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A B S T R A C T

Motivated by pine cones and plant seeds that open or close in response to changes in humidity thanks to the
shrinking or swelling of hygroscopic bilayers, and given the recent interest in artificial systems that mimic
the hygroscopic motility of seeds, we consider bilayers consisting of two adhering elongated thin layers made
of hygroscopic gels, modeled as active, transversally isotropic elastic materials. The direction of transverse
isotropy is set as one of the fibers that are present in both biological and synthetic materials. As a special,
biologically relevant case, we consider one of the two layers passive. This work develops a three-dimensional
model for the coupled evolution of elastic deformations and moisture content (solvent concentration). Based
on this model, a numerical scheme for solving the evolution equations coupling mechanical equilibrium and
diffusion has been constructed based on the Finite Element Method. The equations are formulated in weak
form and solved using Comsol Multiphysics. We have applied our model to compute transient configurations
and their steady-state equilibrium limits in some relevant test cases. These configurations are then analyzed
to understand the influence of the various geometric and physical parameters.
1. Introduction

Plants are stationary organisms that have developed fascinating
strategies for seed dispersal during their natural evolution. Examples
include reliance on transport by wind (thanks to the helical motion of
the samaras of acers [1] or to the pappus of dandelions [2] that work
as parachutes that slow down their vertical fall, giving them more time
to cover lateral distances under the action of lateral winds) or transport
by animals (to which seeds attach thanks to spiny spores).

The release mechanisms of plant seeds from pine cones [3] or
seed pods in Bauhinia variegata [4] or Cardamine hirsuta [5] rely on
the opening deformations induced by drying of hygroscopic bilayers.
The same mechanism allows the awns of Erodium cicutarium to anchor
firmly in the ground [6,7].

Besides their biological interest, seed dispersal strategies are inspir-
ing a new concept for distributed environmental monitoring based on
an ecosystem of plant seed-like soft robots [8,9]. Here we focus on the
mechanics of morphing of natural seeds and of their engineered bio-
inspired counterparts exploiting hygroscopic shrinking or swelling of a
hygroscopic gel in a bilayer architecture.

Timoshenko pioneered the study of the bending mechanism of bi-
layers, highlighting that the temperature-induced bending of bimetallic
strips results from the differences in thermal expansion coefficient in
each layer [10]. The same concept is at play in hygroscopic bilayers, gel
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bilayers in particular, with humidity being the driving stimulus instead
of temperature.

The dynamics of each active layer are controlled by the free-energy
reduction caused by solvent absorption from the environment. This
is driven by the competition between the entropy of mixing (which
favors solvent absorption) and the free-energy cost of the elastic defor-
mations required to accommodate volume changes caused by solvent
absorption. Solvent diffusion within the hygroscopic materials governs
the kinetics of this process. The creation of spontaneous curvature
in response to changes in the humidity of the environment is driven
by the continuity of displacements across the interface of the two
heterogeneous layers.

The morphing behavior of hygroscopic bilayer structures has at-
tracted considerable attention in recent literature, and several modeling
approaches have been proposed. Change in the shape of pinecone-like
and seedpod-like sheets, which correspond to systems with bending
and twisting deformation modes, has been modeled using the concept
of target metric and curvature tensors. The use of this concept has
been pioneered in [11] and then applied to many material systems
including, e.g., patterned gels [12], patterned films of liquid crystal
elastomers [13], and many more.

In the context of plant seeds, Armon et al. pioneered the use of this
approach, in which morphing thin films are treated as two-dimensional
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surfaces with time-dependent target metric and curvature tensors, and
studied in this way the seed pod opening in Bauhinia variegata [4].

oreover, Abdelmohsen et al. created a 3D multiphysics numerical
odel to characterize the hygroscopic behavior of wood based on the
on-linear theory of hyper-elastic solids. They considered the material’s
rthotropic elastic response and swelling behavior, assuming different
welling stretches in different directions [14]. Both these studies focus
n equilibrium shapes and do not explicitly resolve solvent diffusion
nd transient shapes.

Coupled fluid diffusion and finite deformation have been stud-
ed in the context of swelling hydrogels. Nardinocchi et al. used the
lory–Rehner model to study thin bilayer hydrogel sheets with dif-
erent anisotropic structures [15]. Liu et al. simulate the inhomoge-
eous anisotropic swelling in fiber-reinforced hydrogels. They added
nisotropic effects into the model by including terms in the free energy
epending on invariants related to fiber deformations [16]. They
onsider the elastic contribution of the deformation to the free energy
ut neglect the mixing contribution.

In this work, we developed a model for steady state and transient
tates (coupling diffusion/swelling and elasticity) in anisotropic hygro-
copic bilayers utilizing (3D) non-linear elasticity. The model is able to
redict transient and equilibrium configurations of hygroscopic bilayers
imilar to those observed in nature by Erodium cicutarium, whose awns
re straight when dry and recoil to a helical shape when wet.

. Free-energy density

We describe the behavior of an anisotropic hygroscopic bilayer
nder deformation and solvent diffusion, utilizing the Flory–Rehner
odel. This model’s main unknowns (state variables) are two fields de-

ined on the reference configuration , a subset of the three-
imensional ambient space. The first one is the point-valued deforma-
ion map 𝑓 that gives the current position 𝑥 of a point 𝑋 ∈  and the
urrent configuration 𝑓 (𝜏 ) of the body. We denote by 𝐹 = ∇𝑓 the
eformation gradient and by 𝐽 = det 𝐹 the jacobian determinant. The
econd is the scalar field 𝜇, representing the chemical potential.

Following the Flory–Rehner model for hydrogels [17,18], we write
he free-energy density per unit reference volume as

(𝐶, 𝜇) = 𝑊𝑒𝑙(𝐶) +𝑊𝑚𝑖𝑥
(

(det 𝐶)1∕2
)

−
𝜇
𝛺
(det 𝐶)1∕2 (2.1)

where 𝐶 = 𝐹 𝑇𝐹 is the right Cauchy–Green strain tensor obtained from
he deformation gradient 𝐹 = ∇𝑓 , 𝑊𝑚𝑖𝑥 is the solid-solvent free-energy
f mixing defined below, and 𝛺 is the solvent molar volume.

We assume that the elastic density energy 𝑊𝑒𝑙(𝐶) is the sum of
the isotropic neo-Hookean term and a transversely isotropic correction
inspired by [15,19].

𝑊𝑒𝑙(𝐶) = 1
𝐽0

(𝐺
2
[

𝐹 𝑇
0 𝐶𝐹0 ⋅ 𝐼 − 3

]

+ 𝛾 𝐺
2
[

𝐹 𝑇
0 𝐶𝐹0 ⋅ 𝑎 ⊗ 𝑎 − 1

]2) (2.2)

here 𝐼 is the identity, 𝑎 is the fiber orientation, 𝐽0 = det 𝐹0 = (det 𝐶0)
1
2 ,

is the shear modulus, and 𝛾 is a modulus quantifying the degree of
nisotropy. The tensor product 𝑎 ⊗ 𝑏 of vectors 𝑎 and 𝑏 is given in
omponents by (𝑎⊗𝑏)𝑖𝑗 = 𝑎𝑖𝑏𝑗 . In a bilayer geometry, these parameters
ay be different in the two layers. The first square bracket in Eq. (2.2)

s the classical neo-Hookean term tr
(

(𝐹𝐹0)𝑇 (𝐹𝐹0) − 1
)

. The second
square bracket is the standard stiffing term based on the 𝐼4 = |

|

𝐹𝐹0𝑎||
2.

In both terms, the deformation is measured with respect to the dry
state.

The concept of anisotropic materials can be modeled by adding
energetic contributions based on certain deformation invariants, as
in the second summand equation (2.2), which was introduced in the
early 90s, and aimed to describe the effects of elastic anisotropic
response [20,21]. To justify the choice for the terms in Eq. (2.2), we
emphasize that, in this paper, we are not trying to model specific
material systems in qualitative detail. The neo-Hookean energy and
the one-invariant anisotropic correction in Eq. (2.2) are chosen only
2

𝜆

because they are the simplest possible expressions in the literature.
Many other choices are possible [22], and selecting different terms
in Eq. (2.2) may become necessary to match quantitatively proper-
ties like the stress–strain response of a specific artificial or biological
material.

The choice of a reference configuration different from the dry one
is a consequence of our choice of describing the solid–water mixing
energy 𝑊𝑚𝑖𝑥(𝐶), with the Flory–Huggins form, which is widely used
o model the mixing behavior of the polymer network and the water
olecules [23]. To avoid a singularity in this term for the dry state, we

ollow [24] and define a reference state slightly swollen compared to
he dry one 𝑑 . We refer to this state as the free swollen state . The
ixing energy is expressed by:

𝑚𝑖𝑥 (𝐽 ) =
1
𝐽0

𝑅𝑇
𝛺

[

(

𝐽𝐽0 − 1
)

log
(

𝐽𝐽0 − 1
𝐽𝐽0

)

+ 𝜒
𝐽𝐽0 − 1
𝐽𝐽0

]

(2.3)

where 𝑅 is the universal gas constant, 𝑇 is the temperature, 𝜒 is Flory–
Huggins interaction parameter, and 𝐽 = det 𝐹 = (det 𝐶)

1
2 is the jacobian

determinant.
The swelling deformation from the dry to the reference state is

described by 𝐹0. We introduce the strain tensor 𝐶0 = 𝐹 𝑇
0 𝐹0, and the

welling stretches in the direction parallel and perpendicular to the
iber 𝜆0∥, and 𝜆0⟂. In view of transversal isotropic symmetry, we can
rite

0 = 𝜆20∥𝑎 ⊗ 𝑎 + 𝜆20⟂(I − 𝑎 ⊗ 𝑎) (2.4)

Using Eq. (2.4) and det 𝐶0 = 𝐽 2
0 , we can write Eq. (2.3) in more

explicit form

𝑊𝑚𝑖𝑥

(

(det 𝐶)
1
2
)

= 𝑅𝑇
𝛺

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝜆0∥𝜆20⟂(det 𝐶)
1
2 − 1

𝜆0∥𝜆20⟂

⎞

⎟

⎟

⎠

log
⎛

⎜

⎜

⎝

𝜆0∥𝜆20⟂(det 𝐶)
1
2 − 1

𝜆0∥𝜆20⟂(det 𝐶)
1
2

⎞

⎟

⎟

⎠

+
𝜒

𝜆0∥𝜆20⟂

𝜆0∥𝜆20⟂(det 𝐶)
1
2 − 1

𝜆0∥𝜆20⟂(det 𝐶)
1
2

⎤

⎥

⎥

⎦

(2.5)

To simplify the highly nonlinear governing equations following
rom (2.1), we approximate the energy in (2.1) with a suitable har-
onic expansion. In fact, for each value of the chemical potential 𝜇,

there is a preferred state (target state �̄�(𝜇)) that minimizes energy (2.1)
ith respect to 𝐶 at fixed 𝜇. We consider a Taylor expansion at order 2

for the free energy 𝑊 (𝐶, 𝜇) around �̄�(𝜇). The expression of the energy
an then be written as

(𝐶, 𝜇) = 𝑊 (𝐶, 𝜇)|𝐶=�̄�(𝜇) +
1
2

⟨

𝜕2𝑊
𝜕𝐶2

|

|

|

|𝐶=�̄�(𝜇)
(𝐶 − �̄�), (𝐶 − �̄�)

⟩

(2.6)

here the linear term is missing because 𝜕𝑊
𝜕𝐶

|

|

|𝐶=�̄�(𝜇)
= 0 by energy

inimality, and ⟨., .⟩ denotes the inner product of the vectors (𝐶 − �̄�).

3. Characterization of the reference state and the target state

The sketch in Fig. 1 my help the reader to grasp the overall structure
of our model.

3.1. Reference state

The reference state, which is defined by 𝐶 = 𝐼 = �̄�(𝜇0), is
characterized by
𝜕𝑊
𝜕𝐶

(

𝐶, 𝜇0
)|

|

|

|𝐶=𝐼=�̄�(𝜇0)
= 0 (3.1)

his condition expresses the fact that the material is in equilibrium
ith zero stress when the external chemical potential is the one of the

eference configuration 𝜇𝑒𝑥𝑡 = 𝜇0.
In view of Eq. (2.4), the expression in Eq. (3.1) depends only on 𝜇0,
0∥ and 𝜆0⟂. As shown in Appendix A, imposing that Eq. (3.1) holds is
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Fig. 1. Sketch of the dry, reference, and target configurations.
𝑐

equivalent to imposing the following relations between 𝜆0∥, 𝜆0⟂, and
𝜇0:

𝜆20⟂ = 𝜆20∥
(

1 + 2𝛾
(

𝜆20∥ − 1
))

(3.2)

𝜇0 =
𝐺𝛺
𝜆0∥

+ 𝑅𝑇

[

log

(

𝜆0∥𝜆20⟂ − 1

𝜆0∥𝜆20⟂

)

+ 1
𝜆0∥𝜆20⟂

+
𝜒

𝜆0∥2𝜆40⟂

]

(3.3)

These equations define 𝜆0∥ and 𝜆0⟂ implicitly as functions of 𝜇0 and will
appear as constraints in the numerical implementation of our model
(see Section 6).

3.2. Target state

The target state �̄� = �̄�(𝜇) corresponding to the value 𝜇 of the
chemical potential is defined by the condition following from energy
minimality

𝜕𝑊
𝜕𝐶

(𝐶, 𝜇)
|

|

|

|𝐶=�̄�(𝜇)
= 0 (3.4)

where transversal isotropic symmetry implies that

�̄� = �̄�(𝜇) = �̄�2∥𝑎 ⊗ 𝑎 + �̄�2⟂(𝐼 − 𝑎 ⊗ 𝑎) (3.5)

As before, the expression in Eq. (3.4) depends only on 𝜇, �̄�∥ and �̄�⟂.
As shown in Appendix A, imposing that Eq. (3.4) holds is equivalent to
imposing the following relations between �̄�∥, �̄�⟂, and 𝜇 :

�̄�2⟂ =
𝜆20∥�̄�

2
∥

𝜆20⟂

[

1 + 2𝛾
(

𝜆20∥�̄�
2
∥ − 1

)]

(3.6)

𝜇 = 𝐺𝛺
�̄�∥𝜆0∥

+ 𝑅𝑇

[

log

(

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂ − 1

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂

)

+ 1
�̄�∥𝜆0∥�̄�2⟂𝜆

2
0⟂

+
𝜒

𝜆20∥�̄�
2
∥�̄�

4
⟂𝜆

4
0⟂

] (3.7)

These equations define �̄�∥ and �̄�⟂ implicitly as functions of 𝜇 and will
appear as constraints in the numerical implementation of our model
(see Section 6).

4. Derivation of the governing equations

4.1. Mechanical equilibrium

The material has a target state �̄� = �̄�(𝜇) that it would like to
attain in the absence of external forces due to swelling caused by
humidity. The elastic part of the strain (i.e., the part that is responsible
3

for increasing the elastic energy with respect to the target state) is the
deviation from this state and can be expressed as

𝐸 = 1
2
(𝐶 − �̄�) (4.1)

Eq. (2.6) can be written in terms of E, as follows:

𝑊 (𝐸) = 𝑊 (�̄�) + 1
2
⟨C𝐸,𝐸⟩ (4.2)

where we have dropped from the notation the dependence on 𝜇 and
C is the fourth order tensor of the elastic moduli; explicit formulas for
this tensor are given in Appendix B.

From the expression in Eq. (4.2), using the fact that the integral of
this energy is stationary at an equilibrium state, we obtain the equation
for mechanical equilibrium

∇ ⋅ 𝑆 = 0 (4.3)

where 𝑆 is the first Piola–Kirchhoff stress tensor, defined by

𝑆 = 𝐹𝑆𝑐 (4.4)

where 𝑆𝑐 = 𝜕𝑊
𝜕𝐸 = C𝐸 is the Cosserat stress tensor. This is shown in

detail in Appendix A. Eq. (4.4) can thus be written as

∇ ⋅ (𝐹𝑆𝑐 ) = 0 (4.5)

which is one of the governing equations for our system, the one express-
ing mechanical equilibrium. This is coupled with boundary conditions
on deformation or stress, as appropriate.

4.2. Diffusion

In this section, we derive the equation governing solvent diffusion;
we start from the classical relation that links solvent concentration and
the gradient of the chemical potential.

ċ = ∇ ⋅ (𝑀∇𝜇) (4.6)

Here 𝑐 is the molar solvent concentration, and 𝑀 is the mobility tensor
which describes how fast the solvent flows.

Solvent and solid are incompressible, but changes in water concen-
tration can cause variations in the system’s volume. As a result, the vol-
umetric constraint couples water concentration to system deformation
and vice versa. This condition is expressed by

𝐽𝐽0 = 1 +𝛺𝐽0𝑐 (4.7)

where 𝐽 = (det 𝐶)
1
2 is the Jacobian determinant. Taking the derivative

of Eq. (4.7) with respect to time leads to

̇ = 1 �̇� (4.8)

𝛺
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By combining Eqs. (4.6), and Eq. (4.8), we get:

𝛺∇ ⋅ (𝑀∇𝜇) = �̇� = 𝑔
(

�̄�∥, �̄�⟂, 𝐸, �̇�
)

(4.9)

The RHS of Eq. (4.9) emphasizes that �̇� depends solely on �̄�∥, �̄�⟂, 𝐸,
and �̇�. The following explicit expression of 𝑔

(

�̄�∥, �̄�⟂, 𝐸, �̇�
)

is derived
in Appendix A.

𝑔
(

�̄�∥, �̄�⟂, 𝐸, �̇�
)

=�̄�∥�̄�2⟂
{

2
(

�̄�−2∥ − �̄�−2⟂
) [

�̄�−1∥
̇̄𝜆∥
(

1 − 2
(

�̄�−2∥ − �̄�−2⟂
))

−4�̄�−2⟂ �̄�∥ ̇̄𝜆∥ + 2�̄�−1⟂
̇̄𝜆⟂
]

− 2�̄�−4⟂
(

2�̄�∥ ̇̄𝜆∥
)}

(𝐸 ⋅ 𝐴)

+ 2�̄�⟂
(

�̄�⟂ ̇̄𝜆∥ + 2�̄�∥ ̇̄𝜆⟂
)

+ 2
(

̇̄𝜆∥ + 2�̄�−1⟂ �̄�∥ ̇̄𝜆⟂
)

tr 𝐸

− 4�̄�−1⟂ �̄�∥ ̇̄𝜆⟂(𝐸 ⋅ 𝑃 ) + 2�̄�∥�̄�2⟂
(

�̄�−2∥ 𝐴 + �̄�−2⟂ 𝑃
)

⋅ �̇�

(4.10)

Eq. (4.9) is coupled with the boundary condition 𝜇 = 𝜇𝑒𝑥𝑡 on 𝜕.

5. The case of one passive layer

Our model applies to general bilayers, for which each of the two
layers is active, anisotropic, and elastic, as described in the previous
sections. A special but biologically relevant example of an active bilayer
is one where one layer is anisotropic and active, and the other is
passive. For example, the bottom layer can be a passive layer made
up of a purely elastic isotropic material for which the elastic energy
vanishes in the reference configuration, where the strain 𝐸 = 0. We
model this passive layer as infinitely permeable to the solvent (infinite
mobility 𝑀 = ∞), allowing it to equilibrate to the external chemical
potential (𝜇𝑒𝑥𝑡) instantaneously. Thus, the chemical potential at the
interface between the two layers has the value (𝜇 = 𝜇𝑒𝑥𝑡). Furthermore,
we assume that this passive layer has no coupling between water and
mechanics. As a consequence, the mixing part of the energy in Eq. (2.1)
will be omitted. The energy expression for the passive layer will then
be as follows

𝑊 (𝐶) = 𝑊𝑒𝑙(𝐶) = 1
2
⟨C𝐸,𝐸⟩ (5.1)

The mechanical behavior of this isotropic material is described
through the elasticity tensor C, which can be expressed using the
isotropic Hooke’s law:

𝑆𝑐 = C𝐸 = 2𝐺𝐸 + 𝑘(𝑡𝑟𝐸)𝐼 (5.2)

where 𝐺 is the shear modulus and 𝑘 is Lamé modulus.

6. Numerical implementation

The model discussed in the previous sections has been implemented
and numerically solved in the finite element software COMSOL Multi-
physics v5.6. The governing Eqs. (6.2)–(6.4) were implemented using
the weak form PDE module. The time-stepping approach employs the
implicit adaptive step-size Generalized Alpha (GA) or BDF solver. An
iterative quasi-Newton algorithm is used to solve the non-linear alge-
braic system that emerges from the finite element discretization during
each time step. The direct solver MUMPS solves the linearized system
at every iteration. The state variables implemented in COMSOL are the
deformation 𝑓 measured from the reference state  and the chemical
potential 𝜇, with  being the computational domain representing the
initial, free-swollen state. The reference configuration of our (symmet-
ric) bilayer structure is denoted by  ∶= [0, 𝐿] × [−𝑊

2 , 𝑊2 ] × [−𝐻
2 ,

𝐻
2 ]

⊂ R3, where L is the length, W is the total width, and H is the total
thickness. Each of the two halves of the bilayer 𝑡𝑜𝑝 and 𝑏𝑜𝑡 has
thickness 𝐻

2 . For a point 𝑥 ∈ , we write 𝑥 = (𝑥, 𝑦, 𝑧), 𝑥 ∈ [0, 𝐿],
𝑦 ∈ [−𝑊

2 , 𝑊2 ], and 𝑧 ∈ [−𝐻
2 ,

𝐻
2 ] (see Fig. 2).

First, we impose the relations between �̄�0∥, �̄�0⟂, and 𝜇0. While
Eq. (3.2) expresses �̄�0⟂ explicitly in terms of �̄�0∥, Eq. (3.3) is enforced
as a constraint between �̄� , �̄� , and 𝜇 . We implement this constraint
4

0∥ 0⟂ 0
Fig. 2. Reference configuration of the bilayer structure and the global reference frame.

using COMSOL distributed ODEs interface: setting the coefficients of
time derivatives to zero, we impose that the source term vanishes,
𝑓 = 0, where

𝑓 = 𝐺𝛺
𝜆0∥

+ 𝑅𝑇

[

log

(

𝜆0∥𝜆20⟂ − 1

𝜆0∥𝜆20⟂

)

+ 1
𝜆0∥𝜆20⟂

+
𝜒

𝜆0∥2𝜆40⟂

]

− 𝜇0 = 0 (6.1)

We deal with Eqs. (3.6) and (3.7), enforcing the relations between �̄�∥,
�̄�⟂, and 𝜇, in exactly the same way.

Then, we recast the remaining equations in a weak form. The
mechanical equilibrium equation reads:

∫
𝑆𝑐 ⋅ �̃� = ∫

𝐹𝑆𝑐 ⋅ ∇𝑓 = ∫
𝑆 ⋅ ∇𝑓 = 0 (6.2)

where �̃� and 𝑓 represent test functions, and we use Lagrange quadratic
shape functions.

The solvent balance is written in weak form as

∫
ℎ ⋅ ∇�̃� − ∫𝛽

𝑔
(

�̄�∥, �̄�⟂, 𝐸, �̇�
)

�̃� = 0 (6.3)

where ℎ = −𝑀∇𝜇 is the solvent flux and �̃� is a test function (we use
Lagrange quadratic shape functions). The boundary condition 𝜇 = 𝜇ext
is enforced in weak form as

∫𝜕

(

𝜇 − 𝜇ext
) ̃̄𝜆 = 0 (6.4)

where ̃̄𝜆 is a test function (where, again, we use Lagrange quadratic
shape functions).

The problem we solved numerically can be summarized as follows:
Find the deformation map 𝑓 , the chemical potential 𝜇 on , and the
Lagrange multiplier ̃̄𝜆 on 𝜕 such that the mechanical and chemical
equilibrium is satisfied in weak form (Eqs. (6.2)–(6.3)), the external
chemical potential has the value 𝜇𝑒𝑥𝑡 (Eq. (6.4)), one end face of the
bilayer is clamped and the rest of its boundary is free.

7. Test cases and discussion of the results

As a showcase of the diversity of motions and shapes that can
be obtained with our model, we have selected the case of a bilayer
made of one active and one passive layer. We model a system that,
in the reference configuration corresponding to the reference chemical
potential 𝜇0, is a straight cantilever. In this straight configuration, the
active layer is stress-free and in a state of wetting which is intermediate
between the fully wet and the fully dry cases. As a consequence, the
bilayer will deform when either drying or further wetting is induced
by a change in environmental conditions.

7.1. Equilibrium shapes corresponding to given �̄�

As a first test case, we consider the simpler problem of computing
equilibrium shapes corresponding to a freely assigned target state �̄�,
which is not necessarily achievable by swelling. We assume that �̄� =
∥𝑡𝑜𝑝
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Fig. 3. Variety of motions and shape changes with respect to the reference configura-
tion resulting from different angles 𝜃 between fiber orientation and longitudinal axis
of the specimen. Here �̄�∥𝑡𝑜𝑝 = 1.04, and �̄�⟂𝑡𝑜𝑝 = �̄�∥𝑏𝑜𝑡 = �̄�⟂𝑏𝑜𝑡 = 1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

1.04 and �̄�⟂𝑡𝑜𝑝 = 1 (top layer anisotropic and active), and �̄�∥𝑏𝑜𝑡 = �̄�⟂𝑏𝑜𝑡 =
1 (bottom layer isotropic and passive). These parameters correspond
to a material that, upon swelling, would stretch more in the direction
parallel to the fibers than in the perpendicular one.

To study the effect of different fiber orientations, we consider the
following values for the fiber angle 𝜃 between the fiber 𝑎 and the x-axis:
𝜃 = 0◦, 𝜃 = 45◦, and 𝜃 = 90◦. The corresponding deformed geometries
are shown in Fig. 3.

The color pattern in the deformed shapes is just �̄�∥ and it is used to
distinguish the top layer (that in this case elongates in the direction of
the fiber) from the bottom one. The feature common to all of the panels
is that the mid-surface deforms to a cylindrical surface. Of particular
interest is the case of the panel (c) in Fig. 3, where the downward global
bending of the bilayer is entirely due to the presence of the clamp
boundary condition at the constrained end of the cantilever. In fact,
in the absence of this constraint, the steady-state equilibrium configu-
ration would consist of a straight cylindrical barrel, with the axis of the
cylinder along the longitudinal axis of the specimen. This configuration
is incompatible with the prescribed displacements at the clamp, which
must all vanish. In order to resolve this conflict, a three-dimensional
state of stress is generated at the clamped end, and this results in the
downward bending of the structures. Dimensionally-reduced models
for the active bilayer (i.e., one-dimensional or two-dimensional models
rather than the fully three-dimensional model described here) would
be unable to resolve the three-dimensional nature of the mechanical
stresses near the clamp and would therefore be unable to predict the
global downward bending of the bilayer

7.2. Steady-states at given 𝜇𝑒𝑥𝑡

We now move to the problem of finding equilibrium shapes cor-
responding to a given value of the external chemical potential when
the relationship between the principal stretches of the target state
and the chemical potential is given by (3.6)–(3.7). We analyze the
steady-state configurations that occur as the active layer experiences
more wetting or drying, depending on whether the chemical potential
increases or decreases relative to the reference value 𝜇 . At steady state,
5
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Table 1
Parameter values used in the numerical simulations.

Parameter Symbol Value

Anisotropy (top layer) 𝛾𝑡𝑜𝑝 0.2
Anisotropy (bottom layer) 𝛾𝑏𝑜𝑡 0
Solvent diffusivity 𝐷 1 × 10−5 m2

s
Lamé modulus 𝑘 500 MPa
Shear modulus (top layer) [27] 𝐺𝑡𝑜𝑝 30 MPa
Shear modulus (bottom layer) [27] 𝐺𝑏𝑜𝑡 50 MPa
Universal gas constant 𝑅 8.134 J

mol K
Temperature 𝑇 293 K
Flory–Huggins interaction parameter [28] 𝜒 0.2
Water molar volume 𝛺 1 × 10−5 m3

mol
Initial chemical potential 𝜇0 −100 J

mol
Thickness (top layer) ℎ𝑡𝑜𝑝 100 μm
Thickness (bottom layer) ℎ𝑏𝑜𝑡 100 μm
Width 𝑊 5 mm
Length 𝐿 50 mm

the chemical potential in the interior of the bilayer has equilibrated to
a uniform value, that of the external environment, 𝜇 = 𝜇𝑒𝑥𝑡 in . The
target state in the top layer (the only one that is active) is �̄� = �̄�(𝜇𝑒𝑥𝑡).
The corresponding values of �̄�∥𝑡𝑜𝑝(𝜇𝑒𝑥𝑡) and �̄�⟂𝑡𝑜𝑝(𝜇𝑒𝑥𝑡) are enforced
through the implicit Eqs. (3.6)–(3.7), acting as constraints. The equi-
librium configuration corresponding to �̄�(𝜇𝑒𝑥𝑡) follows by solving the
equilibrium equation (6.2), just like in the previous section. The values
for material and geometric parameters used in all the simulations that
follow are given in Table 1.

First, we examine the hygroscopic behavior of the material in the
wetting situation (𝜇𝑒𝑥𝑡 > 𝜇0) when the external chemical potential
(𝜇𝑒𝑥𝑡) increases from 𝜇 = −100 J

mol to 𝜇 = −30 J
mol . Fig. 4 illustrates

a situation similar to Fig. 3, namely, further wetting from an initial
state of intermediate wetting. The difference is that, now, the active
material elongates upon wetting along the direction perpendicular to
the fibers more than along the fibers because it is assumed that the
fibers are more resistant to stretching than the surrounding matrix
(see, e.g., (3.2) and recall that the anisotropy parameter 𝛾 has been
assumed positive). The color patterns in the deformed shapes refer to
the moisture content in the top layer (specifically, the ratio between
the steady-state concentration 𝑐 and the concentration 𝑐0 in the initial
configuration). Ratios larger than 1 indicate moisture absorption with
respect to the initial, partially wet state. Only the top active layer is
shown in this figure and in the following ones.

Then, we investigate the coiling motions caused by decreasing the
humidity in the surrounding environment starting from a partially wet
state. We test the drying behavior for a particular angle (𝜃 = 75◦),
which is motivated by studies of the coiling behavior of natural seeds
in Abraham et al. [25]. The data show that the fiber of the seeds
is at an angle range between 70◦ and 80◦. The chemical potential is
reduced from 𝜇 = −100 J

mol to 𝜇 = −350 J
mol . The panels have different

configurations resulting from different choices for the width W, while
all other material and geometric parameters are kept constant. As the
external humidity decreases, the structure will shrink, with the orange
outer layer representing the deformed configuration of the active top
layer. This shrinking will occur perpendicular to the fibers and induce
twisting and bending, resulting in spontaneous curvature and torsion of
the layer midline. For small enough 𝑊 we obtain a helix with a narrow
pitch. When 𝑊 is too large, the layer coils onto itself, overlapping at
each new turn. To resolve correctly the outer radius of this and similar
cylindrical geometries, such as the ones of Figs. 3(a) and 4(a), we would
need to include the effects of self-contact in our model, see e.g. [26]. We
show, nevertheless, these (slightly) unrealistic geometries in Fig. 5(b),
for comparison with Fig. 5(a).

7.3. Transient states

We describe the transient states corresponding to varying the chem-
ical potential of the environment from 𝜇 to 𝜇 . The initial state of the
0 𝑒𝑥𝑡
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Fig. 4. Steady state geometries and solvent concentration relative to the initial value 𝑐0 for further wetting with respect to an initial, partially wet state; two different angles 𝜃
between fiber orientation and longitudinal axis of the specimen are shown in the two panels. Only the top active layer is shown. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Steady state geometries and solvent concentration relative to the initial value 𝑐0 for a drying experiment starting from an initial, partially wet state; different widths lead
to different configurations characterized by different degree of overlapping between successive coils. Only the top active layer is shown.
Fig. 6. Representative snapshots showing time-resolved coiling upon swelling for fiber angle 𝜃 = 45◦ when the external chemical potential (𝜇𝑒𝑥𝑡) increases from 𝜇 = −100 J
mol

to
𝜇 = −30 J

mol
with steady rate of change over 10 min. Only the top active layer is shown.
system is described by 𝜇 = 𝜇0 in  and 𝐶 = 𝐼 = �̄�(𝜇0). Then, we change
𝜇𝑒𝑥𝑡 with a prescribed time ramp, e.g., at a constant rate, and impose the
BC 𝜇 = 𝜇𝑒𝑥𝑡 at 𝜕. The chemical potential at points inside the bilayer
 (or inside the active part of the bilayer if only one layer is active,
say 𝑡𝑜𝑝) evolves from the initial state 𝜇0 to the final equilibrium value
𝜇 = 𝜇𝑒𝑥𝑡, constant throughout the body (or throughout 𝑡𝑜𝑝). During
the transient in which 𝜇 varies from the initial to the final value, the
6

𝑒𝑥𝑡
chemical potential in the active layer 𝜇(𝑥, 𝑡) varies in space and time so
that also the target state of the material �̄� = �̄�(𝜇(𝑥, 𝑡)) evolves in time
and space.

Figs. 6 and 7 show representative examples of slow time-dependent
evolutions through (quasi-equilibrium) transient states. In the first
figure, as the external chemical potential (𝜇𝑒𝑥𝑡) increases from 𝜇 =
−100 J to 𝜇 = −30 J with a slow, steady rate of change over 10 min,
mol mol
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Fig. 7. Representative snapshots showing time-resolved coiling upon shrinking for fiber angle 𝜃 = 75◦ when the external chemical potential (𝜇𝑒𝑥𝑡) declines from 𝜇 = −100 J
mol

to
𝜇 = −350 J

mol
with steady rate of change over 10 min. Only the top active layer is shown.
the active layer swells as it progressively wets, and the bilayer bends.
The fiber angle is 𝜃 = 45◦, and the configuration finally converges to
the steady state shown in Fig. 4(b).

In the other figure, when (𝜇𝑒𝑥𝑡) decrease from 𝜇 = −100 J
mol to

𝜇 = −350 J
mol over the same period, the top active layer shrinks and

dries, and the configuration eventually converges to the steady state
shown in Fig. 5(a).

8. Conclusion

In this work, we have developed a three-dimensional model for
the coupled evolution of elastic deformations and moisture content for
an elastic soft hygroscopic bilayer. The system of governing equations
for mechanical equilibrium and chemical diffusion has been deduced
based on the use of the Flory–Rehner model to describe the free energy
of a hygroscopic material. This model has then been implemented
in COMSOL Multiphysics using weak formulations to characterize the
bilayer’s equilibrium and transient shapes.

The model was able to simulate the wide variety of equilibrium
configurations exhibited by bilayer structures at a steady state. In
particular, when only the top layer is active, while the bottom one
is passive and isotropic, different shapes (circular roll, helical struc-
tures with curvature and torsion of the midline, cylindrical barrel)
are observed in correlation to different fiber orientations. The steady
configurations we have obtained and the transient states traversed
to reach the final configuration are qualitatively similar to the ones
typically observed in natural and artificial systems. Finally, realistic
shapes for the coiling behavior induced by drying can be attained by
tuning the width value, which determines the degree of overlapping in
the structure as coiling proceeds.

While our results are mainly of a qualitative nature, they show the
consequences on the morphed shapes of a specific choice of material
parameters (such as the orientation of the fibers and their stiffness),
geometry (such as the width vs. thickness or width vs. length ratios),
and mechanical constraints (such as the role of the clamp in Fig. 3(c)).
These restrictions on the morphed shapes that can be obtained may
prove helpful in the design of artificial motile hygromorphic bilayers.

Future work will explore more fully the dependence of achievable
steady shapes and shape evolution on the material and geometric
parameters, also in the presence of external forces and environmental
constraints that may oppose and hinder the hygroscopic shape changes.
7
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Appendix A. Details on reference and target states, derivation of
governing equations

A.1. Reference and target state

We start by taking the derivative 𝜕𝑊
𝜕𝐶 of Eq. (2.1)

𝜕𝑊
𝜕𝐶

(𝐶, 𝜇) = 1
(

det 𝐶0
)1∕2

𝐺
2
[

𝐹0𝐹
𝑇
0 + 2𝛾

(

𝐼4(𝐶) − 1
)

𝐹0𝑎 ⊗ 𝐹0𝑎
]

+ 1
2
(det 𝐶)

1
2
(

𝑊 ′
𝑚𝑖𝑥

(

(det 𝐶)
1
2
)

−
𝜇
𝛺

)

𝐶−1
(A.1)

where 𝐼4 = |

|

𝐹𝐹0𝑎||
2 = 𝐹𝐹0𝑎 ⋅ 𝐹𝐹0𝑎 = 𝐹 𝑇

0 𝐶𝐹0 ⋅ 𝑎 ⊗ 𝑎.
Then, we impose that the reference state 𝐶 = 𝐼 = �̄�(𝜇0) minimizes

the free energy at fixed 𝜇 = 𝜇0
𝜕𝑊
𝜕𝐶

(

𝐶, 𝜇0
)|

|

|

|𝐶=�̄�0(𝜇0)=𝐼
= 0 (A.2)

Similarly, we impose that the target state 𝐶 = �̄�(𝜇) minimizes the free
energy at fixed 𝜇

𝜕𝑊 (𝐶, 𝜇)
|

|

|

= 0 (A.3)

𝜕𝐶

|𝐶=�̄�(𝜇)
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𝜇

𝜇

A

c

𝐸

s

𝐸

w

w

e

𝑐

W
𝐶
2

(

By symmetry, setting 𝐴 = 𝑎 ⊗ 𝑎 and 𝑃 = 𝐼 − 𝑎 ⊗ 𝑎, we have:

𝐹0 = 𝜆0∥𝐴 + 𝜆0⟂𝑃 (A.4)

and

𝐹 𝑇
0 𝐹0 = 𝜆20∥𝐴 + 𝜆20⟂𝑃 (A.5)

so that

𝑑𝑒𝑡(𝐹 𝑇
0 𝐹0) = 𝜆20∥𝜆

4
0⟂ (A.6)

Correspondingly, the symmetry properties in the target state imply

�̄�(𝜇) = �̄�2∥𝐴 + �̄�2⟂𝑃 (A.7)

Using Eq. (A.5), we can write the first derivative of the mixing energy
(𝑊 ′

𝑚𝑖𝑥) as follows

𝑊 ′
𝑚𝑖𝑥(det 𝐶)

1
2
|𝐶=𝐼 = 𝑅𝑇

𝛺

[

log

(

𝜆0∥𝜆20⟂ − 1

𝜆0∥𝜆20⟂

)

+ 1
𝜆0∥𝜆20⟂

+
𝜒

𝜆20∥𝜆
4
0⟂

]

(A.8)

Then, substituting Eq. (A.5) in (A.2), we obtain
𝜕𝑊
𝜕𝐶

(

𝐼, 𝜇0
)

= 1
(

det 𝐶0
)1∕2

𝐺
2
[

𝐹0𝐹
𝑇
0 + 2𝛾

(

𝐼4 − 1
)

𝐹0𝑎 ⊗ 𝐹0𝑎
]

+ 1
2
(det 𝐼)

1
2
(

𝑊 ′
𝑚𝑖𝑥

(

(det 𝐼)
1
2
)

−
𝜇0
𝛺

)

𝐼−1 = 0
(A.9)

By pre-multiplying Eq. (A.9) by 𝐹 𝑇
0 and post-multiplying it by 𝐹−𝑇

0 we
btain, after rearrangements,

𝐹 𝑇
0 𝐹0

(

𝑑𝑒𝑡
(

𝐹 𝑇
0 𝐹0

))1∕2
[𝐼 + 2�̃�(𝑎 ⊗ 𝑎)] = − 1

𝐺

(

𝑊 ′
𝑚𝑖𝑥(1) −

𝜇0
𝛺

)

𝐼 (A.10)

where �̃� = 𝛾
(

𝐹 𝑇
0 𝐹0 ⋅ 𝑎 ⊗ 𝑎 − 1

)

. We then multiply Eq. (A.10) by 𝐴 =
𝑎 ⊗ 𝑎 and obtain

𝜇0 =
𝐺𝛺

𝜆0∥𝜆20⟂

[

𝜆20∥ + 2𝛾
(

𝜆20∥ − 1
)

𝜆20∥
]

+ 𝑅𝑇

[

log

(

𝜆0∥𝜆20⟂ − 1

𝜆0∥𝜆20⟂

)

+ 1
𝜆0∥𝜆20⟂

+
𝜒

𝜆20∥𝜆
4
0⟂

] (A.11)

Moreover, we multiply Eq. (A.10) by 𝑃 = 𝐼 − 𝑎 ⊗ 𝑎 and obtain

𝜇0 =
𝐺𝛺
𝜆0∥

+ 𝑅𝑇

[

log

(

𝜆0∥𝜆20⟂ − 1

𝜆0∥𝜆20⟂

)

+ 1
𝜆0∥𝜆20⟂

+
𝜒

𝜆20∥𝜆
4
0⟂

]

(A.12)

Eqs. (3.6) and (3.7) are obtained in a similar way. By substituting
Eq. (A.7) in Eq. (A.3), we get

1
𝜆0∥𝜆20⟂

𝐺
[

𝜆20∥𝐴 +𝜆20⟂𝑃⟂ + 2𝛾
(

𝜆20∥�̄�
2
∥ − 1

)

𝜆20∥𝐴
]

+
(

�̄�∥�̄�
2
⟂
)

{

𝑅𝑇

[

log

(

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂ − 1

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂

)

+ 1
�̄�∥𝜆0∥�̄�2⟂𝜆

2
0⟂

+
𝜒

𝜆20∥�̄�
2
∥�̄�

4
⟂𝜆

4
0⟂

]

−
𝜇
𝛺

}(

�̄�−2∥ 𝐴 +�̄�−2⟂ 𝑃⟂
)

= 0

(A.13)

Multiplying Eq. (A.13) by 𝐴 = 𝑎 ⊗ 𝑎 we get

=
�̄�∥𝜆0∥
�̄�2⟂𝜆

2
0⟂

𝐺𝛺
[

1 + 2𝛾
(

𝜆20∥�̄�
2
∥ − 1

)]

+ 𝑅𝑇

[

log

(

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂ − 1

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂

)

+ 1
�̄�∥𝜆0∥�̄�2⟂𝜆

2
0⟂

+
𝜒

𝜆20∥�̄�
2
∥�̄�

4
⟂𝜆

4
0⟂

]

(A.14)

Finally, multiplying Eq. (A.13) by 𝑃 = 𝐼 − 𝑎 ⊗ 𝑎 we get

= 𝐺𝛺
�̄�∥𝜆0∥

+ 𝑅𝑇

[

log

(

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂ − 1

�̄�∥𝜆0∥�̄�2⟂𝜆
2
0⟂

)

+ 1
�̄�∥𝜆0∥�̄�2⟂𝜆

2
0⟂

+
𝜒

2 ̄2 ̄4 4

] (A.15)
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𝜆0∥𝜆∥𝜆⟂𝜆0⟂
.2. Mechanical equilibrium

In this part, we derive the mechanical equilibrium equations. We
an write the strain equation as follows

(𝑓 ) = 1
2
(

∇𝑓𝑇∇𝑓 − �̄�
)

(A.16)

o that

(𝑓 + 𝑡𝛿𝑓 ) =1
2
(

∇𝑓𝑇∇𝑓 − �̄�
)

+ 1
2
(

∇𝑓𝑇∇𝛿𝑓 + ∇𝑓 (∇𝛿𝑓 )𝑇
)

𝑡

+ 1
2
(

(∇𝛿𝑓 )𝑇∇𝑓
)

𝑡2
(A.17)

We impose the condition that the integral of the energy,

(𝑓 ) = ∫
𝑊 (𝐸(𝑓 )) (A.18)

here 𝑊 is given by (4.2), is stationary at 𝑓 (at fixed 𝜇) as follows

𝑑
𝑑𝑡

(𝑓 + 𝑡𝛿𝑓 )
|

|

|

|𝑡=0
= ∫

𝜕𝑊
𝜕𝐸

(𝐸(𝑓 )) ⋅ 𝑑
𝑑𝑡

𝐸(𝑓 + 𝑡𝛿𝑓 )
|

|

|

|

|𝑡=0

= ∫
C𝐸(𝑓 ) ⋅ 𝑠𝑦𝑚

(

∇𝑓𝑇∇𝛿𝑓
)

(A.19)

here we have used that 𝜕𝑊
𝜕𝐸 = C𝐸(𝑓 ) and 𝑑𝐸

𝑑𝑡 (𝑓 + 𝑡𝛿𝑓 )||
|𝑡=0

=
𝑠𝑦𝑚

(

∇𝑓𝑇∇𝛿𝑓
)

which follows by taking the derivative at 𝑡 = 0 in the
xpression (A.17)
𝑑𝐸
𝑑𝑡

(𝑓 + 𝑡𝛿𝑓 )
|

|

|

|𝑡=0
= 1

2
(

∇𝑓𝑇∇𝛿𝑓 + ∇𝑓 (∇𝛿𝑓 )𝑇
)

= 𝑠𝑦𝑚
(

∇𝑓𝑇∇𝛿𝑓
)

(A.20)

Since C𝐸(𝑓 ) is symmetric, Eq. (A.19) can be rewritten as

∫
C𝐸(𝑓 ) ⋅ ∇𝑓𝑇 𝛿𝑓 = ∫

𝐹C𝐸 ⋅ ∇𝛿𝑓 = 0 (A.21)

which is the weak form of Eq. (4.3) because 𝐹C𝐸 = 𝐹𝑆𝑐 = 𝑆.

A.3. Diffusion

In this part, we show the derivation of the term 𝑔
(

�̄�∥, �̄�⟂, 𝐸, �̇�
)

in
the RHS of the diffusion Eq. (4.9) in Section 4.2. First, we take the time
derivative of the solvent concentration:

̇ = �̇�
𝛺

= 1
𝛺

(

(det 𝐶)1∕2
). = 1

2𝛺
(det 𝐶)−

1
2 cof 𝐶 ⋅ �̇�

= 1
2𝛺

(det 𝐶)
1
2 𝐶−1 ⋅ �̇�

(A.22)

e then substitute the relation between the target state and the strain
= �̄� + 2𝐸 in Eq. (A.22), and compute the Taylor expansion at order

det 𝐶)
1
2 𝐶−1 ⋅ �̇� =(det �̄�)

1
2
{

�̄�−1 [𝐼 − 2𝐸�̄�−1 + tr
(

�̄�−1𝐸
)

𝐼
]

⋅ ̇̄𝐶 + 2�̄�−1 ⋅ �̇�
}

+𝐻.𝑂.𝑇 .
(A.23)

From the symmetry properties of the anisotropic material, we get
̇̄𝐶 = 2�̄�∥ ̇̄𝜆∥𝐴 + 2�̄�⟂ ̇̄𝜆⟂𝑃 (A.24)

and

�̄�−1 = �̄�−1∥ 𝐴 + �̄�−1⟂ 𝑃 (A.25)

For simplicity, we will divide Eq. (A.23) into parts and use the relations
in Eqs. (A.24) and (A.25) in all parts. The first part is �̄�−1𝐸�̄�−1 which
could be written as:

�̄�−1𝐸�̄�−1 =
(

𝜆−2∥ 𝐴 + 𝜆−2⟂ 𝑃
)

𝐸
(

𝜆−2∥ 𝐴 + 𝜆−2⟂ 𝑃
)

(A.26)

The following four equations can be used to simplify Eq. (A.23)

𝐴𝐸𝑃 = 𝐴𝐸(𝐼 − 𝐴) = 𝐴𝐸 − 𝐴𝐸𝐴 = 𝐴𝐸 − (𝐸 ⋅ 𝐴)𝐴 (A.27)

𝐴𝐸𝐴 = (𝑎⊗𝑎)𝐸(𝑎⊗𝑎) = (𝑎⊗𝑎)(𝐸𝑎⊗𝑎) = (𝐸𝑎⋅𝑎)𝑎⊗𝑎 = (𝐸𝑎⋅𝑎)𝐴 = (𝐸⋅𝐴)𝐴
(A.28)
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w
o

(

a

(

h

a

𝐶

a

𝐶

T
o

𝜎

𝑃𝐸𝐴 = (𝐼 − 𝐴)𝐸𝐴 = 𝐸𝐴 − 𝐴𝐸𝐴 = 𝐸𝐴 − (𝐸 ⋅ 𝐴)𝐴 (A.29)

𝑃𝐸𝑃 = (𝐼 − 𝐴)𝐸(𝐼 − 𝐴) = 𝐸 − 𝐴𝐸 − 𝐸𝐴 + 𝐴𝐸𝐴 (A.30)

Using the above relations, we can write Eq. (A.26) as follows:

�̄�−1𝐸�̄�−1 = �̄�−4∥ (𝐸 ⋅ 𝐴)𝐴 + �̄�−2∥ �̄�−2⟂ [2 sym(𝐴𝐸) − 2(𝐸 ⋅ 𝐴)𝐴]

+ �̄�−4⟂ [𝐸 − 2 sym(𝐴𝐸) + (𝐸 ⋅ 𝐴)𝐴]
(A.31)

The part tr
(

�̄�−1𝐸
)

from Eq. (A.23) is written as:

tr
(

�̄�−1𝐸
)

= tr
[(

�̄�−2∥ 𝐴 + �̄�−2⟂ 𝑃
)

𝐸
]

= tr
(

�̄�−2∥ 𝐴𝐸
)

+ tr
(

�̄�−2⟂ 𝑃𝐸
)

= tr
(

�̄�−2∥ 𝑎 ⊗ 𝐸𝑎
)

+ tr
(

�̄�−2⟂ (𝐸 − 𝐴𝐸)
)

= �̄�−2∥ 𝐸 ⋅ 𝐴 + �̄�−2⟂ [tr 𝐸 − tr 𝐸𝐴]

=
(

�̄�−2∥ − �̄�−2⟂
)

𝐸 ⋅ 𝐴 + �̄�−2⟂ tr 𝐸

(A.32)

By collecting Eqs. (A.31) and (A.32) we could write
[

1 + tr
(

�̄�−1𝐸
)]

𝐶−1−
2�̄�−1𝐸�̄�−1 as shown below:
[

1 + tr
(

�̄�−1𝐸
)]

𝐶−1 − 2�̄�−1𝐸�̄�−1 =
[

1 +
(

�̄�−2∥ − �̄�−2⟂
)

𝐸 ⋅ 𝐴 + �̄�−2⟂ tr 𝐸
]

(

�̄�−2∥ 𝐴 + �̄�−2⟂ 𝑃
)

− 2�̄�−4∥ (𝐸 ⋅ 𝐴)𝐴 − 2�̄�−2∥ �̄�−2⟂
[2 sym(𝐴𝐸) − 2(𝐸 ⋅ 𝐴)𝐴] − 2�̄�−4⟂ [𝐸 − 2 sym(𝐴𝐸)

+ (𝐸 ⋅ 𝐴)𝐴]

=
{[

1 +
(

�̄�−2∥ − �̄�−2⟂
)

(𝐸 ⋅ 𝐴) + �̄�−2⟂ tr 𝐸
]

�̄�−2∥

−2�̄�−4∥ (𝐸 ⋅ 𝐴) + 4�̄�−2∥ �̄�−2⟂ (𝐸 ⋅ 𝐴) − 2�̄�−4⟂ (𝐸 ⋅ 𝐴)
}

𝐴

+
[

1 +
(

�̄�−2∥ − �̄�−2⟂
)

(𝐸 ⋅ 𝐴) + �̄�−2⟂ tr 𝐸
]

�̄�−2⟂ 𝑃 − 2
(

�̄�−2∥ �̄�−2⟂ − �̄�−4⟂
)

2 sym(𝐴𝐸) − 2�̄�−4⟂ 𝐸

(A.33)

Multiplying Eq. (A.33) by ̇̄𝐶 we then obtain

([

1 + tr
(

�̄�−1𝐸
)]

�̄�−1 −2�̄�−1𝐸�̄�−1) ⋅ ̇̄𝐶 =
{[

1 +
(

�̄�−2∥ − �̄�−2⟂
)

(𝐸 ⋅ 𝐴)

+�̄�−2⟂ tr 𝐸
]

�̄�−2∥ − 2�̄�−4∥ (𝐸 ⋅ 𝐴) + 4�̄�−2∥ �̄�−2⟂ (𝐸 ⋅ 𝐴)

−2�̄�−4⟂ (𝐸 ⋅ 𝐴)
}

2�̄�∥ ̇̄𝜆∥ +
[

1 +
(

�̄�−2∥ − �̄�−2⟂
)

(𝐸 ⋅ 𝐴)

+�̄�−2⟂ trE
]

4�̄�−2⟂
̇̄𝜆⟂�̄�⟂ − 2

(

�̄�−2∥ �̄�−2⟂ − �̄�−4⟂
)

(

4�̄�∥ ̇̄𝜆∥𝐸 ⋅ 𝐴
)

− 2�̄�−4⟂
(

2�̄�∥ ̇̄𝜆∥𝐸 ⋅ 𝐴 + 2�̄�⟂ ̇̄𝜆⟂𝐸 ⋅ 𝑃
)

(A.34)

Finally, collecting Eq. (A.34) and the remaining part in Eq. (A.23) we
can write 𝑔

(

�̄�∥, �̄�⟂, 𝐸, �̇�
)

as follows:

𝑔
(

�̄�∥, �̄�⟂, 𝐸, �̇�
)

= (det �̄�)
1
2
{

�̄�−1 [𝐼 − 2𝐸�̄�−1 + tr
(

�̄�−1𝐸
)

𝐼
]

⋅ ̇̄𝐶

+ 2�̄�−1 ⋅ �̇�
}

= �̄�∥�̄�
2
⟂

{[

𝜆
−2
∥

(

�̄�−2∥ − �̄�−2⟂ − 2�̄�−4∥ + 4�̄�−2∥ �̄�−2⟂ − 2�̄�−4⟂
)

2�̄�∥ ̇̄𝜆∥ +
(

�̄�−2∥ − �̄�−2⟂
)

4�̄�−1⟂
̇̄𝜆⟂ − 2�̄�−2⟂

(

�̄�−2∥ − �̄�−2⟂
)

4�̄�∥ ̇̄𝜆∥

−2�̄�−4⟂
(

2�̄�∥ ̇̄𝜆∥
)]

(𝐸 ⋅ 𝐴) +
[

2̄𝜆−2∥ �̄�∥ ̇̄𝜆∥ + 4�̄�−2⟂ �̄�⟂ ̇̄𝜆⟂
]

+
(

2�̄�−2⟂ �̄�−2∥ �̄�∥ ̇̄𝜆∥ + 4�̄�−4⟂ �̄�⟂ ̇̄𝜆⟂
)

tr 𝐸 − 4�̄�−4⟂ �̄�⟂ ̇̄𝜆⟂𝐸 ⋅ 𝑃

+2
(

�̄�−2∥ 𝐴 + �̄�−2⟂ 𝑃
)

⋅ �̇�
}

9

(A.35)
Appendix B. Derivation of the elastic stiffness tensor C from the
energy expression

We will now calculate the elastic moduli that characterize the
quadratic energy expression written in terms of 𝐸 as in Eq. (2.6). We
can write C as follows:

C(𝜇) = 4 𝜕2𝑊
𝜕𝐶 ⊗ 𝜕𝐶

|

|

|

|𝐶=�̄�(𝜇)

= 1
(

det 𝐶0
)1∕2

𝛾𝐺
(

𝐹0𝑎 ⊗ 𝐹0𝑎
)

⊗
(

𝐹0𝑎 ⊗ 𝐹0𝑎
)

+
((

(det 𝐶)
1
2 𝑊 ′

𝑚𝑖𝑥

(

(det 𝐶)
1
2
)

−
𝜇
𝛺

)

+ (det 𝐶)
1
2

𝑊 ′′
𝑚𝑖𝑥

(

(det 𝐶)
1
2
))

�̄�−1 ⊗�̄�−1 − 2(det 𝐶)1∕2
(

𝑊 ′
𝑚𝑖𝑥(det 𝐶)

1
2
)

−
𝜇
𝛺

)

�̄�−1 ⊠ �̄�−1

(B.1)

here, for given second-order tensors A, B we are defining the fourth-
rder tensors 𝐴⊗ 𝐵 and 𝐴⊠𝐵 through the identities

𝐴⊗ 𝐵)𝑈 = (𝐵 ⋅ 𝑈 )𝐴 (B.2)

nd

𝐴⊠𝐵)𝑈 = 𝐴𝑈𝐵𝑇 (B.3)

olding for every U.
We can write each of the two expressions �̄�−1⊗�̄�−1 and �̄�−1⊠�̄�−1

s a function of A and P using the tensor product properties as

̄−1 ⊗ �̄�−1 = �̄�−4∥ 𝐴⊗𝐴 + �̄�−2∥ �̄�−2⟂ (𝐴⊗ 𝑃 + 𝑃 ⊗ 𝐴) + �̄�−4⟂ 𝑃 ⊗ 𝑃 (B.4)

nd

̄−1 ⊠ �̄�−1 = �̄�−4∥ 𝐴⊠𝐴 + �̄�−2∥ �̄�−2⟂ (𝐴⊠ 𝑃 + 𝑃 ⊠ 𝐴) + �̄�−4⟂ 𝑃 ⊠ 𝑃 (B.5)

hen, we use �̄�
(

�̄�∥, �̄�⟂, 𝜇
)

and ̄̄𝜎
(

�̄�∥, �̄�⟂, 𝜇
)

to express the coefficients
f �̄�−1 ⊗ �̄�−1 and �̄�−1 ⊠ �̄�−1 in Eq. (B.1), where

̄
(

�̄�∥, �̄�⟂, 𝜇
)

=
(

(det �̄�)
1
2 𝑊 ′

𝑚𝑖𝑥

(

(det 𝐶)
1
2
)

−
𝜇
𝛺

)

+ (det �̄�)
1
2 𝑊 ′′

𝑚𝑖𝑥

(

(det �̄�)
1
2
)

(B.6)

and

̄̄𝜎
(

�̄�∥, �̄�⟂, 𝜇
)

= −2(det �̄�)
1
2
(

𝑊 ′
𝑚𝑖𝑥(det �̄�)

1
2 −

𝜇
𝛺

)

(B.7)

Finally, we substitute Eqs. (B.4), (B.5), (B.6), and (B.7) in Eq. (B.1),
and we write the elastic moduli C in a more compact form using 𝛿1, 𝛿2,
𝛿3, 𝛿5, and 𝛿6 as coefficients of A and P. More explicitly,

C =𝛿1𝐴⊗𝐴 + 𝛿2(𝐴⊗ 𝑃 + 𝑃 ⊗ 𝐴) + 𝛿3𝑃 ⊗ 𝑃 + 𝛿4𝐴⊠𝐴

+ 𝛿5(𝐴⊠ 𝑃 + 𝑃 ⊠ 𝐴) + 𝛿6𝑃 ⊠ 𝑃
(B.8)

where

𝛿1 = 4𝛾𝐺
𝜆40∥

(

det 𝐶0
)
1
2

+ �̄�
(

�̄�∥, �̄�⟂, 𝜇
)

�̄�−4∥ (B.9)

𝛿2 = �̄�
(

�̄�∥, �̄�⟂, 𝜇
)

�̄�−2∥ �̄�−2⟂ (B.10)

𝛿3 = �̄�
(

�̄�∥, �̄�⟂, 𝜇
)

�̄�−4⟂ (B.11)

𝛿4 = ̄̄𝜎
(

�̄�∥, �̄�⟂, 𝜇
)

�̄�−4∥ (B.12)

𝛿5 = ̄̄𝜎
(

�̄�∥, �̄�⟂, 𝜇
)

�̄�−2∥ �̄�−2⟂ (B.13)

𝛿6 = ̄̄𝜎
(

�̄�∥, �̄�⟂, 𝜇
)

�̄�−4⟂ (B.14)

Using Voigt notation, the fourth-order tensor becomes second order
tensor; we can express the five independent components of the stiffness
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tensor C as a second-order tensor utilizing the variables in Eq. (B.8) as
follows:

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿1 + 𝛿4 𝛿2 𝛿2 0 0 0
𝛿2 𝛿3 + 𝛿6 𝛿3 0 0 0
𝛿2 𝛿3 𝛿3 + 𝛿6 0 0 0
0 0 0 𝛿6∕2 0 0
0 0 0 0 𝛿5∕2 0
0 0 0 0 0 𝛿5∕2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.15)

Matrix (B.15) gives the components of C in a local basis with one of
the axes parallel to the fiber 𝑎. To use it in our equilibrium equation it is
necessary to transform the components to the lab frame. The change of
basis formula for the elasticity tensor can be expressed in matrix form
as:

[C]𝑒1𝑒2𝑒3 = [𝐾][C]𝑒′1𝑒′2𝑒′3 [𝐾]T (B.16)

where 𝐾 is the rotation matrix that accomplishes the basis change.
For the particular case of rotation through an angle 𝜃 – positive in

a counter-clockwise sense – about the 𝑒3 axes, the rotation matrix 𝐾
reduces to:

[K] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐2 𝑠2 0 0 0 2𝑐𝑠
𝑠2 𝑐2 0 0 0 −2𝑐𝑠
0 0 1 0 0 0
0 0 0 𝑐 𝑠 0
0 0 0 −𝑠 𝑐 0

−𝑐𝑠 𝑐𝑠 0 0 0 𝑐2 − 𝑠2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.17)

where 𝑐 = cos 𝜃, 𝑠 = sin 𝜃. The inverse matrix 𝐾−1 can be obtained
simply by changing the sign of the angle 𝜃.

Using Eqs. (B.15), (B.16), and (B.17), we could write the nonzero
elements of the rotation matrix as follows
𝐾11 = sin2 𝜃

((

𝛿6 + 𝛿3
)

sin2 𝜃 + cos2 𝜃𝛿2
)

+ cos2 𝜃
(

𝛿2 × sin2 𝜃 + cos2 𝜃
(

𝛿4 + 𝛿1
))

+ 4𝛿5 sin
2 𝜃

(B.18)

𝐾12 = cos2 𝜃
((

𝛿4 + 𝛿1
)

sin2 𝜃 + 𝛿2 cos2 𝜃
)

+ sin2 𝜃
(

𝛿2 sin
2 𝜃 + cos2 𝜃

(

𝛿6 + 𝛿3
))

− 4𝛿5 cos2 𝜃 sin
2 𝜃

(B.19)

𝐾13 = 𝛿3 sin
2 𝜃 + 𝛿2 cos2 𝜃 (B.20)

𝐾14 = 0 𝐾15 = 0 (B.21)

𝐾16 = 2𝛿5 cos 𝜃 sin 𝜃
(

cos2 𝜃 − sin2 𝜃
)

+ sin2 𝜃 sin 𝜃 (cos 𝜃 sin 𝜃
(

𝛿6 + 𝛿3
)

− 𝛿2 cos 𝜃 sin 𝜃
)

+ cos2 𝜃
(

𝛿2 cos 𝜃 sin 𝜃

−cos 𝜃 sin 𝜃
(

𝛿4 + 𝛿1
))

(B.22)

𝐾21 = 𝐾12 (B.23)

𝐾22 = sin2 𝜃
((

𝛿4 + 𝛿1
)

sin2 𝜃 + 𝛿2 cos2 𝜃
)

+ cos2 𝜃
(

𝛿2 sin
2 𝜃

+cos2 𝜃
(

𝛿6 + 𝛿3
))

+ 4𝛿5 cos2 𝜃 sin
2 𝜃

(B.24)

𝐾23 = 𝛿2 sin
2 𝜃 + 𝛿3 cos2 𝜃 (B.25)

𝐾24 = 0 𝐾25 = 0 (B.26)

𝐾26 = −2𝛿5 cos 𝜃 sin 𝜃
(

cos2 𝜃 − sin2 𝜃
)

+ cos2 𝜃
(

cos 𝜃 sin 𝜃
(

𝛿6 + 𝛿3
)

−𝛿2 cos 𝜃 sin 𝜃
)

+ sin2 𝜃
(

𝛿2 cos 𝜃 sin 𝜃 − cos 𝜃 sin 𝜃
(

𝛿4 + 𝛿1
))

(B.27)

𝐾33 = 𝛿3 + 𝛿6 (B.28)

𝐾34 = 0 𝐾35 = 0 (B.29)
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𝐾36 = 𝛿3 cos 𝜃 sin 𝜃 − 𝛿2 cos 𝜃 sin 𝜃 (B.30)
𝐾45 = 𝛿5 sin
2 𝜃 + 𝛿6 cos2 𝜃 (B.31)

𝐾46 = 0 (B.32)

𝐾55 = 𝛿6 sin
2 𝜃 + 𝛿5 cos2 𝜃 (B.33)

𝐾56 = 0 (B.34)

𝐾66 = 𝛿5
(

cos2 𝜃 − sin2 𝜃
)2 + cos 𝜃 sin 𝜃

(

cos 𝜃
(

𝛿6 + 𝛿3
)

−𝛿2 cos 𝜃 sin 𝜃
)

− cos 𝜃 sin 𝜃
(

𝛿2 cos 𝜃 sin 𝜃 − cos 𝜃 sin 𝜃
(

𝛿4 + 𝛿1
))

(B.35)
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