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Abstract—The NoSQL paradigm has emerged as the leading
design choice for cloud providers offering highly scalable storage
services. Contrary to traditional relational databases, NoSQL
architectures are capable of ingesting the ever-growing volume of
nowadays’ data-driven applications characterized by low-latency
and high-throughput requirements. However, it is difficult to
build an ultra-scalable, high-performance storage engine that can
sustain an arbitrary number of concurrent clients. A common
technique to increase throughput is minimizing the OS overhead,
quantified as the number of context switches, through busy
waiting (or “spinning”). While this simple synchronization mech-
anism proves to be beneficial in the high-performance computing
community, it requires special care to avoid wasting resources
and counter-intuitive behaviors. In this paper, we address an
instance of “unsafe” busy waiting in WiredTiger, the underlying
storage engine of MongoDB, which leads to a consistent, excessive
increase of tail latency in high contention scenarios.

Index Terms—Performance Engineering, Cloud Storage,
WiredTiger, MongoDB, Concurrency, Scheduling

I. INTRODUCTION AND RELATED WORK

Cloud Computing has deeply changed how the IT industry

deals with the technical challenges posed by today’s data-

driven applications [20]. Depending on the customer’s needs,

there are many different cloud-based storage services, each

with its own focus area: from distributed data management

systems for scaling operations in web services, to highly

reliable data processing platforms available around-the-clock

for Internet-of-Things (IoT) devices. In this context, the emer-

gence of cloud-native applications and fully-managed ser-

vices [12] shifted the entire management cycle of applications

and virtual resources from the customer itself to the operations

teams of the cloud provider.

A relevant metric to assess the performance of a cloud

service is the tail latency [11], [17]. It encompasses the high

percentiles of the response-time distribution, and usually, it

focuses on the requests experiencing response times longer

than 99% (or more) of all user requests. A poor tail latency

will impact most users in the case of large-scale applications

with modern architectures, such as microservices, especially

when a single user interaction can translate into many service

calls. Improving the tail latency is a well-known performance

engineering challenge that spans multiple layers of the cloud

software stack, and it has been addressed by academics in dif-

ferent ways [3], [7], [16], [18], [23]. The majority of existing

research efforts focus on high-level abstractions, neglecting the

lower end of the cloud stack, such as the Operating System

(OS) layer [10]. In parallel and distributed cloud components,

this leads to a general lack of integration with low-level

mechanisms, such as tuned scheduling policies [9], [13],

[22] or efficient synchronization constructs beyond traditional

lock-based primitives, or contention control techniques [25].

Nonetheless, industrial-grade database software often employs

low-level optimizations to fully exploit the capabilities of

modern many-core machines. For instance, WiredTiger, the

underlying storage engine of MongoDB, implements a variety

of lock-free algorithms and busy waiting to increase the

throughput on modern many-core machines [2].

Busy waiting [14], or spinning, is a lightweight synchroniza-

tion technique, mainly used by High-Performance Computing

(HPC) communities to minimize the OS overhead. Busy

waiting is a quick and simple mechanism in which a process,

or a thread, continuously checks in loop for a condition to be

satisfied while consuming processing resources (hence why

“busy” waiting). It is used when a process/thread (referred to

as task, from now on) is likely to wait for short periods of time

to access the critical section; shorter than the delay associated

with a context switch. Contrary to conventional blocking syn-

chronization primitives (i.e., mutexes, semaphores, condition

variables), which require interactions with the OS kernel to

block tasks, busy waiting can be done fully in user-space,

avoiding the need for context switches.

Busy waiting may lead to excessive waste of CPU time, if

misused, due to the costly looping procedure. The results are

unexpected scaling issues and performance degradation in the

form of high tail latency, task starvation, or even deadlock.

Given a task A waiting for a condition that can be made true

by a running task B, an instance of busy waiting is “safe”

when the task being waited for (task B) is not pre-empted. For

example, busy waiting in a spinlock within the Linux kernel

is safe, because task pre-emption can be disabled. However,

this is not possible in user-space, therefore one of the most

common ways to ensure that tasks are unlikely pre-empted is

to bind them with dedicated cores, enforcing a 1:1 task-to-

core pinning. This constraint is usually irrelevant in an HPC

context, as the computations are usually deployed on custom-

built hardware with hundreds of physical cores. However, core

pinning is not so commonly enforced in conventional cloud

infrastructures, i.e., it is used only by performance-sensitive
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applications. In summary, busy waiting is “unsafe” in user-

space if performed when the number of active tasks exceeds

the parallelism capabilities of the underlying hardware.

A. Contributions

In this work, we describe the internals of WiredTiger and

explore a synchronization bug in MongoDB caused by an

“unsafe” implementation of busy waiting within WiredTiger

(Section II). A series of possible quick fixes are presented; the

best of which is an “adaptive” implementation of busy waiting

that ensures safety by spinning for a short while only. Finally,

Section III demonstrates how to consistently reproduce the

bug using two common system tools within Linux, taskset
and nice, as well as showing the superiority of adaptive

busy waiting over the original implementation. In practice,

it is difficult to test for concurrency misbehaviors: a bug in

the synchronization logic may sit latent for many months (or

years) and inevitably manifests itself in production [19], as

a side effect of heavy loads, in the form of unexpected per-

formance degradation, starvation or even deadlock. Moreover,

most of the time it is not possible to consistently reproduce

it in a test environment. Therefore, one of the goals of this

research paper is to prove that more focus on system research

can significantly reduce the risk of unexpected behaviors when

dealing with low-level optimizations.

II. WIREDTIGER INTERNALS

WiredTiger1 is a high-performance, scalable, and transac-

tional storage engine for NoSQL data stores. It is primarily

known for being the underlying database management system

of MongoDB2 since version 3.2. WiredTiger offers both high-

throughput and low-latency, as well as predictable behaviors

under heavy access and large volumes of data. WiredTiger is

designed to efficiently scale on modern many-core machines

with lots of RAM. This is thanks to several compression

algorithms to save both in memory and disk consumption,

as well as the use of high-performance techniques and lock-

free algorithms to minimize the resource contention between

concurrent transactions. The main focus of this section is

exploring how WiredTiger optimizes the synchronization of

concurrent and parallel transactional operations for the sake

of high-performance. A WiredTiger-compliant user application

establishes a connection with an instance of WiredTiger and

starts sending requests using a session. A user session is al-

ways executed as a sequential activity by one thread, although

it can be shared between threads. WiredTiger offers a standard

ACID-style transactional model [15]. A transaction represents

an atomic unit of work requested by a user session. It may con-

sist of multiple data manipulation operations. Each transaction

is given a global, unique, and monotonically increasing iden-

tifier (ID) before performing the first write operation. Consis-

tency is enforced through an “optimistic” version of the classic

Multi-Version Concurrency Control (MVCC) mechanism [6],

which completely avoids the bottleneck of a centralized lock

1See: https://source.wiredtiger.com/
2https://www.mongodb.com/

(a) Read operations are blocked until the write transaction on data item
D is successfully committed.

(b) Read operations get an older version of data item D, until the write
transaction is successfully committed.

Fig. 1: Traditional lock-based (a) versus Multi-versioned (b)

concurrency control in the presence of concurrent write (W )

and read (R) operations. The plots show how data item D
is handled over time. The subscripts indicate the subsequent

changes to data item D.

manager. In traditional MVCC, an update operation does not

overwrite the original data item but instead creates a newer

version of such data item. This way reads do not block writes,

and vice versa. Figure 1 demonstrates the difference between

traditional lock-based and multi-version concurrency control.

The term “optimistic” refers to the fact that WiredTiger

assumes that multiple transactions can frequently complete

without interfering with each other, regardless of the operation

type. Therefore, this implementation of MVCC is essentially

lock-free, since transactional operations in one session do not

block operations in other sessions, even if they are writes.

Notice that if multiple concurrent transactions update the same

data item, only one is committed and the others must be

repeated. WiredTiger is the reason for the improved write

performance in MongoDB [1] since its initial introduction

in version 3.0. Compared to the previous storage engine,

MMAPv1, WiredTiger allows for document-level concurrency

control in MongoDB, meaning that multiple write operations

to different documents, but on the same collection, can occur

at the same time. WiredTiger presents to each transactional

operation a point-in-time consistent view of the in-memory

data, called a snapshot. The version of data that each trans-

action sees depends on the isolation level. The strongest

guarantee is snapshot isolation: all reads within a transaction

will see a consistent snapshot of the database; no updates

within a transaction will be committed if they conflict with any

concurrent updates made since that snapshot. In practice, this

is implemented with timestamps, a monotonically increasing

sequence of numbers associated with each operation: a trans-

action can only see updates with timestamps smaller or equal

to its read timestamp. Snapshots are implemented by capturing

the global state of transactions at the time of snapshot creation.
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Transactions that are concurrently active are not visible to the

snapshot, as they do not comply with the snapshot isolation

guarantee (i.e., the transaction has not been committed at the

time of snapshot creation). Snapshots are periodically flushed

to disk to act as recovery points (checkpoints), thus ensuring

data durability in case of failure.

A. “Unsafe” Busy waiting

WiredTiger cannot publish a new snapshot until all concur-

rently active transactions are assigned a valid ID, or else it

will not be able to infer if they are visible to the snapshot.

To this end, it employs busy waiting to increase through-

put, since ID allocation is assumed to be a fast operation;

faster than yielding the CPU or “sleeping” as in conventional

blocking synchronization primitives, which involve a series of

context switches. However, the way WiredTiger is used within

MongoDB makes busy waiting unsafe, as the rules recalled in

Section I are not enforced. Indeed, each remote connection to

a MongoDB server is reserved a unique dedicated thread to

handle the server-side activities [4], [5], which are ultimately

performed by WiredTiger. Therefore, MongoDB should have

controlled/restricted the number of clients concurrently issuing

requests to avoid the potential waste of CPU time, as they

result in threads concurrently using WiredTiger. However,

MongoDB designers deemed such restriction too binding and

counterproductive to the need to serve potentially arbitrary

workloads in a cloud usage context, as mentioned in Section I.

In the context of a DBaaS cloud offering, such as MongoDB

Atlas, it is not clear to the authors of this paper whether

the number of concurrent connections to a single MongoDB

instance is controlled, or it can also exceed the number of

underlying physical cores, leading to potentially high tail-

latency problems.

Additionally, in the presence of threads with different prior-

ities, the synchronization problem described above results in

a nasty priority inversion problem. Let Ta be a WiredTiger

thread trying to create a snapshot to apply the operations

required by its user session. Let Tb be a different thread

trying to initialize a new transaction. If both threads happen

to be ready-to-schedule simultaneously, Ta has to busy wait

on thread Tb, if it did not allocate its transaction ID yet.

Recall that without such a mechanism, a consistent view of

the data cannot be guaranteed. If there are not enough free

physical cores to run both threads in parallel, and Ta is given

precedence over Tb in the scheduling queue, Ta will spin

uselessly until it exhausts its time-slice, effectively starving

thread Tb. When Tb is subsequently scheduled for execution

(i.e., exiting starvation), and completes the ID allocation

procedure, the spinning condition for Ta is finally satisfied,

and therefore it can proceed. Therefore, the spinning duration

directly depends on the scheduling decisions. Section III

demonstrates how to consistently induce such thread syn-

chronization bug exploiting 2 common system tools available

on Linux: taskset and nice. The taskset command

allows restraining the scheduling of a task to a subset of

the available cores. The nice command manipulates the

scheduling priority of a task in the Completely Fair Scheduler

(CFS) [24], the default scheduler within Linux. The “niceness”

of a thread corresponds to its willingness to give precedence to

other threads, which ultimately affects the CPU time of each

task scheduled for execution. There are a total of 40 nice levels

in the range [−20, 19], where the negative values correspond

to less willingness to give up CPU time.

B. Restoring safety in WiredTiger

There are multiple, straightforward fixes to the unsafe

instance of busy waiting in WiredTiger. The “safer” solution

is to replace busy waiting with conventional blocking syn-

chronization, at the cost of more OS overhead due to context

switches. Not only that, but it also requires a more involved

modification due to the wait-signal synchronization model for

inter-thread communication. A quicker and easier solution is to

yield the CPU so that the spinning thread relinquishes the CPU

to another thread. However, the former may be immediately

rescheduled for execution if CFS decides that the spinning

thread was not given a “fair” amount of CPU time, or if no

other threads are in the ready queue. A better solution is to

put the spinning thread to sleep for a fixed amount of time.

Contrary to locks, sleeping is more lightweight (i.e., less OS

overhead), being a simpler mechanism, but it requires proper

tuning of the sleep duration. A good compromise, in line with

the principles of WiredTiger, is an “adaptive” version of busy

waiting which encapsulates a backoff procedure: spin for a

fixed amount of time, then yield for a while, and then back

off to sleep. WiredTiger already implements such a mechanism

in __wt_spin_backoff; although it is used in a different

context. Section III demonstrates how adaptive busy waiting

is a valid solution to the synchronization problem during

snapshot creation and transaction ID allocation in WiredTiger.

III. EXPERIMENTAL EVALUATION

This section shows how to consistently starve of CPU

time the WiredTiger threads dedicated to the client sessions

of a MongoDB deployment, using the nice and taskset
tools in Linux. More specifically, the experiments have

been performed on MongoDB version 6.0, which employs

WiredTiger version 10.0.2. We also demonstrate the validity

of the adaptive busy waiting mechanism described in Subsec-

tion II-B by repeating the experiments on a modified version

of WiredTiger. Notice that concepts like data fragmentation

(for scalability) and data replication (for availability) are

MongoDB-level constructs that do not affect the behaviors of

the underlying storage engine. Instead, they add complexity to

the testing environment; hence why, for the sake of simplicity,

replication and sharding have not been used. The data store is

subjected to heavy write load using the well-known YCSB [8]

benchmarking tool. The YCSB client threads are hosted on

a dedicated, 96-core physical system (Arm 64 server with 2

ThunderX 88XX CPUs and 64 GB of RAM) connected to

the MongoDB deployment via a 1 gbE physical link. The

latter is hosted on a 112-core physical system (x86-64 server

with 2 Xeon Gold CPUs and 125 GB of RAM) to ensure no
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(a) Unrestricted (i.e., no taskset) MongoDB deployment.

(b) MongoDB deployment with session threads restricted to 10 cores
(the thread-core ratio is 4:1). The thread priority of 4 user sessions
is temporarily changed during the time window highlighted by the
two dashed lines.

Fig. 2: Per-second statistics of the end-to-end latency experi-

enced by 40 YCSB clients issuing 6 million update operations

to a MongoDB deployment using an unmodified version of

WiredTiger (i.e., original busy waiting).

interferences between the server and the clients. On the 112-

core machine, CPU frequency is blocked at 2.20 GHz, and

hyper-threading and turbo-boosting are disabled to minimize

the experimental error. In order to violate the condition of

“safe” busy waiting, the MongoDB deployment has to be

subjected to a high CPU contention (i.e., the number of

user connections must exceed the number of physical cores

dedicated to the database). The easiest way to achieve that is

through the taskset Linux command so that the WiredTiger

threads dedicated to the user sessions are restricted to a small

range of physical cores. Next, the priority inversion is induced

by tweaking the scheduling parameters of such threads using

the nice command.

The first series of experiments aim to visually show how

latencies are affected by the use of thread priorities under a

high contention scenario. Figure 2 depicts the latency over

time for two experiments using an unmodified version of

WiredTiger: Subfigure 2a shows a MongoDB deployment with

no core restriction to session threads (i.e. no taskset) and no

tweaking of thread priorities; Subfigure 2b shows a MongoDB

deployment with session threads restricted to 10 physical cores

(a) Unrestricted (i.e., no taskset) MongoDB deployment.

(b) MongoDB deployment with session threads restricted to 10 cores
(the thread-core ratio is 4:1). The thread priority of 4 user sessions
is temporarily changed during the time window highlighted by the
two dashed lines

Fig. 3: Per-second statistics of the end-to-end latency experi-

enced by 40 YCSB clients issuing 6 million update operations

to a MongoDB deployment using a modified version of

WiredTiger (i.e., busy waiting with backoff).

and the niceness of 4 session threads temporarily set to -20.

Each test has been performed 3 times to assess the variability

of the experimental results. Figure 3 depicts analogous exper-

iments using a modified version of WiredTiger, implementing

the adaptive busy waiting mechanism described in Subsec-

tion II-B. In our test environment, the latencies experienced by

users interacting with an unrestricted MongoDB deployment,

using the original version of WiredTiger, is 890 microseconds

on average (Subfigure 2a). The modified version of WiredTiger

achieves similar results, showing no noticeable side effects in

replacing the original implementation with the adaptive one.

However, the fallacy of the original instance of busy waiting

is demonstrated in Subfigure 2b: the use of taskset and

nice affects the 99.9th percentile (P999) the most, showing

a ∼2168% increase, with peaks of 1 second during the thread

priority time window (highlighted by dashed lines). On the

other hand, Subfigure 3b, which depicts the latency over time

using the adaptive busy waiting solution, shows a much lower

∼7% increase of the P999 latency instead (with respect to the

unrestricted case in Subfigure 3a).

The second series of experiments (Figure 4) compare the
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(a) Throughput comparison.

(b) Latency comparison.

Fig. 4: Performance comparison between the two busy waiting

implementations on different CPU contention scenarios. The

MongoDB deployment is restricted to 10 cores. Thread priority

is tweaked for 4 user sessions throughout the entire test period.

throughput and latency of the two implementations on sev-

eral many-client scenarios. In these experiments, the core

restriction and nice manipulation setup are the same as the

timeline plots; however, the thread priorities are tweaked at

the start and kept as such throughout the entire test period. In

the unmodified version of WiredTiger, the overall throughput

dramatically decreases as the number of session threads (one

per connection) increases. In the highest contention scenario,

which shows 80 YCSB connections restricted to 10 physical

cores, the P999 latency experienced in the adaptive version is

lower than the average latency of the original implementation.

The scaling issue is evident: as of now, it is possible to

effectively starve a WiredTiger-based data store by simply

tweaking the thread priorities if the number of concurrently

active session threads is not controlled under high CPU

contention scenario. Fortunately, the experiments show that

busy waiting with backoff is a valid fix to avoid starvation.

IV. CONCLUSION

In this paper, an unsafe instance of busy waiting in

WiredTiger, the underlying storage engine of MongoDB, has

been thoroughly described. Busy waiting is a synchronization

technique commonly employed by modern OSs in kernel mode

and HPC applications. It requires special care when used

in user-space to avoid resource waste, or worse, starvation.

However, MongoDB does not employ any safety control,

causing unexpected behaviors under heavy CPU contention

scenarios. For this reason, we replaced the original busy

waiting implementation within WiredTiger with an adaptive

one, which falls back to blocking after a short spinning period

(this primitive was already used in other parts of the code,

as mentioned above). This way, the scheduler is allowed to

reschedule, greatly reducing the resource waste caused by

busy waiting. The assumption regarding the unsafety of the

original implementation is backed up with a series of experi-

ments on a test environment carefully crafted to consistently

reproduce the synchronization bug. The two implementations

are then compared in high contention scenarios, manipulating

the thread priorities within the Linux scheduler to consistently

starve WiredTiger. The original implementation incurs in huge

tail latency, making current WiredTiger-based data store that

does not control concurrency a “risky” choice for large-scale

applications with low-latency and predictable performance

requirements (such as cloud-based, time-critical applications).

The adaptive version of busy waiting overcomes the scaling

issues and shows no anomalies in tail latency. An interesting

future work is the use of mutable locks [21], a modern

synchronization technique with a self-tuned optimized trade-

off between responsiveness and CPU time usage.
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