[34] M. Knap, J. Falkus, A. Rozman, K. Konopka, J. Lamut, Arch. Metall.

Mater. 2014, 59, 133.
[35] H. Pouraliakbar, M.-J. Khalaj, M. Nazerfakhari, G. Khalaj, J. Iron Steel

Res. Int. 2015, 22, 446.
[36] V. Colla, L. M. Reyneri, M. Sgarbi, Integr. Comput. Aided Eng. 2000, 7,

217.
[37] S. Cateni, V. Colla, M. Vannucci, M. Vannocci, in Proc. IASTED Int.

Conf. Artificial Intelligence and Applications, IASTED, Calgary, Canada
2013, p. 169.

[38] V. Colla, M. Vannucci, L. Bacchi, R. Valentini,Metall. Ital. 2020, 112, 47.
[39] W. Sitek, A. Irla, Arch. Metall. Mater. 2016, 61, 797.
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