
Computer Networks 208 (2022) 108880

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

An experimental study on latency-aware and self-adaptive service chaining
orchestration in distributed NFV and SDN infrastructures
M. Gharbaoui a,∗, C. Contoli f, G. Davoli b,c, D. Borsatti b,c, G. Cuffaro c, F. Paganelli c,d,
W. Cerroni b,c, P. Cappanera e, B. Martini c,g

a Scuola Superiore Sant’Anna, Pisa, Italy
b University of Bologna, Italy
c CNIT, Italy
d University of Pisa, Italy
e University of Florence, Italy
f University of Urbino ‘‘Carlo Bo’’, Italy
g Universitas Mercatorum, Rome, Italy

A R T I C L E I N F O

Keywords:
SDN
NFV
Orchestration
Federated testbed
Service chaining

A B S T R A C T

Network Function Virtualization (NFV) and Software Defined Networking (SDN) changed radically the way
5G networks will be deployed and services will be delivered to vertical applications (i.e., through dynamic
chaining of virtualized functions deployed in distributed clouds to best address latency requirements). In this
work, we present a service chaining orchestration system, namely LASH-5G, running on top of an experimental
set-up that reproduces a typical 5G network deployment with virtualized functions in geographically distributed
edge clouds. LASH-5G is built upon a joint integration effort among different orchestration solutions and cloud
deployments and aims at providing latency-aware, adaptive and reliable service chaining orchestration across
clouds and network resource domains interconnected through SDN. In this paper, we provide details on how
this orchestration system has been deployed and it is operated on top of the experimentation infrastructure
provided within the Fed4FIRE+ facility and we present performance results assessing the effectiveness of the
proposed orchestration approach.
1. Introduction

Novel vertical applications emerging in different industry fields,
such as e-health, hyper-connected smart cities, and industrial automa-
tion, will improve several aspects of society and human lives by taking
advantage of the features offered by 5G (and beyond) mobile net-
works, IoT, and pervasive cloud deployments (i.e., edge micro-clouds
in combination with traditional clouds) [1]. This scenario will foster
new business opportunities for telco service providers, which will be
able to address the increasingly stringent service requirements from
vertical applications in terms of reliability, availability and latency
performance [2,3].

Software-Defined Networking (SDN) [4] and Network Function Vir-
tualization (NFV) [5] promise to satisfy such operational requirements
by fostering a more flexible network service deployment thanks to
virtualization technologies and network programmability (i.e., soft-
warization) [6–8]. NFV allows for elastic network service deployments
as virtual partitions out of a convergent cloud-network infrastructure.

∗ Corresponding author.
E-mail address: molka.gharbaoui@santannapisa.it (M. Gharbaoui).

Such network slices are composed of dynamically-established Virtual
Network Functions (VNFs) and virtual link interconnections. The micro-
clouds at the edge can be also exploited to elastically deploy VNFs
that need a tight interaction with the users to support latency-sensitive
applications with, e.g., prompt traffic optimizations or bit rate adap-
tations. In this scenario, SDN can effectively provide programming
abstractions that can be exploited for the dynamic enforcement and
in-line steering of data traffic through (virtual) network paths.

With the softwarization of telecommunication infrastructures and the
increasing network management abstractions, service paths and work-
flows can be established in a more efficient way by flexibly composing
VNFs and dynamically interconnecting them through SDN (i.e., service
chaining) [9–11]. This requires that telco service providers effectively
put in place dynamic resource provisioning and orchestration mech-
anisms on top of a distributed NFV/SDN infrastructure to (i) assure
service pervasiveness and timeliness, (ii) minimize latency, and (iii)
vailable online 12 March 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2022.108880
Received 31 August 2021; Received in revised form 7 February 2022; Accepted 2 M
arch 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:molka.gharbaoui@santannapisa.it
https://doi.org/10.1016/j.comnet.2022.108880
https://doi.org/10.1016/j.comnet.2022.108880
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.108880&domain=pdf


Computer Networks 208 (2022) 108880M. Gharbaoui et al.
maximize service availability [8]. However, the heterogeneity of the in-
frastructures, the high dynamicity of services and the geographical dis-
tribution of cloud sites pose new challenges from a system integration
perspective in terms of (i) resource control/management capabilities,
(ii) adaptive usage of multi-technology resources, and (iii) fulfillment
of end-to-end latency requirements considering the impact of both
processing and network delays in distributed infrastructures [12,13].

In this work, we present the outcome of a joint integration ef-
fort that brought together diverse solutions and technologies to run
a latency-aware and adaptive service chaining mechanism in a dis-
tributed SDN/NFV infrastructure fully regulated by an end-to-end or-
chestration system, i.e., LASH-5G. Such a service chaining orchestration
system was conceived to run over geographically distributed edge
clouds interconnected through SDN (i.e., spanning multi-domain/multi-
technology infrastructures) and establish service chains relying on do-
main orchestration solutions to address latency, adaptability and avail-
ability requirements. More specifically, the proposed orchestration sys-
tem takes advantage of heterogeneous and enhanced resource con-
trol/management capabilities offered by the underlying cloud and net-
work resource domains to dynamically provide service chains while (i)
optimally selecting VNFs over the path that minimizes the offered end-
to-end latency across the clouds and the network resource domains; (ii)
triggering the set-up and update of (pieces of) service chains in each of
the underlying resource domains; (iii) promptly adapting established
service chain paths to address reliability based on the current load of
the network (i.e., self-adaptive service chaining); and (iv) continuously
collecting monitoring data from underlying resource domains so as
to promptly trigger chain adaptation actions and to effectively make
latency-aware VNF selection decisions.

This paper also presents performance results of the proposed ser-
vice chaining orchestration system collected through a large set of
experiments carried out using a testbed reproducing a composite yet
realistic 5G infrastructure as a distributed NFV deployment intercon-
nected through a SDN-based WAN. The experiments were performed
on top of the Fed4FIRE experimentation infrastructure provided within
the Fed4FIRE+ Horizon 2020 Project, offering a federation of open,
accessible and high-available testbed facilities to support a wide variety
of different research and innovation activities, including 5G-related
experimentations and testing over heterogeneous systems [14]. The
experimental tests aim at assessing the actual performance of the
orchestration system in addressing service chain requests, in computing
latency-optimized service chains by correctly processing monitoring
data, in enforcing chaining decision while leveraging the network
and cloud resource control functionalities, and, finally, in dynami-
cally adjusting established service chain paths to react to network
congestions.

The main contribution of this work is the design, development and
deployment of a latency-aware and adaptive service chaining orches-
tration system as a result of an integration effort of different SDN/NFV
solutions and technologies, which makes the proposed system suitable
for end-to-end deployment in real scenarios. Indeed, we provide end-
to-end service chaining orchestration in combination of fine-tuned
network resource orchestration on top of distributed SDN/NFV de-
ployments interconnected through a SDN-based WAN running in an
experimental testbed with OpenStack and different SDN controllers
(i.e., ONOS, Ryu). The most relevant enabling integration aspects that
were addressed to achieve the goal include: (i) the definition of com-
mon high-level interfaces to abstract from solutions dependent on
the specific infrastructures, (ii) the definition of relevant common
performance metrics together with the deployment of the related mon-
itoring systems, and (iii) the integration of the involved experimental
platforms.

This work extends the authors’ previous work by deploying and inte-
grating the single elements of the end-to-end service chaining orches-
tration system that were presented separately and evaluated through
2

simulations or laboratory testbeds [15,16][17]. In the integrated ex-
perimentation we took advantage of the bare-metal experimentation
capabilities provided by the Fed4FIRE framework, and were able to
use a significant amount of physical nodes available in one of the
federated testbeds as we did in [18]. The exclusive use of physical
servers allowed us to experiment the integration of our orchestration
system on a distributed NFV (i.e., cloud) environment featured by
SDN network capabilities. With respect to [19,20] we present more
performance results that we collected through a comprehensive testing
campaign.

The remainder of this paper is organized as follows. Section 2
discusses related work and highlights our contribution with respect
to the state of the art. In Section 3 we present the service chaining
orchestration reference scenario. In Section 4 we describe the architec-
ture of the proposed service chaining system. In Section 5 we detail
the workflows of the LASH-5G orchestration system. In Section 6 we
report on first experiences in the deployment of our system on top of
Fed4FIRE+ federated testbeds and in Section 7 we provide feedbacks
from our experimenters’ point of view. Finally, Section 8 concludes the
paper providing insights on future work.

2. Related work

Several works in the literature show that the adoption of SDN/NFV,
possibly in combination with an orchestration layer, provides increas-
ing flexibility and scalability to dynamic service chaining. Such works
typically provide SDN-based solutions for steering packets across ser-
vice functions. In particular, [21] confirms the capabilities of SDN
in supporting flexible service chaining and insists on the need for
a framework that handles the lifecycle management of service func-
tion chains, as the one we propose in this work. [22] proposes a
service-oriented SDN controller that deploys programmable data de-
livery routes connecting multiple chains of VNFs. The work mainly
focuses on the networking aspects of service chains and neglects the
dynamics that characterize the edge cloud domains. On the contrary,
in this paper we introduce a centralized entity that takes into account
both the cloud and WAN resources for a more efficient deployment of
the VNFs. [23] also mainly focuses on traffic steering through a given
set of VNFs. Moreover, authors solve the VNFs placement and traffic
flows separately while in this work we propose an optimization algo-
rithm that jointly addresses both problems. [24] proposes the NIMBLE
architecture for SDN-based middlebox management. The proposed ap-
proach addresses challenges relevant to load-balancing and middlebox
composition. However, the focus is only on traffic re-routing and flow-
entries limitation. Finally, as discussed in [21] a number of research
challenges are still open, especially taking into account the availability
status of the network (e.g., switch/link capacity usage) that might affect
the actual QoS performance (e.g., throughput) experienced by data
while traversing service chain paths. For this reason, as we do in this
work, recently a number of research works tackled different aspects of
the service chain orchestration as an effective solution to dynamically
address service requirements from applications and users [25].

Related work in the area of service chaining and VNF selection
assumes that the placement of VNFs has already been done and focuses
on the chaining problem [26]. In [27] a heuristic is proposed to select
VNF instances in a multi-DC environment by accounting both for load
balancing across instances and latency requirements. However, only
the network latency is considered, disregarding the processing delay
introduced by functions. In [28] an integer programming model and a
Markov approximation based algorithm are proposed to solve the mid-
dlebox selection and routing problem with the objective of maximizing
the total throughput over all target flows, but the problem accounts for
the selection of one middlebox per flow and does not handle chains of
middleboxes as our work does. The work presented in [29] deals with
a different optimization problem (i.e., the minimization of the total
link occupation bandwidth) and does not handle ordered sequences of



Computer Networks 208 (2022) 108880M. Gharbaoui et al.
VNFs as our system does. A joint network and server load balancing
algorithm is proposed in [30] which first adopts a greedy strategy to
construct service chains and then attempts to improve the obtained
solution through a searching technique. However, the proposed model
and implementation prototype are designed for an intra-DC network,
while our solution targets a multi-DC environment. A VNF selection
strategy is proposed in [31] that aims to maximize an overall system
efficiency metric. This approach is evaluated in an emulated environ-
ment leveraging Mininet and OpenDayLight. A time-efficient solution
of the VNF selection problem is targeted in [32] by proposing a set
of heuristics based on the Lagrangian relaxation of an integer min-
imum cost flow problem. More recently, Pei et al. [33] formulated
a VNF selection and routing path calculation problem and solved it
by using Deep Belief Networks and an optimal algorithm to generate
training data. With respect to this related work, our VNF selection
strategy adopts an abstracted network model which requires minimal
topological and monitoring information of infrastructure resources. In a
multiple domain scenario, network infrastructure operators may decide
to hide internal implementation details, thus exposing an abstracted
view of the infrastructure status and fine-tuning deployment decisions
within their own domain. Our approach thus well accommodates such
scenario, since our VNF selection algorithm leverages an abstracted
topology to select VNFs from multiple DCs, while VIMs and WIMs
implement the service chaining instructions leveraging full disclosure
of their domain.

In [34] authors provide a 5G/Edge-based service chaining orchestra-
tion solution with NFV and SDN and elaborate on a resilient and adap-
tive framework, following an approach inspired by software-defined
networking. Authors address a different problem in allowing users
to construct network service chains in the mobile and edge com-
puting environments and in considering locality criteria and policy
rules while embedding service chains. A similar approach is used
in [35] where authors present a network service chaining model in
5G wireless architecture that integrates cloud and fog computing with
advanced technologies such as SDN and NFV. With respect to our
work, they specifically focus on data management and security aspects,
and present performance results obtained through simulations. In [36]
Authors theoretically formulate dynamic network service chaining in
SDN/NFV infrastructures. They formulate an optimal algorithm that
iteratively decides the sending rate of service and multi-path routing for
dynamic service chaining in an integrated computational and network
resource environment with also considerations on cost-utility trade-off.
With respect to our work, they address different aspects of dynamic
service chaining (e.g., incoming and departure data rate, maximize
service utility). However, as the previous one they present performance
results of the proposed algorithm obtained through simulations. In
addition, all the above works do not consider latency-based criteria, nor
at the network neither at the computational level as this works does.

Additional works on service chaining orchestration systems and
solutions consider latency performance of service chains with also
reliability features. In [37], authors formulate an ILP model for SFC
placement and resource allocation while trying to address different end-
to-end latency requirements. An SFC controller is proposed in [38] to
optimize the placement of service chains in Fog environments while
reducing the end-to-end latency. Finally, latency optimization tech-
niques for virtualized resource allocations in distributed network edge
environments are presented in [39].

With respect to our work, none of all the above proposed dynamic
service chaining solutions were experimentally assessed as we do in
this work, with all the implications and efforts required to develop and
deploy a realistic integrated system. Indeed, we could deploy a set-up
with OpenStack and different SDN controllers and perform fine-tune
settings and monitoring of both virtual functions and network resources
and, ultimately, decide service chaining based on a dynamic view of
underlying virtual infrastructure, in terms of latency and switch load,
3

in such a practical set-up.
In terms of experimentation in SDN/NFV distributed environments,
noteworthy initiatives have been carried out within FIRE (Future Inter-
net Research and Experimentations) in Europe [40] and GENI (Global
Environment for Network Innovations) in the U.S. [41]. In particular,
such initiatives offer SDN and Cloud facilities to enable experiments
on emerging network, service and application scenarios, such as Next
Generation Internet (NGI) (e.g., Fed4FIRE [42,43]) and 5G (e.g., Soft-
FIRE [44], 5GinFIRE [45]). In the context of SoftFIRE, a framework
for elastic orchestration of service chains is proposed in [25]. Although
authors present their solution integrated with an ETSI-compliant NFV
management and orchestration platform (i.e., OpenBaton [46]), they
do not address neither the inter-DC scenario including a Wide Area
Network (WAN), nor latency-awareness and reliability features for
established service chains. Other relevant experimental works in this
topic have been carried out within EU-funded research and innova-
tion projects. However, the deployment used for experiments does
not include the WAN (i.e., inter-DC) network scenario [47] or does
not reproduce realistic cloud and network deployments [48,49] since
making use of emulation platforms at data plane level, e.g., Mininet.
On the other hand, some experimental initiatives have tackled the
deployment and the management of vertical services that may span
multiple provider domains [50,51]. However, in these works, neither
latency-awareness features nor end-to-end monitoring to guarantee
reliability are addressed for established service chains. Moreover, fine-
tuned network programmability is not exploited in the cloud as this
work does, leveraging a full SDN control at end-to-end level.

In conclusion, this work advances the state of the art since it per-
forms experiments in end-to-end service chaining orchestration in com-
bination of fine-tuned network resource orchestration using a testbed
reproducing a composite yet realistic 5G infrastructure as distributed
SDN/NFV deployments interconnected through a SDN-based WAN.
In addition, it evaluates both cloud processing delays and network
delays while addressing end-to-end latency requirements. Finally, the
proposed mechanism goes beyond the coordinated establishment of
cloud and network services, including also adaptation actions with
respect to the current availability status of network resources in order
to mitigate issues (e.g., congestion) derived from their concurrent
usage by a multitude of services. On top of that, such contributions
have been obtained in an experimental testbed with OpenStack and
different SDN controllers (i.e., ONOS, Ryu) to demonstrate and discuss
dynamic service chaining in a practical set-up through (i) fine-tuned
network settings in the cloud, (ii) end-to-end full SDN control and (iii)
monitoring of both virtual functions and network resources to optimally
decide VNF selections and to promptly react based on a dynamic view
of the underlying virtual infrastructure.

3. Reference scenario

In this section, we present the reference scenario that motivates the
use of a service chaining orchestration system in NFV/SDN infrastruc-
tures.

NFV/SDN deployments of telco service providers typically feature
multi-site edge clouds (i.e., DCs) interconnected via a WAN. On top of
this virtualized and programmable telco infrastructure, network slices
are deployed that are composed of VNFs (e.g., load balancer, packet
inspection, traffic optimization, content servers, caching) running at
edge clouds and interconnected through virtual links. Examples may
include (i) the provisioning of VNFs for content delivery during a
live sport event (e.g., mixer, transcoder, compressor) with end-user
traffic steered across them while minimizing the cost and satisfy-
ing QoS requisites [52], (ii) the deployment of service chains across
VNFs in Fog environments for video surveillance or smart waste man-
agement services while optimizing resource allocations and latency
performance [38]. It worths pointing out that real network slice de-
ployments for verticals typically require that multiple instances of each

kind of required VNFs are deployed in network slices. As shown in



Computer Networks 208 (2022) 108880M. Gharbaoui et al.

F
r
o
a

i
a
s
p
t
b
t
t
a
a
i
a
a
t

a
d

o
a
a
c
b
i
p
d
b
e
b

o
c
p
r
v

Fig. 1. Service chaining orchestration scenario.
ig. 1, these VNF instances are deployed in different edge clouds for
eliability or for pervasiveness reasons (i.e., increase service coverage
ver a wider geographical area, run back-up services for high-critical
pplications, serve users with lower latency performance) [53].

Telco service providers can achieve the most out of network slicing
f they can effectively and dynamically establish services for vertical
pplications as dynamic service chains on top of VNFs while addressing
pecified requirements (e.g., QoS, latency constraints, security). In
articular, it is important to assure that VNFs are traversed by user
raffic in a specified order and that such an order is also adapted
ased on real-time status information according to the current con-
ext (e.g., load by users traffic, latency performance) [10] in order
o guarantee appropriate user experience. The service chain requests
re expected from verticals (mediated by the OSS/BSS) in terms of
n ordered sequence of VNF types to traverse and QoS demands for
nterconnections (abstract service chain). Those chain specifications
re the result of verticals’ internal operations carried out within their
pplication service delivery activities (e.g., as part of optimizations
hrough Service Oriented Architecture principles).

In this scenario, as shown in Fig. 1, two levels of orchestration
re needed to allow latency-aware and adaptive service chaining in
istributed NFV/SDN infrastructures.

Firstly, beyond appropriate decisions on where to place VNFs (out
f scope in this paper), there is the need to orchestrate VNF instances
cross distributed edge clouds to establish service chains dynamically
nd concurrently while addressing specified requirements (i.e., service
haining orchestration). Indeed, the most proper VNF instances need to
e selected (out of multiple running instances) for each type of VNF and
n the order specified in the request. In addition, the proper network
aths supporting virtual links need to be set-up while assuring QoS
emands (e.g., required bandwidth). At this level, different targets can
e pursued while doing the VNF selection (e.g., minimize the end-to-
nd latency) or while operating the chains (e.g., adapt running chains
ased on the context by adding or removing VNFs).

Secondly, there is the need to orchestrate the virtual resources
ffered by each resource domain, (i.e., processing resources in edge
louds and network resources in the interconnection WAN) to sup-
ort the set-up and the operation of service chains according to the
equirements. For this reason also resource-level orchestrators are en-
isioned, i.e., cloud resource orchestrator, responsible for managing (part
4

of) chains running within edge cloud DCs, and the WAN resource orches-
trator, responsible for managing traffic flows to reach DCs that host VNF
instances. SDN can be used in both domains as a network technology
to offer network abstractions and programmability to dynamically steer
data traffic and enforce traffic rules in the network nodes.

A coordination among the resource-level and service chaining or-
chestrators is needed to (i) instruct resource-level orchestrators on how
to realize (pieces of) chains in the infrastructure, and (ii) inform service
chaining orchestrator about performance offered by the infrastructure
(e.g., delays at processing and network levels) and about any relevant
changes in chain configurations (e.g., network paths supporting virtual
links).

In the following sections, we describe the two-levels orchestration
system (i.e., LASH-5G system) we developed and put in operation in
a distributed NFV/SDN infrastructure set-up to achieve latency-aware
and adaptive service chaining.

4. Service chaining orchestration system design

The general architecture of the proposed LASH-5G orchestration
system is shown in Fig. 2. It has been designed starting from the princi-
ples of the ETSI NFV MANagement and Orchestration (MANO) frame-
work [54], enriching them with service chaining orchestration and
original resource orchestration features in distributed (i.e., multi-site)
NFV/SDN environments.

The LASH-5G system is devised to run on top of an NFV Infrastruc-
ture (NFVI) composed of edge cloud SDN Domains, i.e., Data Center
(DC) domains where VNFs are deployed by means of a cloud-computing
platform (e.g., OpenStack) and where SDN is used as network control
technology. An SDN WAN infrastructure domain is assumed to provide
inter-DC connectivity. Each SDN domain adopts its own controller,
which is assumed to provide a fully-featured northbound interface
(e.g., via REST API) that allows to dynamically program traffic flow
steering rules across network nodes.

The Orchestration layer is conceived as an extension of ETSI MANO
framework [54] including NFV Orchestrator (NFVO), VNF Manager
(VNFM), Virtual Infrastructure Manager (VIM) and WAN Infrastructure
Manager (WIM) functionalities as well as additional functional blocks
proposed in this work to enable latency-aware and self-adaptive service
chaining orchestration. As per the standard NFV architecture [54], the



Computer Networks 208 (2022) 108880M. Gharbaoui et al.
Fig. 2. Orchestration system architecture for latency-aware and adaptive service chaining orchestration.
NFVO is in charge of coordinating operations to provide needed virtual
resources for Network Services and VNFs deployments. The VNFM is
responsible for the lifecycle management of the VNFs instances i.e., in-
stantiation, configuration, scaling, upgrade and termination operations.
The VIM and the WIM are the management/control entities in charge
of provisioning and configuration of (i) compute, storage and network
resources required by VNFs in the data centers/cloud domains, and
(ii) network resources in the WAN domain required by virtual links,
respectively.

The proposed additional functional blocks are assumed to supple-
ment NFVO and VNFM functionalities with dynamic service chaining
capabilities and adaptability as part of advanced Network Service
lifecycle management extended to service chains [25].

Firstly, the Chain Optimizer (CO), as service chaining orchestrator,
supports NFVO with service chaining request handling and with op-
timal selection of service VNF components. As discussed in the ETSI
GS NFV-EVE specification document [55], several architectural options
exist in the MANO architecture for dynamic management of service
chaining, including the operation of a service chaining application. In
this context, in LASH-5G, the CO acts as a service chaining application
that, leveraging network connection topology information in terms of
VNF instances and virtual links descriptors received from the MANO
stack, selects the VNF instances and virtual links to setup optimized
forwarding paths for different traffic flows. These chaining rules are
then delivered to the VIMs and WIM to actually establish service chains
(including the virtual links) in turn leveraging SDN controllers in the
respective domains. Thus, with respect to the architectural options
discussed in [55], the CO plays the role of a SDN service chaining appli-
cation which, however, is not tightly bounded to a specific controller.
Instead, it leverages the application-control interfaces exposed by the
VIM and WIM orchestrators. This level of abstraction is required since
the CO is a functional block that enhances the MANO stack with the
capability of dynamically specifying the forwarding path of a network
service for target flows to cope with QoS-aware optimization objectives
and distributing the associated forwarding instructions to WIM/VIMs.

Secondly, the VIM and WIM are actually extended management
functionalities that go beyond ETSI NFV MANO specifications [56,57].
Indeed, they include additional features and orchestration capabili-
ties such as advanced monitoring, intent-based interface and adaptive
configurations of (part of) service chains.

Compared to the WIM as described in the ETSI NFV MANO specifi-
cations, the WIM orchestrator uses the intent-based approach to provide
the automation in configuring the SDN network and in keeping its sta-
tus according to the expressed intent. Indeed, the WIM orchestrator is
enhanced with a monitoring module that periodically checks the status
of the switches in the WAN, and in case of performance degradation
autonomously triggers the automatic redirection of the service chain
paths supporting intents. In [57] the performance monitoring of multi-
5

site connectivity services is stated to be supported by a performance
management interface. However, only monitoring data on network
links are contemplated and neither operations nor functionalities on
how to use those monitoring data are envisioned. In line with ETSI
specifications yet enhancing the ETSI MANO framework, the WIM
orchestrator leverages the monitoring interface at the SDN controller to
collect network statistics (not only related to the network links but also
to network devices, established flows) and use those data to adapt the
installed flows to the current network status thus avoiding degradation.

Compared to the VIM as described in the ETSI NFV MANO specifi-
cations, the VIM orchestrator offers enhanced abstractions and service
chain management capabilities that make it more suitable for interact-
ing with a CO that is unaware of the implementation details in each
DC/cloud domain. In particular, the VIM orchestrator is capable of
deploying a whole service chain (or part of it) in a given DC/cloud
domain by properly selecting the required set of VNFs and applying
the necessary SDN traffic steering rules, all with a single interaction
with the CO.

The operation of the CO and of the extended VIM/WIM (i.e.,
VIM/WIM orchestrators) are detailed in the following subsections.

4.1. Chain Optimizer

The Chain Optimizer (CO) is a service chaining orchestration engine
that receives service chain requests from the NFVO (on behalf of the
OSS/BSS) and selects available VNF instances to setup the service
chains so that QoS requirements are fulfilled and the end-to-end latency
is minimized.

The selection decision is made by executing a VNF selection algo-
rithm. The CO can host multiple selection algorithms. In the current
version, it contains the implementation of a VNF selection optimization
algorithm proposed in a previous work [15] and a greedy algorithm im-
plementation used for comparative evaluation (described in Section 7).
This algorithm receives chain request information and infrastructure
monitoring data as input, and solves the problem of selecting the
VNF instances that minimize an estimated end-to-end latency calcu-
lated considering both processing delays and network delays. This
optimization problem is formulated as a Resource Constrained Shortest
Path problem on an auxiliary layered graph. The algorithm works
using an abstracted view of the underlying infrastructure topology,
which is built by periodically collecting inter-DC latency values, type
and processing latency of VNF instances deployed at each DC, from
NFVI and VNF monitoring API, respectively. The solution provided
by the algorithm, if existing, specifies for each VNF in the chain
request which DC should provide the corresponding VNF instance so
that QoS requirements (maximum latency and minimum bandwidth)
are satisfied and the end-to-end latency is minimized. The algorithm
has been implemented in C++ and uses the IBM ILOG CPLEX library
for linear programming. Once a solution for the VNF selection prob-

lem is found, the CO sends appropriate chain setup instructions to



Computer Networks 208 (2022) 108880M. Gharbaoui et al.

s
W
t
p
i
p
v
G
t
C

the WAN and DC domain resource orchestrators to setup the service
chain. The CO interacts with these domain orchestrators through high-
level, intent-based REST APIs specifically devised to abstract from
infrastructure-dependent solutions, fostering better integration toward
end-to-end deployment. Such APIs allow the CO to send instructions
for managing the lifecycle of a service chain (i.e. creation, updat-
ing and deletion) and enforcing traffic steering operations using an
application-oriented semantic, rather than dealing with technology-
specific, low-level network details. The CO is implemented as a Java
application that offers a REST API for CRUD (Create, Read, Update,
Delete) operations on service chains.

4.2. WAN Infrastructure Manager Orchestrator

The WAN Infrastructure Manager (WIM) Orchestrator is an SDN-
enabled WAN domain orchestration logic running on top of an Open
Network Operating System (ONOS) controller and providing the pro-
grammable provision of service chain paths across the WAN by means
of an intent-based northbound REST interface [58]. More specifically,
it supports the use of a template-based approach where a simple JSON
message can be filled in by the CO to specify the parameters necessary
for the configuration of the service chains. Hence, the set-up of service
chain paths in the WAN to connect VNFs in different DCs can be
triggered by the CO by specifying to the WIM orchestrator the list
of DCs to be traversed. Then, the WIM orchestrator derives the DC
domain gateways to be connected and performs mapping operations by
identifying the network path and, accordingly, enforces the forwarding
rules to the switches along the identified path. In line with [59],
the WIM orchestrator also offers reliable service chains by adapting
(i.e., redirecting) service paths, or a segment thereof, to recover from
network congestion events, with an overall benefit in terms of high-
availability and effective resource utilization. For this purpose, the WIM
orchestrator monitors the switches load status by deriving switch link
throughput from statistics periodically collected and processed by the
SDN controller. Then, those statistics are given as input to a load-
balancing algorithm, which compares the current switches load to a
fixed threshold, and in case, redirects the flows traversing overloaded
switches to other available switches in the network, thus avoiding any
congestion. Finally, the WIM is also responsible for the collection of
network latency information in order to retrieve the inter-DCs delays.
Those delays are then made available to the CO to enhance its resource
orchestration capabilities by computing a minimum-latency service
graph. The details of the WIM design and the supported northbound
interface specification can be found in [16,60].

4.3. Virtual Infrastructure Manager Orchestrator

The Virtual Infrastructure Manager (VIM) Orchestrator is an SDN-
enabled DC/cloud domain orchestration logic providing advanced net-
work management capabilities in cloud computing environments. The
VIM orchestrator exposes an intent-based northbound REST interface
that allows to specify a service chain by means of a high-level de-
scriptive syntax, agnostic to the specific SDN technology adopted [17].
This makes it suitable to manage different DC domains in a multi-
technology environment, e.g., leveraging different SDN controllers. The
VIM orchestrator is also capable of dynamically applying changes to an
existing service chain without having to delete and re-deploy it from
scratch. This allows to dynamically adapt service chains to the current
context of users or services (e.g., current location of users in a mobility
scenario) or to varying needs of the service provider (e.g., different
resource management policy), and, ultimately, to avoid or prevent SLA
violations. Furthermore, the REST API provided by the VIM orchestra-
tor allows the CO to collect information about the currently deployed
VNFs and their estimated processing latency, computed based on the
current workload. The details of the VIM orchestrator design and the
intent-based chain specification can be found in [17,61].
6

5. Orchestration workflows

In Fig. 3, we show the workflows of LASH-5G orchestration sys-
tem while performing the three key operations for latency-aware and
adaptive service chaining orchestration. First, we present the service
chain deployment related to the operations for the service chain set-up
involving the CO and the WIM/VIM orchestrators. Second, we present
the workflows for adapting established service chains based on the
current context. More specifically, we show the service chain update
with the adding/removing of VNFs to previously established chains
to address changing needs of the operators or different user demand
profiles. Third, we present the service chain network adaptation with the
dynamic tuning of the network paths in the WAN supporting virtual
links based on the current status (e.g., load) of the network.

Such procedures are ETSI-compliant from the architectural point of
view according to [55,57] while offering an advance to the ETSI MANO
framework in terms of specific workflows for both SDN-based service
chain deployment/update operations and for SDN-based network adap-
tation operation. Those advances are supported by the peculiar features
of CO, VIM and WIM orchestrators described in Sections 4.1, 4.2, 4.3.

5.1. Service chain deployment

This operation starts by generating a set of service chain requests
with different requirements in terms of bandwidth and maximum la-
tency and sending them to the CO through a CO-Client GUI. The CO
handles each request and computes a solution of the VNF selection opti-
mization problem instance by executing the VNF Selection optimization
algorithm. If this step is successful, a response is returned to the CO-
Client GUI with the solution (i.e., set of cloud domains hosting the
selected VNFs to be connected) along with the computed end-to-end
latency and computation time of the optimization algorithm. In order
to setup the computed chain, the CO generates a set of instructions
from the computed solution for the WIM and the VIMs. Fig. 4 shows
an example for a service chain of 5 VNFs. The solution assigns the
first two VNFs to DC-1, the third VNF to DC-3 and the fourth and fifth
VNF to DC-2. The figure shows the corresponding JSON messages that
the CO sends to the VIMs and WIM through the REST APIs offered by
these orchestrators. The WIM receives the ordered sequence of cloud
domains to be connected across the WAN. It computes the network
path(s) and, accordingly, sets-up the forwarding rules in the involved
switches. Then, the CO sends the forwarding instructions (i.e., the
ordered sequence of VNFs to connect) to each involved VIM. The
VIMs are responsible for discovering in which compute nodes the VNFs
instances with minimum processing latency are located in order to
setup the part of chain they are responsible for and properly enforce
traffic steering by consistently configuring the flow rules. According to
the JSON format of the forwarding instructions provided by the CO,
each VIM selects the VNF instances of the specified types (e.g., VNF-
1 and VNF-2 in DC-1) with minimum processing latency and installs
traffic steering rules for a specific flow (e.g., based on the specified src
and dst fields) in the specified order (e.g., first VNF-1, then VNF-2 in
DC-1).

The CO periodically retrieves latency measurements in terms of
inter-DC network delays and VNF instances processing delays to update
its topology view and to recompute the estimated end-to-end latency
of deployed chains. The polling period is configurable through a yaml
configuration file and has been set to 5s in the experiment setup de-
cribed in Section 6. The CO polls directly the REST APIs exposed by the
IM to retrieve the latest inter-DC latency measurements. Analogously,

he CO retrieves intra-DC latency measurements by polling the URI
rovided by each DC. As detailed in the experiment setup description
n Section 6, we used the implementation of a time series database
rovided by Gnocchi. In the current version of the CO possible latency
iolations of deployed chains are detected and notified in the CO-Client
UI. While the end user may trigger update or delete actions through

he GUI, the implementation of automated adaptation policies in the
O will be investigated in future research.



Computer Networks 208 (2022) 108880

7

M. Gharbaoui et al.

Fig. 3. Orchestration Workflows for service chain deployment, service chain update and network adaptation.

Fig. 4. Example of interworking between the Chain Optimizer and the VIMs/WIM Orchestrators.



Computer Networks 208 (2022) 108880M. Gharbaoui et al.
Fig. 5. Experiment Deployment on the Virtual Wall testbed from the Fed4FIRE experimentation platform.
5.2. Service chain update

This operation regards the updating of an established service chain
upon a request to face with changes in operator needs or user demands.
In this workflow, the case of a request for adding a new VNF to a
previously established chain is considered, while keeping the rest of
the chain unchanged.

In order to trigger such a chain update, the CO-client sends an
update request by specifying the id of the chain, the new VNF type
and its ordered position in the chain. The CO handles the request
by invoking the optimization algorithm to select the VNF instance
to be added to the chain, taking into account how the pre-existing
chain has been deployed. The CO then processes the algorithm output
to provide appropriate instructions to WIM and VIMs for updating
the chain accordingly. Specifically, the WIM is updated whenever the
updated chain needs to traverse an edge cloud data center that was
not involved in the original chain deployment, while the VIMs process
update requests by comparing the new chain against the old one: parts
of the chain that remain unchanged are kept as they are, parts of the
chain that are no longer needed are removed, while new parts of the
chain are added.

5.3. Service chain network adaptation

This operation regards the adaptation capability of the orchestration
system with respect to the network status in the SDN WAN. The
service chain network adaptation is performed using an OpenFlow-
based load balancing algorithm. As input, this algorithm periodically
receives monitoring traffic statistics of the OpenFlow switches in the
WAN collected by the SDN controller. The WIM then comes into play
by adapting the network paths connecting edge cloud domains and
underpinning the VNF chain path segments with respect to the load
status information of switches/links.

With respect to static load balancing where flows are allocated with
calculated routes before data transmission, dynamic load balancing of-
fers a more flexible way to handle network devices load using updated
traffic statistics. In this work, as shown in Fig. 5, we consider a WAN
topology composed of redundant links providing alternative paths for
data transmission. The WIM is then responsible for steering the traffic
from one data center to the other over the OpenFlow switches by
applying the load balancing algorithm. In particular, the status of the
network is continuously monitored through the collection of real-time
statistics to derive switches load status. A threshold is also fixed as an
8

upper bound for the switches load. If a switch (or more switches) load
exceeds this value, a redirection mechanism is automatically triggered
according to the following steps. First, the service chains paths travers-
ing the overloaded switch are identified. Then with the help of the
SDN controller, the WIM exploits the Dijkstra shortest path algorithm
to calculate new routes for every identified service chain involving
only the subset of switches still available (i.e., not overloaded) in the
WAN. After that, new flow entries are set-up in the flow tables of the
available switches thus allowing to steer the traffic again across the
WAN, while all the flow rules belonging to the old paths are deleted
from the overloaded switches. In this way, our algorithm re-balances
the load and helps in eliminating the congestion in the network.

During the experiment we show an example in which, after the
deployment of a service chain request, a subset of the switches in
the WAN SDN domain becomes overloaded, which triggers the dy-
namic adaptation capability, thus redirecting the traffic through other
available switches.

In Fig. 4 we illustrate an example of interworking between the
CO and the VIMs/WIM. More specifically, a service chain request is
shown requiring the setup of a chain between ‘‘Node-B’’ and ‘‘Node-E’’
composed of 5 VNFs. The CO handles this request by first selecting the
instances of the VNFs available in a distributed multi-DC environment
(e.g. VNF-1a instance in DC-1 and VNF-6d instance in DC-3) and then
sends appropriate forwarding instructions (see bottom of Fig. 4) to
concerned VIMs and WIM so that the flow is actually steered through
these instances.

6. Integration of orchestration subsystems and experiment set-up

Fig. 5 shows the SDN/NFV deployment we setup on top of the
Fed4FIRE+ platform to reproduce an integrated SDN- and Openstack-
based NFVI and to perform experiments with the proposed service
chaining orchestration system. The experimental setup was deployed
on the Virtual Wall testbed [62] through the establishment of five
experiment containers, i.e., slices of resources from the testbed facil-
ity involving as many as 28 virtual machines. More specifically, we
dedicated a slice to put in operation the CO, a slice to reproduce
the WAN domain, and three slices to reproduce three SDN-based DC
domains (named DC-1, DC-2 and DC-3). The slices are briefly described
hereafter.

The Chain Optimizer experimental slice includes a physical node
running Ubuntu Server 16.04 LTS. The Chain Optimizer exposes a REST
API for receiving service chaining requests and handles the decision



Computer Networks 208 (2022) 108880M. Gharbaoui et al.
provided by the algorithm by processing and delivering appropriate
service chaining intents to the WIM and VIM orchestrators through
JSON messages over HTTP. The CO also gathers information about
network and processing latency via REST API from the WIM and VIM
orchestrators, respectively. In particular, processing latency measure-
ments are posted by VNF instances onto a Time Series Database service
(i.e., Gnocchi) provided by OpenStack on each DC slice and exposed
through Gnocchi REST APIs. Similarly, network latency is gathered
through the REST API of the WIM, which leverages on OpenFlow
statistics provided by the SDN controller.

The SDN WAN experimental slice consists of three main com-
ponents: the SDN network, the WAN SDN controller and the WIM
orchestrator. All these components have been deployed within a unique
experiment slice where one physical node has been allocated for the
SDN controller and the WIM orchestrator, and 5 other physical nodes
were allocated for the SDN topology. All the nodes run a Ubuntu 16.04
distribution. Specifically, we have installed the Open vSwitch (OvS)
software on the physical nodes composing the topology in order to
emulate OpenFlow switches. The OvS instances are controlled by an
instance of the ONOS SDN controller running on the 6th physical node
of the slice. The ONOS version used is Loon (1.11.0).

The three SDN DC experimental slices host cloud instances based
on small OpenStack clusters (Pike version) running on a Linux Ubuntu
16.04 operating system [63]. Each DC slice includes two or three
OpenStack compute nodes, where virtual machine instances are de-
ployed over a QEMU-KVM hypervisor. One of the compute nodes also
acts as controller and network node, respectively providing service
REST API endpoints and external connectivity. All OpenStack nodes are
connected to another physical node running an instance of OvS, repre-
senting the data plane SDN infrastructure of the DC, which is controlled
by an instance of ONOS (Ibis version, 1.8.3) running locally. The same
physical node hosts also the VIM orchestrator. A separate network is
used for the OpenStack management plane. Finally, another physical
node is used as the egress router of the DC slice and is connected to the
SDN WAN slice. The OpenStack cluster running in each slice exposes
the essential cloud services and related APIs, including compute and
placement (Nova), identity (Keystone), image (Glance), and network
(Neutron), as well as the time series database service (Gnocchi). On
top of those cloud services, the service chains requested by the Chain
Optimizer are deployed by means of the OpenStack SFC extension,
an additional component providing API and mechanisms to support
service function paths creation and deployment in Neutron [64]. Traffic
steering across the service chain elements is implemented by means
of specific OpenFlow rules installed in the virtual switches through a
Ryu SDN controller internally deployed by Neutron. The problem of
determining the current position of a given packet within a chain can
be solved by taking advantage of different encapsulation techniques,
including Multi-Protocol Label Switching (MPLS) and Network Ser-
vice Header (NSH). Due to compatibility issues with the Linux kernel
version adopted, only the former encapsulation is used in our setup.

We selected ONOS as the SDN controller of the WAN since it is
characterized by a high modularity feature and a distributed architec-
ture. Moreover, it has better performance in terms of jitter and packet
loss with respect to OpenDayLight and Floodlight controllers [65,66].
OpenStack was chosen since it represents the most popular and mature
open-source software platform for IaaS deployments, and offers the SFC
extension mentioned in Section 7.2. It is also well integrated with other
existing NFV platforms such as Open Source MANO.

The established DC slices and the WAN slice interact at the data
plane level by exchanging packet data traffic, and at the orchestration
plane level by exchanging control messages between the CO, WIM and
VIM orchestrators. Each DC slice is connected to the WAN slice at the
data plane level by means of VXLAN tunnels established on top of the
Virtual Wall management network.

The VXLAN virtual tunnel endpoint (VTEP) located at the DC slice
9

egress router appears as an IP-routable interface of the router itself,
Table 1
Placement of the VNF instances on the three edge Cloud DCs.

DC-1 DC-2 DC-3

VNF types VNF-1, VNF-2, VNF-5, VNF-6, VNF-5, VNF-6,
VNF-3, VNF-4, VNF-7, VNF-8, VNF-7
VNF-5, VNF-6, VNF-9, VNF-10
VNF-7

VNF instances VNF-1a, VNF-1b, VNF-5d, VNF-6e, VNF-5c, VNF-6c,
VNF-2a, VNF-2b, VNF-7d, VNF-7e, VNF-6d, VNF-7b,
VNF-3a, VNF-3b, VNF-8a, VNF-8b, VNF-7c
VNF-4a, VNF-4b, VNF-9a, VNF-9b,
VNF-5a, VNF-5b, VNF-10a, VNF-10b
VNF-6a, VNF-6b,
VNF-7a

whereas the corresponding VTEP located at the WAN slice node is
bridged to the OvS instance running in the same node. This particular
setup allows the WAN slice to act as a layer-2 SDN infrastructure
(orchestrated by the WIM) interconnecting the three DC slices. The
Chain Optimizer slice exchanges messages with the other slices at the
orchestration plane level via the Virtual Wall management network.
Interactions at the network control plane level do not take place
between different slices. This is in line with the envisioned architecture,
where each domain is supposed to adopt its own SDN control plane
solution independently of the choice made by other domains.

For the purpose of the experiments described in this paper, whose
main focus is the dynamic establishment and adaptation of service
chains, the full orchestration of computing and network resources and
the lifecycle management of VNFs are not strictly needed. Indeed,
VNF placement and deployment operations (possibly in appropriate DC
locations based on specified constraints) are out of the scope of this
work, which focuses on orchestrating VNFs instances so as to properly
select VNFs and virtual links to establish and adapt service chains
dynamically and concurrently. For this reason, the deployment set-up
does not run an NFVO platform (e.g., Open Source MANO [67], Open-
Baton [68]). In our current system implementation, and without lack
of generality, the CO interacts directly with the VIMs/WIM northbound
interfaces. In addition, a set of VNFs are instantiated at the experiment
deployment time to be already running at the time the service chaining
is considered. In this context, the specific function played by the VNF
is irrelevant, e.g., either it runs a Firewall or NAT appliance. They are
considered only for their capacity to generate and process traffic data.
Thus, they have been basically instantiated as virtual machines running
software modules specifically developed to carry out these experiments,
or tools to generate traffic in the network (e.g., iperf [69]). The VNFs
have been deployed in the DCs according to the predefined placement
plan shown in Table 1. However, future evolutions of our orchestra-
tion system will require the integration of the proposed orchestration
functionalities with relevant MANO components, i.e., NFVO and VNFM,
to perform service chaining within the context of a Network Service
deployment and lifecycle management.

Finally, the following additional software modules are used to sup-
port the experimental activity: (i) CO-Client GUI which is a web-based
GUI that allows to generate service chain creation and deletion requests
and deliver them to the CO. A service chain request contains an ordered
sequence of types of VNFs that should process the traffic flow, the
bandwidth demand, and some parameters identifying the traffic flow
(e.g., source and destination nodes); (ii) Workload-Processing Latency
Publisher : a custom Java application that emulates a processing latency
profile proportional to the I/O workload. According to a configurable
processing capacity value, this application computes a processing la-
tency value as a function of the processing capacity and the traffic input
rate measured at the network interface. It also executes a script running
in each VNF instance to emulate the effect of this calculated processing
latency by applying this value as a delay to the output interface, using
the Linux Kernel Traffic Control command [70]. The processing latency



Computer Networks 208 (2022) 108880M. Gharbaoui et al.

d
a
l
i
i
r
g
A
A
t
r

7

a
o
e
i
i
W
t
T
l
c
o
l
o
2
t
r
r

e

Table 2
Example of generated chains sequence.

Sequence Chain Requirements

1 VNF1, VNF2, VNF8 1 Mbps 500 ms
2 VNF3, VNF6, VNF9, VNF10 1 Mbps 500 ms
3 VNF4, VNF7, VNF10 1 Mbps 500 ms
4 VNF4, VNF5, VNF9, VNF10 1 Mbps
5 VNF1, VNF2, VNF7, VNF8 1 Mbps

Table 3
Time needed for service chain deployment.

Chain length Overall response time [s]

2 64.34
3 69.34
4 74.96
5 82.75

value is periodically posted as an ad-hoc defined metric maintained by
the Gnocchi database in the OpenStack deployment for the benefit of
CO computation.

7. Experimental results

In this section, we provide a set of experimental results to evaluate
the performance of the orchestration system to process service chain
requests, to compute the latency-optimized VNF chains by correctly
elaborating monitoring data on processing and network latency, and
to set-up VNF chains across network and cloud domains by properly
enforcing the interaction of the CO with the underlying VIM and WIM
orchestrators.

To this purpose, we used the CO-Client GUI to deliver create and
elete service chain requests to the CO with a different set of lengths
nd requirements. Accordingly, the CO handles the request, computes a
atency-optimized solution and sends out the corresponding forwarding
nstructions to the affected VIM and WIM orchestrators. More specif-
cally, a set of different service chain requests with their respective
equirements (in terms of bandwidth and maximum latency) have been
enerated and sent one by one to the CO through the CO-Client GUI.
n example of the generated chains sequences is described in Table 2.
s soon as the switches are configured and the chain is established in

he edge cloud domains, the traffic (i.e., an iperf flow [69] with a bit
ate equal to 1 Mb/s) starts flowing across the network.

.1. Performance of latency-optimized service chain path computation

We considered the overall response time which is the time measured
t the CO side elapsing from the reception of a request to the delivery
f a response to the client. The overall response time includes the
xecution of the VNF selection optimization algorithm by the CO and,
f a solution is found, the time needed for sending the forwarding
nstructions to VIM and WIM orchestrators and receiving their reply.

e also specifically measured the computation time needed by the CO
o run the VNF Selection algorithm and solve the optimization problem.
able 3 reports the measured values as a function of the service chain

ength. As expected, the overall time required for handling a service
hain request increases with the chain length since the WIM and VIM
rchestrators require more time for the chain setup. Given the relatively
imited scale of the experimental setup, the computation time of the
ptimization algorithm remains in the order of a few milliseconds (from
to 3.2 ms) and it is therefore not shown as a separate metric in the

able. Most of the overall response time is due to the VIMs and WIM
esponse times, which are analyzed in detail in Sections 7.2 and 7.3,
espectively.

Hereafter, we present a set of tests conducted to evaluate the end-to-
nd latency estimation error and to perform a comparative evaluation
10
with a greedy VNF selection strategy. The tests have been conducted
by generating a set of 10 chain requests, with length 3, VNF types ran-
domly picked up from the list of available ones and randomly selected
source and destination nodes. Requests are sequentially submitted to
the CO and corresponding UDP traffic flows from source to destination
nodes are generated using the iperf tool. These tests have been con-
ducted in three different scenarios: (i) no background traffic — in this
scenario the inter-DC traffic is given by the traffic flows of deployed
chains; (ii) constant background traffic — the latency between DCs is
increased by a constant value (5 ms), using the traffic control command
(tc) in the Linux kernel, after each chain request in order to emulate a
continuous increment of background traffic in addition to traffic flows
traversing deployed chains and (iii) step-increasing background traffic
— the inter-DC latency is increased by 50 ms after the third chain
request and by 15 ms after the sixth chain request in order to emulate
a step-wise increment of inter-DC background traffic.

Since the CO makes its decisions leveraging an estimated end-to-end
latency, it is relevant evaluating the error introduced. The end-to-end
latency is computed by the CO as the sum of the processing latency
collected from VNFs and inter-DC latency measurements. Therefore, the
error in latency estimation may be affected by inter-DC network delay
variations that can be experienced in the infrastructure and by intra-DC
network delays. Fig. 6 shows the relative error between measured and
estimated end to end latency. In all scenarios the average relative error
is below 3.9%. We consider such error acceptable.

We also compared the performance of the CO with respect to a
greedy strategy, which selects VNF instances with lowest processing
time and does not account for inter-DC network latency. Fig. 7 shows
the relative difference in measured end-to-end latency of deployed
chains obtained by the VNF Selection algorithm of the CO vs. the greedy
strategy. The CO outperforms the Greedy strategy on average and the
relative difference increases with the background traffic, since this also
affects the inter-DC latency. As shown in the figure, in some cases
Greedy outperforms the CO. This is expected, since the experiments
start with the same configuration but at each step the two strategies
may take different decisions and therefore the infrastructure status may
evolve differently.

7.2. Performance of service chain path deployment in the cloud

The response time of the VIM for deploying service chains measured
in one of the DC slices as a function of the chain size is shown in Fig. 8.
Such response time is measured from the instant the VIM receives the
forwarding instructions from the CO, to the instant the VIM replies that
the chain has been correctly deployed, thus including the time required
to locate the needed VNF instances (already running on the servers)
and apply all the necessary traffic steering rules in the OpenStack
network components. The linear growth of the VIM response time with
the number of VNFs included in the service chain clearly shows the
significant impact of the size of the requested chain. However, even
for a service chain composed of as many as 10 elements in a single DC,
the overall deployment stays below ten seconds. Considering that chain
deployment can run in parallel in different DCs and that we hardly
expect a service chain to include more than a few units of VNFs, we
can conclude that the VIM operations are sufficiently scalable.

In order to better understand the behavior of the VIM response time
and its relation with the service chain size, we decided to analyze in
details the inner mechanisms of the OpenStack SFC extension, which
deploys the actual service chain path in four steps [71]:

1. A Flow Classifier is instantiated, which classifies the incoming
traffic based on header matching rules and selects the packets

that must be forwarded through a given service chain.



Computer Networks 208 (2022) 108880M. Gharbaoui et al.
Fig. 6. Estimation error in end-to-end latency computed by the Chain Optimizer.
Fig. 7. Distribution of relative difference in measured end-to-end latency of deployed chains between the VNF Selection algorithm at the Chain Optimizer and a greedy strategy.
Fig. 8. Response time at the VIM for service chain deployment as a function of the chain size, for the case of a single instance per VNF type.
2. A number of Port Pairs are then created, each specifying the
ingress and egress ports of a potential element of the chain. Note
that each Port Pair refers to an actual instance of a VNF, and it
can be assigned a weight to be used for load balancing among
multiple instances of the same VNF type. A Port Pair can be ei-
ther uni- or bi-directional, depending on how the corresponding
VNFs should be traversed by the packet flow.
11
3. As many Port Pair Groups are created as the number of elements
in the chain. A Port Pair Group includes the Port Pairs corre-
sponding to multiple instances of the same VNF type. Weighted
load balancing is automatically applied to a given chain element
when a given Port Pair Group includes more than one Port Pairs,
based on the weight assigned to the latter.

4. Eventually, a Port Chain is created as a binding between one or
more Flow Classifiers and an ordered list of Port Pair Groups,



Computer Networks 208 (2022) 108880M. Gharbaoui et al.

c
S
(
t
C

t
r
n
F
c
a
P
d
r
w
i
T
l

a
t
s
F
t
s
s
n

7
W

p
s
a
c
r

Table 4
Breakdown of the VIM response time for service chain deployment in the cloud, for
increasing chain size and a single instance per VNF type.

Service Flow Port Port Pair Port VIM Resp. Time
chain size classifier [s] pair [s] group [s] chain [s] (+/− StDev) [s]

1 0.1602 0.5225 0.0686 0.8524 1.6702 (+/− 0.1233)
2 0.1567 0.5958 0.5768 1.3422 2.7419 (+/− 0.2015)
3 0.1568 0.7155 1.1189 1.7873 3.8478 (+/− 0.3837)
4 0.1587 0.7397 1.2577 2.3155 4.5583 (+/− 0.5231)
5 0.1631 0.7973 1.2990 2.7990 5.1419 (+/− 0.4076)
6 0.1547 1.1460 1.2622 3.2401 5.8900 (+/− 0.1669)
7 0.1575 1.4964 1.4205 3.7319 6.9096 (+/− 0.1192)
8 0.1602 1.7106 1.4427 4.2506 7.6638 (+/− 0.1940)
9 0.1530 2.0064 1.5720 4.7808 8.6235 (+/− 0.2164)
10 0.1563 2.0971 1.6619 5.2477 9.2691 (+/− 0.7349)

including all the required configurations in the data plane com-
ponents (e.g., relevant flow matching and steering rules installed
in virtual switches). The Port Chain then represents the deploy-
ment of the service chain path to be traversed by some given
traffic flows, implementing load balancing if multiple instances
of the VNFs are available. A Port Chain can also be asymmetrical
or symmetrical, depending on whether the packets must traverse
the chain only in the forward path or also in their way back to
the source.

Referring to the first example of chain reported in Table 2 and
onsidering the VNF placement in DC-1 reported in Table 1, the Open-
tack SFC extension running in DC-1 created two Port Pair Groups
corresponding to VNF-1 and VNF-2), four Port Pairs (corresponding
o the four instances VNF-1a, VNF-1b, VNF-2a and VNF-2b), one Flow
lassifier and One Port Chain.

We measured the contributions from the four steps mentioned above
o the overall VIM response time, as reported in Table 4 for a chain size
anging from 1 to 10 VNFs and a single instance per VNF type. The
umber of chain elements does not affect the time needed to create the
low Classifier, as in this case we required one flow only to traverse the
hain. The chain size does have an impact on the other contributions,
lthough this is relatively limited when creating Port Pairs and Port
air Groups, because those steps require only to update an internal
atabase. What brings the most significant contribution to the VIM
esponse time is the time to create the Port Chain: this is the step
hen all the OpenStack networking configurations are finally applied,

ncluding specific OpenFlow rule installation in the virtual switches.
he results quantify how the higher the number of chain elements, the

onger the time needed to perform all configurations.
The number of instances per VNF type is another parameter that

ffects the time needed to create a Port Chain and, as a consequence,
he overall VIM response time, as shown in Fig. 9 for the case of a chain
ize of 4 VNFs, each with a number of instances ranging from 1 to 5.
inally, the impact of defining multiple flows (ranging from 1 to 10) on
he time to create the Flow Classifier is shown in Fig. 10, for a chain
ize of 4 VNFs and 3 instances per VNF type. The contribution of this
tep to the response time does not depend on the chain size nor on the
umber of instances per VNF type, and it is limited to sub-second scale.

.3. Performance of service chain path deployment and redirection across
AN

In this paragraph, we present the performance related to the de-
loyment of the service chain paths across the WAN domain. More
pecifically, we report the overall time required by the WIM to handle

service chain setup request, the time required by the WAN SDN
ontroller to install the flow rules for a service chain path, and the time
equired to perform redirection in case of switches overload.

Fig. 11 plots the measured overall response time for the 5 chain
requests detailed in Table 2. The response time corresponds to the
12
time elapsing between the reception of a request by the WIM and the
acknowledgment sent back to the CO. It includes the identification of
the switches composing the service chains paths, the check of their
status evaluating their current load and the time necessary for the
setup of the specific flow entries in the switches flow tables. The error
bars indicate the standard deviation from the measured mean over
10 identically performed measurements for each chain sequence. The
experiments gave a mean of 44.38 s with a standard deviation equal
to 4.23 s. Results show that the WIM response’s time not only depends
on the length of the deployed service chain but also on the number of
selected DCs where the VNFs are deployed. This is reflected in the plot
where Chain 1 and 3 present a lower time with respect to the other
chains since their length is equal to 3. Among those 2 chains, Chain 1
requires less time since it is deployed in only 2 DCs (DC-1 and DC-2)
while the VNFs composing Chain 3 are deployed in the 3 DCs.

In Fig. 12, we detail the setup time considering the same 5 paths for
the creation of different sequences of service chains. The setup time rep-
resents the time required by the SDN controller for the configuration of
the flow entries in all the switches composing the path interconnecting
the VNFs in the chain. As shown by the results, this time also mainly
depends on the service chains length and has an average of 17 s which
is reasonable in our opinion. It is worth noting that the time required
to setup a path for a chain spread across 2 DCs is around 15 s while it
increases up 20 s for chains spreading across 3 DCs.

In Fig. 13, we show the redirection time, which represents the
time necessary for the load-balancing algorithm to adapt the network
paths connecting the edge cloud domains to the load status information
of switches. In case one or more switches are overloaded, the WIM
redirects the traffic through other available switches by first deleting
the old configuration rules and then setting new ones in the selected
switches. Also in this case, the redirection time depends on the length
of the service chains (i.e., number of flow rules to be deleted and then
reconfigured) and is relatively low (i.e. around an average of 6s) with
respect to the overall setup time.

Finally, to show the efficiency of the load-balancing algorithm, we
evaluated the performance of the SDN network in a larger emulated en-
vironment. More specifically, we used the Abilene topology [72], which
is composed of 11 nodes connected in a mesh network. In each node of
the topology, we deployed an OpenFlow-enabled emulated switch using
the Mininet tool [73]. A subset of those switches (i.e., 5 out of 11) were
connected to emulated cloud platforms that reproduce the behavior
of the data centers. Fig. 14 plots the average load of the switches
connected to the cloud platforms when the load-balancing algorithm
is applied with respect to the baseline. We can clearly notice that
without the redirection mechanism there are high disparities among
the switches in terms of average load where, for example, switches 1
and 2 are almost doubly loaded with respect to switches 3 and 5. On
the contrary, the application of the load-balancing algorithm introduces
an improvement in the results demonstrated by an average load almost
equally distributed among the available switches.

8. Conclusions and discussion

In this work, we presented the result of an integration effort to build
LASH-5G, an end-to-end orchestration system comprising optimized
VNF selection and dynamic traffic steering control capabilities sup-
porting latency-aware, adaptive and reliable service chaining over ge-
ographically distributed SDN-based cloud DCs interconnected through
SDN WAN. We carried out experiments to validate and evaluate the
performance of the orchestration system using the Fed4FIRE platform.
This federated testbed facility allowed us to set-up a composite yet
integrated SDN/NFV deployment thereby reproducing a distributed yet
realistic 5G infrastructure set-up.

First, we were able to deploy the OpenStack cloud platform and
different SDN controllers (i.e., ONOS, Ryu) through a substantial multi-
domain SDN/NFV deployment (i.e., 28 virtual machines spread across

3 cloud domains interconnected through 5-nodes WAN).



Computer Networks 208 (2022) 108880M. Gharbaoui et al.
Fig. 9. Response time at the VIM for service chain deployment as a function of the number of VNF instances per VNF type, for the case of a chain size of 4 VNFs.
Fig. 10. Response time of the Flow Classifier deployment as a function of the number of flows that must traverse the service chain being deployed, for the case of a chain size
of 4 VNFs and 3 instances per VNF type.
Fig. 11. Response time of path service chains.

Definitely, this composite cloud deployment allowed us to develop
and fine-tune the VIM software components, especially in terms of
handling underlying heterogeneous network controllers. In addition,
we could finely tune the VIM operation to handle all possible cases of
needed configurations while enforcing dynamic service chaining rules
when multiple cloud domains are involved (e.g., correctly deploying
and updating service chains while handling different combinations of
VNF instances and service endpoints located in different OpenStack
nodes and clusters).
13
Fig. 12. Setup time of path service chains.

Second, we were able to measure communication latency in an
integrated network environment while testing the VNF selection algo-
rithm included in the CO implementation on top of a dynamic view of
underlying virtual resources and network topology. According to the
performance metrics measured with the experiments we observed that
the computation time of the algorithm is very low with respect to the
time elapsed for forwarding instructions delivery and chain installation.
This is also due to the fact that the algorithm works on an abstract
topology that hinders intra-DC topology details.

Finally, we used virtual testbeds and their federation features to
carry out experiments using scales that are generally larger than exper-
iments carried out in a university laboratory. With virtual testbeds, we



Computer Networks 208 (2022) 108880M. Gharbaoui et al.

w
t
a
a
w
s

D

c
i

R

Fig. 13. Redirection time of path service chains.

Fig. 14. Impact of the load-balancing algorithm on the switches load.

ere able to start performing significant tests of the system prototype
hereby achieving evaluation process effectiveness and cost savings. As
future work, we plan to: (i) evaluate the orchestration system oper-

tion in a more extensive way, (ii) extend the comparative evaluation
ith alternative VF selection strategies and (iii) adopt a container-based

etup and Kubernetes orchestration capabilities.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] B. Bloching, et al., The digital transformation of industry - how important is
it? who are the winners? what must be done?, Roland Berger Strategy Consult.
GmbH (2015).

[2] S. Zhang, et al., 5G: towards energy-efficient, low-latency and high-reliable
communications networks, in: IEEE International Conference on Communication
Systems, 2014, pp. 197–201, http://dx.doi.org/10.1109/ICCS.2014.7024793.

[3] Hyoungju Ji, et al., Introduction to ultra reliable and low latency communications
in 5G, Comput. Res. Repos. (CoRR) abs/1704.05565 (2017).

[4] B.A.A. Nunes, et al., A survey of software-defined networking: past, present, and
future of programmable networks, IEEE Commun. Surv. Tutor. 16 (3) (2014)
1617–1634.

[5] Bo Han, et al., Network function virtualization: challenges and opportunities for
innovations, IEEE Commun. Mag. 53 (2) (2015) 90–97.

[6] João Soares, et al., Toward a telco cloud environment for service functions, IEEE
Commun. Mag. 53 (2) (2015).

[7] Qiang Duan, et al., A survey on service-oriented network virtualization toward
convergence of networking and cloud computing, IEEE Trans. Netw. Serv. Manag.
9 (4) (2012).

[8] Sánchez, et al., Softwarized 5G networks resiliency with self-healing, in: IEEE
1st International Conference on 5G for Ubiquitous Connectivity (5GU), 2014,
pp. 229–233.
14
[9] A. Manzalini, et al., An edge operating system enabling anything-as-a-service,
IEEE Commun. Mag. 54 (3) (2016) 62–67.

[10] F. Paganelli, et al., Context-aware service composition and delivery in NGSONs
over SDN, IEEE Commun. Mag. 52 (8) (2014) 97–105.

[11] W. Cerroni, M. Gharbaoui, B. Martini, A. Campi, P. Castoldi, F. Callegati, Cross-
layer resource orchestration for cloud service delivery: A seamless SDN approach,
Comput. Netw. 87 (2015) 16–32.

[12] I. Parvez, et al., A survey on low latency towards 5G: RAN, core network and
caching solutions, IEEE Commun. Surv. Tutor. 20 (4) (2018) 3098–3130.

[13] S. Fichera, R. Martínez, B. Martini, M. Gharbaoui, R. Casellas, R. Vilalta, R.
Muñoz, P. Castoldi, Latency-aware resource orchestration in SDN-based packet
over optical flexi-grid transport networks, J. Opt. Commun. Netw. 11 (4) (2019)
B83–B96.

[14] T. Wauters, et al., Federation of internet experimentation facilities: architecture
and implementation, in: European Conference on Networks and Communications
(EuCNC), 2014.

[15] B. Martini, et al., Latency-aware composition of virtual functions in 5G, in:
Proceedings of 1st IEEE Conference on Network Softwarization (NetSoft), 2015,
pp. 1–6, http://dx.doi.org/10.1109/NETSOFT.2015.7116188.

[16] A.A. Mohammed, et al., SDN controller for network-aware adaptive orchestration
in dynamic service chaining, in: IEEE NetSoft Conference and Workshops
(NetSoft), 2016, pp. 126–130.

[17] F. Callegati, et al., Performance of intent-based virtualized network infras-
tructure management, in: Proceedings of IEEE International Conference on
Communications (ICC), 2017, pp. 1–6.

[18] B. Martini, M. Gharbaoui, D. Adami, P. Castoldi, S. Giordano, Experimenting
SDN and cloud orchestration in virtualized testing facilities: performance results
and comparison, IEEE Trans. Netw. Serv. Manag. 16 (3) (2019) 965–979.

[19] M. Gharbaoui, et al., Experimenting latency-aware and reliable service chaining
in next generation internet testbed facility, in: IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), 2018, pp.
1–4, http://dx.doi.org/10.1109/NFV-SDN.2018.8725783.

[20] M. Gharbaoui, et al., Demonstration of latency-aware and self-adaptive service
chaining in 5G/SDN/NFV infrastructures, in: IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), 2018, pp.
1–2, http://dx.doi.org/10.1109/NFV-SDN.2018.8725645.

[21] A.M. Medhat, et al., Service function chaining in next generation networks: state
of the art and research challenges, IEEE Commun. Mag. 55 (2) (2017) 216–223.

[22] B. Martini, et al., SDN controller for context-aware data delivery in dynamic
service chaining, in: IEEE 1st Conference on Network Softwarization (NetSoft),
2015, pp. 1–5.

[23] Y. Zhang, et al., Steering: a software-defined networking for inline service
chaining, in: 21st IEEE International Conference on Network Protocols (ICNP),
2013, pp. 1–10.

[24] Z. Qazi, et al., Practical and incremental convergence between SDN and
middleboxes, in: Open Network Summit, Santa Clara, CA, 2013.

[25] A.M. Medhat, et al., Extensible framework for elastic orchestration of service
function chains in 5G networks, in: IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2017, pp. 327–333,
http://dx.doi.org/10.1109/NFV-SDN.2017.8169879.

[26] Frederico Schardong, Ingrid Nunes, Alberto Schaeffer-Filho, NFV resource allo-
cation: A systematic review and taxonomy of VNF forwarding graph embedding,
Comput. Netw. 185 (2021) 107726.

[27] A.M. Medhat, et al., Near optimal service function path instantiation in a
multi-datacenter environment, in: 11th International Conference on Network and
Service Management (CNSM), 2015, pp. 336–341, http://dx.doi.org/10.1109/
CNSM.2015.7367379.

[28] Huawei Huang, Song Guo, Jinsong Wu, Jie Li, Joint middlebox selection and
routing for software-defined networking, in: IEEE International Conference on
Communications (ICC), IEEE, 2016, pp. 1–6.

[29] A. Lombardo, et al., An analytical tool for performance evaluation of software
defined networking services, in: IEEE Network Operations and Management
Symposium (NOMS), 2014, pp. 1–7.

[30] M.T. Thai, et al., A joint network and server load balancing algorithm for
chaining virtualized network functions, in: IEEE International Conference on
Communications (ICC), 2016, pp. 1–6, http://dx.doi.org/10.1109/ICC.2016.
7510712.

[31] Yi-Wei Ma, et al., Adaptive service function selection for network function
virtualization networking, Future Gener. Comput. Syst. 91 (2019) 108 – 123.

[32] Thi-Minh Nguyen, et al., Routing via functions in virtual networks: the curse of
choices, IEEE/ACM Trans. Netw. 27 (3) (2019) 1192–1205.

[33] Jianing Pei, et al., Two-phase virtual network function selection and chaining
algorithm based on deep learning in SDN/NFV-enabled networks, IEEE J. Sel.
Areas Commun. 38 (6) (2020) 1102–1117.

[34] Pradeeban Kathiravelu, Peter Van Roy, Luí s Veiga, Composing network ser-
vice chains at the edge: a resilient and adaptive software-defined approach,
Transactions on Emerging Telecommunications Technologies 29 (11) (2018).

[35] Rajat Chaudhary, Neeraj Kumar, Sherali Zeadally, Network service chaining in
fog and cloud computing for the 5G environment: data management and security
challenges, IEEE Commun. Mag. 55 (11) (2017) 114–122.

http://refhub.elsevier.com/S1389-1286(22)00082-2/sb1
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb1
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb1
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb1
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb1
http://dx.doi.org/10.1109/ICCS.2014.7024793
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb3
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb3
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb3
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb4
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb4
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb4
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb4
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb4
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb5
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb5
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb5
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb6
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb6
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb6
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb7
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb7
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb7
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb7
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb7
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb8
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb8
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb8
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb8
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb8
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb9
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb9
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb9
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb10
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb10
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb10
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb11
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb11
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb11
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb11
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb11
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb12
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb12
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb12
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb13
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb13
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb13
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb13
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb13
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb13
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb13
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb14
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb14
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb14
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb14
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb14
http://dx.doi.org/10.1109/NETSOFT.2015.7116188
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb16
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb16
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb16
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb16
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb16
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb17
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb17
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb17
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb17
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb17
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb18
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb18
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb18
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb18
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb18
http://dx.doi.org/10.1109/NFV-SDN.2018.8725783
http://dx.doi.org/10.1109/NFV-SDN.2018.8725645
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb21
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb21
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb21
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb22
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb22
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb22
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb22
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb22
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb23
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb23
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb23
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb23
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb23
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb24
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb24
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb24
http://dx.doi.org/10.1109/NFV-SDN.2017.8169879
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb26
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb26
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb26
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb26
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb26
http://dx.doi.org/10.1109/CNSM.2015.7367379
http://dx.doi.org/10.1109/CNSM.2015.7367379
http://dx.doi.org/10.1109/CNSM.2015.7367379
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb28
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb28
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb28
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb28
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb28
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb29
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb29
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb29
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb29
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb29
http://dx.doi.org/10.1109/ICC.2016.7510712
http://dx.doi.org/10.1109/ICC.2016.7510712
http://dx.doi.org/10.1109/ICC.2016.7510712
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb31
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb31
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb31
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb32
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb32
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb32
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb33
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb33
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb33
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb33
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb33
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb34
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb34
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb34
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb34
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb34
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb35
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb35
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb35
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb35
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb35


Computer Networks 208 (2022) 108880M. Gharbaoui et al.
[36] Yeongjin Kim, Jeongho Kwak, Hyang-Won Lee, Song Chong, Dynamic compu-
tation and network chaining in integrated SDN/NFV cloud infrastructure, IEEE
Trans. Cloud Comput. (2021).

[37] D. Harutyunyan, et al., Latency-aware service function chain placement in 5G
mobile networks, in: IEEE Conference on Network Softwarization (NetSoft), 2019,
pp. 133–141.

[38] J. Santos, et al., Towards delay-aware container-based service function chain-
ing in fog computing, in: IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2020, pp. 1–9.

[39] R. Cziva, et al., Dynamic, latency-optimal VNF placement at the network edge, in:
IEEE Conference on Computer Communications (INFOCOM), 2018, pp. 693–701.

[40] A. Gavras, et al., Future internet research and experimentation: the fire initiative,
Comput. Commun. Rev. 37 (2007) 89–92.

[41] M. Berman, et al., GENI: A federated testbed for innovative network experiments,
Comput. Netw. 61 (2014) 5–23.

[42] M. Gharbaoui, et al., Experiments on SDN-based network and cloud resource
orchestration in fed4fire, in: IEEE NetSoft Conference and Workshops (Netsoft),
2016, pp. 131–135.

[43] B. Martini, et al., Experimenting SDN and cloud orchestration in virtualized
testing facilities: performance results and comparison, IEEE Trans. Netw. Serv.
Manag. 16 (3) (2019) 965–979.

[44] S. Vural, et al., Performance measurements of network service deployment on
a federated and orchestrated virtualisation platform for 5G experimentation,
in: IEEE Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2018, pp. 1–6.

[45] F. Silva, et al., 5GINFIRE: enabling an NFV based experimentation of vertical
industries in the 5G context, in: Proc. Anais do X Workshop de Pesquisa Experim.
da Internet do Futuro (WPEIF), 2019, pp. 64–69.

[46] OpenBaton, https://openbaton.github.io/.
[47] G. Xilouris, et al., T-NOVA: A marketplace for virtualized network functions, in:

European Conference on Networks and Communications (EuCNC), 2014, pp. 1–5,
http://dx.doi.org/10.1109/EuCNC.2014.6882687.

[48] B. Sonkoly, et al., UNIFYing cloud and carrier network resources: An archi-
tectural view, in: Proceedings of the IEEE Global Communications Conference
(GLOBECOM), 2015, pp. 1–7.

[49] A. Sgambelluri, et al., Orchestration of network services across multiple oper-
ators: the 5G exchange prototype, in: European Conference on Networks and
Communications (EuCNC), 2017.

[50] J. Baranda, et al., NFV service federation: enabling multi-provider ehealth emer-
gency services, in: IEEE International Conference on Computer Communications
(INFOCOM), 2020.

[51] R. Bruschi, et al., Validation of iaas-based technologies for 5G-ready applica-
tions deployment, in: European Conference on Networks and Communications
(EuCNC), 2020, pp. 46–51.

[52] M. Dieye, et al., CPVNF: cost-efficient proactive VNF placement and chaining
for value-added services in content delivery networks, IEEE Trans. Netw. Serv.
Manag. 15 (2) (2018) 774–786.

[53] Ahmet Cihat Baktir, Atay Ozgovde, Cem Ersoy, How can edge computing benefit
from software-defined networking: A survey, use cases, and future directions,
IEEE Commun. Surv. Tutor. 19 (4) (2017) 2359–2391.

[54] G.S. NFV ETSI, Network functions virtualisation (NFV): architectural framework,
ETSI GS NFV 2 (2) (2013) V1.

[55] ETSI, Network function virtualization ecosystem - report on SDN usage
in NFV architectural framework ETSI GS NFV-EVE 005, 2015, https:
//www.etsi.org/deliver/etsi_gs/NFV-VE/001_099/005/01.01.01_60/gs_NFV-
EVE005v010101p.pdf.
15
[56] G.S. NFV-M.A.N. 001 ETSI, Network functions virtualisation (NFV); management
and orchestration, ETSI GS NFV V1.1.1 (2014).

[57] G.S. NFV-I.F.A. 032 ETSI, Network functions virtualisation (NFV) release 3;
management and orchestration; interface and information model specification
for multi-site connectivity services, ETSI GS NFV 3.4.1 (2020).

[58] A. Clemm, et al., Intent-based networking - concepts and definitions, 2021,
https://tools.ietf.org/pdf/draft-irtf-nmrg-ibn-concepts-definitions-05.pdf.

[59] Y. Boucadair, et al., Service Function Chaining Service, Subscriber and Host
Identification Use Cases and Metadata, Technical Report, IETF Secretariat, 2017,
https://tools.ietf.org/html/draft-sarikaya-sfc-hostid-serviceheader-04.

[60] B. Martini, et al., A service-oriented approach for dynamic chaining of virtual
network functions over multi-provider software-defined networks, Future Internet
8 (2) (2016) 24.

[61] F. Callegati, et al., SDN for dynamic NFV deployment, IEEE Commun. Mag. 54
(10) (2016) 89–95.

[62] Virtual Wall Web Site, 2021, https://doc.ilabt.imec.be/ilabt/virtualwall/.
[63] K. Pepple, Deploying Openstack, 2nd Edition, O’Reilly Media, 2013.
[64] Service Function Chaining Extension for OpenStack Networking, 2021, https:

//docs.openstack.org/networking-sfc/latest/.
[65] L. Zhu, et al., SDN controllers: benchmarking & performance evaluation, 2019,

Available: http://arxiv.org/abs/1902.04491.
[66] L. Mamushiane, T. Shozi, A QoS-based evaluation of SDN controllers: ONOS and

opendaylight, in: IST-Africa Conference (IST-Africa), 2021, pp. 1–10.
[67] M.-I. Csoma, et al., Management and orchestration for network function vir-

tualization: An open source MANO approach, in: 19th RoEduNet Conference:
Networking in Education and Research (RoEduNet), 2020, pp. 1–6.

[68] G.A. Carella, et al., Open baton: A framework for virtual network function
management and orchestration for emerging software-based 5G networks, in:
Newsletter, 2016.

[69] Iperf, 2021, https://iperf.fr/.
[70] 2021, https://wiki.linuxfoundation.org/networking/netem.
[71] D. Borsatti, et al., Performance of service function chaining on the openstack

cloud platform, in: 1st Workshop on Segment Routing and Service Function
Chaining (SR+SFC), 14th International Conference on Network and Service
Management (CNSM), 2018, pp. 432–437.

[72] Abilene topology, 2021, [online] https://web.archive.org/web/
20080113120821/http://abilene.internet2.edu/.

[73] K. Karamjeet, et al., Mininet as software defined networking testing platform,
in: International Conference on Communication, Computing & Systems (ICCCS),
2014.

M. Gharbaoui is a Research Engineer at the Scuola Supe-
riore Sant’anna, Pisa, Italy. She received her Ph.D. degree
in Innovative Technologies of Information & Communica-
tions Engineering and Robotics in 2012 from the Scuola
Superiore Sant’anna, Pisa. Her main research interests are in
the field of software-defined networking, network function
virtualization, network orchestration, the development and
the implementation of service-oriented architectures and
service management for smart cities. She has been involved
in several EU projects and has co-authored more than 50
papers appeared in international journals and conferences.

http://refhub.elsevier.com/S1389-1286(22)00082-2/sb36
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb36
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb36
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb36
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb36
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb37
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb37
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb37
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb37
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb37
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb38
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb38
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb38
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb38
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb38
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb39
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb39
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb39
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb40
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb40
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb40
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb41
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb41
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb41
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb42
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb42
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb42
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb42
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb42
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb43
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb43
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb43
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb43
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb43
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb44
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb44
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb44
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb44
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb44
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb44
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb44
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb45
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb45
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb45
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb45
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb45
https://openbaton.github.io/
http://dx.doi.org/10.1109/EuCNC.2014.6882687
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb48
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb48
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb48
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb48
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb48
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb49
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb49
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb49
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb49
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb49
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb50
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb50
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb50
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb50
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb50
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb51
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb51
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb51
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb51
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb51
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb52
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb52
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb52
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb52
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb52
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb53
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb53
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb53
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb53
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb53
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb54
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb54
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb54
https://www.etsi.org/deliver/etsi_gs/NFV-VE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-VE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-VE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-VE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-VE/001_099/005/01.01.01_60/gs_NFV-EVE005v010101p.pdf
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb56
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb56
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb56
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb57
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb57
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb57
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb57
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb57
https://tools.ietf.org/pdf/draft-irtf-nmrg-ibn-concepts-definitions-05.pdf
https://tools.ietf.org/html/draft-sarikaya-sfc-hostid-serviceheader-04
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb60
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb60
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb60
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb60
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb60
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb61
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb61
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb61
https://doc.ilabt.imec.be/ilabt/virtualwall/
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb63
https://docs.openstack.org/networking-sfc/latest/
https://docs.openstack.org/networking-sfc/latest/
https://docs.openstack.org/networking-sfc/latest/
http://arxiv.org/abs/1902.04491
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb66
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb66
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb66
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb67
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb67
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb67
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb67
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb67
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb68
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb68
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb68
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb68
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb68
https://iperf.fr/
https://wiki.linuxfoundation.org/networking/netem
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb71
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb71
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb71
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb71
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb71
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb71
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb71
https://web.archive.org/web/20080113120821/http://abilene.internet2.edu/
https://web.archive.org/web/20080113120821/http://abilene.internet2.edu/
https://web.archive.org/web/20080113120821/http://abilene.internet2.edu/
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb73
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb73
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb73
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb73
http://refhub.elsevier.com/S1389-1286(22)00082-2/sb73

	An experimental study on latency-aware and self-adaptive service chaining orchestration in distributed NFV and SDN infrastructures
	Introduction
	Related work
	Reference scenario
	Service chaining orchestration system design
	Chain Optimizer
	WAN Infrastructure Manager Orchestrator
	Virtual Infrastructure Manager Orchestrator

	Orchestration workflows
	Service chain deployment
	Service chain update
	Service chain network adaptation

	Integration of orchestration subsystems and experiment set-up
	Experimental results
	Performance of latency-optimized service chain path computation
	Performance of service chain path deployment in the cloud
	Performance of service chain path deployment and redirection across WAN

	Conclusions and discussion
	Declaration of competing interest
	References


