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Abstract. This paper introduces a novel method for the estimation
the Jominy profile of steel based on its composition, by combining au-
toencoders and 1-D Convolutional Neural Networks . The approach has
two goals: firstly, to enhance the accuracy of hardenability prediction by
exploiting the capability of the 1-D CNN to learn how the chemical com-
position of steel affects the shape of the Jominy profile; secondly, to use
transfer learning to apply the knowledge gained from training on a spe-
cific dataset to new types of production with less available data or data
with different characteristics as it often occurs in the industrial context.
The proposed approach was tested on two industrial datasets aiming to
assess the effectiveness of the methods on the two goals achieving satis-
factory results.

Keywords: steel hardenability · 1-D convolutional neural networks ·
transfer learning.

1 Introduction

The Jominy test is important in steelmaking as it allows assessing steel hard-
enability, which is its ability to be hardened by quenching. This information is
crucial in selecting and designing materials for specific applications where hard-
ness, strength, and wear resistance are important factors.

The test involves the heating of one end of a cylindrical steel specimen up
to the austenatizing temperature and its subsequent quenching through a water
jet. This creates a gradient of cooling rates along the length of the sample, which
produces a hardness profile when the sample is tested at fixed distances from
the quenched end. The resulting Jominy profile is used to predict the ability of
a steel alloy to be hardened by quenching, and is an important factor in de-
termining the suitability of a steel for specific applications. By understanding
the steel hardenability, steel producers can optimize the alloying and heat treat-
ment processes to provide the product with the desired properties. This can save
time and resources in the production process by avoiding costly trial-and-error
methods. Moreover, the Jominy test is widely used as a quality control tool to
ensure that the produced steel meets specific requirements. It is also an essential
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test for research and development of new steel alloys, as it allows evaluation and
comparison of different materials.

The ability of steel to harden is primarily determined by its chemical composi-
tion, as the content of certain elements such as C, B, Cr, N, Si, Mo, Nb, V, Ti has
a significant impact. While the influence of these elements has been extensively
studied, both individually and in combination, there is still some uncertainty
regarding the exact relationship between chemical composition and the Jominy
profile. This is due to the complex interactions between the chemical elements
that affect the cooling behavior and ultimately determine the microstructure of
the steel, which in turn affects its hardenability at different distances.

The Jominy end-quench test is very costly and time-consuming, therefore
there is a strong economical interest in developing models to estimate harden-
ability from chemical composition. In this context, the cost of the Jominy test
limits the availability of experimental data to set–up and tune such models when
new types of steel are designed or produced.

In this paper a novel approach for estimating the Jominy profile from steel
composition based on a combination between Autoencoders and Convolutional
Neural Networks (CNN) is proposed. This method has a twofold purpose: the
first is to improve the accuracy in hardenability prediction by learning how the
steel chemical composition affects the shape of the Jominy profile through the
CNN, and the second is to generalize and embed such knowledge obtained from
an arbitrary training dataset to be able to reuse it, via transfer learning, while
training the model for new types of productions with lower data availability.

The paper is organized as follows: in Section 2 the current state of art about
the Jominy profile prediction is outlined with a special focus on approaches that
employ Artificial Intelligence (AI) and, in particular, Artificial Neural Networks
(ANNs) in Section 2.2. The proposed approach is described in detail in Section
3. The experimental set–up for the assessment of the method in the light of
previously introduced objectives is depicted in Section 4, while the achieved
results are reported and discussed in Section 5. Finally, Section 6 is devoted to
drawing conclusions and outlining future lines of development of the approach.

2 Related works

The strategical importance of the information gained from the Jominy profile
together with its cost led through the years to development of a multitude of
models aiming to the prediction of the Jominy profile from the chemical compo-
sition. These methods can be grouped according to the exploited approach.

2.1 Numerical approaches

Phase field models simulate the evolution of the microstructure during the heat
treatment process [2], and can predict Jominy profiles. These models consider
the thermodynamics and kinetics of the phase transformations, and can provide
information on the distribution of the different phases in the material which can



Jominy profile prediction through 1D–CNN 3

be correlated to steel hardenability at the Jominy distances [9] [5]. Similarly,
Finite Elements Modelling (FEM) can simulate the heat transfer and phase
transformations during the Jominy test, and can provide a detailed picture of the
temperature and microstructure evolution [8]. These models require significant
computational resources, but can provide a high level of accuracy. Quench Factor
Analysis (QFA) involves analyzing the cooling curves and correlating them to
the metallurgical response. This technique is used to estimate hardness from
simulated cooling curves and has been shown to have a good correlation between
the predicted and measured hardness. This approach developed in the 70-ies was
adopted in [11] achieving an acceptable accuracy only for high hardness values.

2.2 Data driven approaches

Over time, the availability of information from numerous quenched–end Jominy
tests has led to the formation of datasets that include the chemical composi-
tion of steels and their respective Jominy profile. These datasets have made the
development of data-driven models possible.

Initially, traditional statistical techniques were used to make the first at-
tempts in this area. One example of this is the approach was based on multi-
plicators and was improved and made more general in the following decades by
various researchers, such as in [4] where the author proposed multiple statistical
and empirical methods to estimate hardenability, while also discussing their ad-
vantages and limitations. In addition to these methods, regression analysis has
also been employed with favorable results to predict hardenability, focusing not
only on the method feasibility and optimization of models accuracy, but also
investigating the key variables that impact each hardness value of the Jominy
profile [6] paving the road to numerous successive researches. These methods,
mainly due to their low complexity and linearity, demonstrated their accuracy
only within limited ranges of steel grades. Such models often fail to generalize
due to the fact that the relationship between the model parameters and the steel
chemical composition is mostly based on empirical analysis and is challenging
to learn. Furthermore, these models only offer satisfactory accuracy for a small
number of points on the Jominy curve. The individual effect of each alloy element
is typically examined, while interactions between them are ignored, resulting in
reduced model accuracy. To address these issues, ANNs have been used as a tool
to predict the Jominy profile since the 1990s.

Many studies used Multi-Layer Perceptron (MLP) ANNs to estimate the
Jominy curve based solely on chemical composition. Some of these studies fo-
cused on microalloyed steel grades, while others considered steel for specific
applications and included not only chemical composition, but also mechanical
properties like yield strength and ultimate tensile strength as input of the ANN.
However, all these approaches neglected the correlations between neighboring
hardness values in the Jominy profile. To address this issue, in [3] a paramet-
ric approach is proposed in which the Jominy profile is represented by a para-
metric mathematical function of the distance from the quenched end, such as
a quasi–sigmoidal monotonic decreasing function. Wavelet neural networks are
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then applied to correlate the steel chemistry with the function parameters. In [1]
a sequential predictor was developed, in which each point of the Jominy profile
is predicted by a dedicated ANN that exploits the content of specific chemical
elements selected according to theoretical knowledge of the phenomenon and
the predicted hardness at other distances. In this latter work a measure of the
reliability of the predicted hardness is associated to each point of the profile.
Finally, despite the dizzying development of applications based on the use of
deep learning, there are still very few works that employ such technology for
Jominy profile prediction. Among these, it is worth mentioning [7], in which an
optimized Deep Convolutional Neural Network (DCNN) is used and in which
the convolutional layer is applied directly to steel chemistry.

3 Proposed approach

In this paper, a novel approach to the design of a Jominy profile predictor using
the steel chemical composition is proposed. The model aims at improving the
accuracy of existing predictors not through a punctual estimation of hardness at
different distances from the specimen quenched-end, but through the determina-
tion of the profile shape and by linking it to the steel chemical composition. This
kind of approach aims at overcoming some typical deformations of the profile,
which are usually fixed during post-processing and result in an accuracy degra-
dation. Furthermore, relating the chemistry to the profile shape instead of single
points improves the robustness to outliers within the data.

In addition, the proposed model aims at storing the relationship between
chemical composition and profile shape to make it available in a transfer-learning
context. Such an approach may be useful for training models for new types of
steel for which the available datasets are small, or for transferring the model
to different steel plants, which are characterized by different ways of collecting
experimental data or performing the experimental tests (i.e. different instrumen-
tation) that may alter the aforementioned relationship.

The proposed Jominy profile predictor consists of two main models depicted
in Figures 1 and 2:

1. an autoencoder named JAutoencoder (Fig. 1) that has the task of mapping
an arbitrary Jominy profile measured at the 15 standard points (such domain
is subsequently referred as DJ15) into a latent space L characterized by a
significantly smaller dimension;

2. a DNN named JNetwork (Fig. 2) that performs the actual prediction of the
profile, by mapping the steel chemistry into the 15 points of profile, exploiting
the JAutoencoder.

JAutoencoder is a quasi typical autoencoder whose goal is to learn a com-
pressed representation of the input dataset composed by Jominy profiles, such
that the original data can be accurately reconstructed from the compressed rep-
resentation. Its main peculiarity is that the first layer performs a 1-Dimensional
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Fig. 1. Schematic architecture of the JAutoencoder.

Fig. 2. Schematic architecture of the JNetwork putting into evidence the ChemEncoder
and the JDecoder, non–trainable within this network.
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convolution (coupled to a max-padding operator) aiming at extracting knowl-
edge about the shape of the fed Jominy profiles. After the convolutional layer,
the autoencoder is composed of different fully connected layers, symmetrical
with respect to the latent space L that can represent compactly the original
DJ15 domain, that accounts the shape of the handled Jominy profiles because
of the 1D convolutional layer. The fully connected layers of JAutoencoder are
activated through the LeakyRelu function, which is widely used for autoencoders
implementation. In addition, both L1 and L2 type regularisation are employed
to reduce the risk of overfitting.

Once JAutoencoder is trained using experimental data, it is decomposed into
an encoder and a decoder, as shown in Figure 1 and denoted as JEncoder and
JDecoder, respectively. The latter is exploited for its ability to reconstruct a
Jominy profile from a compact representation of it that considers the original
shape of the profile. Specifically, JDecoder is embedded within a DNN denoted
as JNetwork in Figure 2, downstream of a chemical encoder (ChemEncoder) that
has the task of mapping the chemical composition of a steel to the correspond-
ing L representation. JNetwork, the DNN thus obtained, is connected and takes
as input the chemical composition of the steel to return the corresponding pre-
dicted Jominy profile. In this context, the JDecoder present within JNetwork is
not trainable and uses its own internal parameter values as got from JAutoen-
coder training. JNetwork is then trained with an experimental dataset resulting
from Jominy testing that thus includes the chemical compositions of steel and
the respective Jominy hardness profiles. This training procedure only affects the
trainable parameters within the chemical encoder layers, supporting the map-
ping of chemical compositions into a latent representation that, once fed to the
(frozen) JDecoder, leads to the predicted Jominy profile exploiting the knowledge
it embeds through transfer learning. The architecture of both the JAutoencoder
and the JNetwork were optimized through empirical tests described in Section
4. Optimization involves the number of layers of the two networks, including the
dimension of the latent space L, as well as the number of neurons in each layer.
The 1D convolutional layer was fine tuned in terms of the number of employed
filters, filters dimensions, pooling dimension.

4 Experimental tests

The performance of the proposed approach was evaluated through a test cam-
paign that involves two datasets. The pursued tests aim at evaluating both the
model accuracy and its capability of transferring knowledge regarding the Jominy
profile shape through the JDecoder sub-system as discussed in Section 3.

4.1 Available datasets

The datasets come from two distinct industrial plants and include a different
number of samples: the bigger one, referred as Dataset A, is formed by 1500



Jominy profile prediction through 1D–CNN 7

observations; the other, Dataset B, by 250. Observations include steel chemical
composition and the result of the Jominy quench-end test.

The two datasets correspond to different products in terms of both chemical
composition and mechanical properties. Figure 3 puts into evidence such differ-
ence comparing the average Jominy profile throughout the datasets, reported in
the figure together with the punctual standard deviation of hardness.

Fig. 3. Comparison between the Jominy profiles present in Dataset A and Dataset B.
Average profile is shown together with point–wise standard deviation.

4.2 Tests description

The accuracy in the prediction of Jominy profile from the steel chemical com-
position of the proposed approach was evaluated mainly based on Dataset A,
which contains a number of observations large enough to support the training of
the models and a reliable performance assessment on validation and test data.
To this aim, Dataset A was preliminary divided into two parts: the first one,
composed of 80% of the data, was used for training and validation purposes,
the remaining 20% for test. Training and validation data are used for selecting
the hyper–parameters values of JAutoencoder and JNetwork. The considered
parameters include:

– number of layers and neurons per layer within the JEncoder and JDecoder
(symmetric in this work) of the JAutoencoder

– number of layers and neurons per layer within the ChemEncoder of JNetwork
– latent space (L) dimension within JAutoencoder and JNetwork
– number of filters used within the 1D convolutional layer of the JAutoencoder
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– dimension of 1D convolutional filters within JAutoencoder
– pooling dimension of the MaxPooling layer following the 1D convolution of

the JAutoencoder.

The tested values for the listed hyper–parameters are summarized in Table
1. For each combination of hyper–parameters a 10–fold cross validation is set
up and the models are tuned by using training data and evaluated by using the
validation data. The combination resulting in a lower average prediction error
throughout the points of the Jominy profile is then selected for comparison with
other approaches. The ability to use the approach used for the development of
JNetwork in a transfer learning context was evaluated through the joint use
of Dataset A and Dataset B. Specifically, once the JNetwork was trained as
described above using Dataset A, the corresponding JDecoder was extracted
and reused in a JNetwork trained using Dataset B that actually exploits the
information coming from Dataset A in the context of the original JAutoencoder.
The results achieved are compared to those obtained by the sequential predictor
presented in [1], which actually is the best performing model for micro–alloyed
steel such those present in the available dataset and to a fully–connected ANN
optimized in terms of architecture (i.e. layers and number of neurons) similarly to
the JNetwork. In the case of knowledge transferability assessment, the proposed
approach is compared to models that are trained using only Dataset B to evaluate
the benefits of the approach.

Table 1. Values of hyper–parameters tested during the models tuning phase. Layers
are described through the number of neurons for each layers in brackets.

Hyper–parameter Values
1D Conv. filters 2,3,5,10
Dimension 1D Conv. filters 2,3,4
Pooling dimension 2,3,4
Latent space dimension 2,3,4,5,6
JEncoder–JDecoder layers (10,10), (10,10,10), (20,10), (20,20), (20,20,20), (30,30)
ChemEncoder layers (10,10), (10,10,10), (20,10), (20,20), (20,20,20), (30,30)

5 Results and Discussion

5.1 Base model evaluation

The best performing hyper–parameters combinations resulting from the grid
search on the values reported in Table 1 are shown in Table 2 in terms of mean
absolute error (MAE) achieved by JAutoencoder and by JNetwork on the vali-
dation sets (within the CV framework) and by JNetwork on the test dataset.

In addition to those shown in the table, most of the combinations tested
achieve satisfactory results in terms of MAE, in line with the industrial require-
ments of the application. Among the best ones, it is worth highlighting the low
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number of convolutional filters used and their size (2), which is sufficient to ex-
tract the necessary features from the Jominy profile likely due to the low number
of points the profile itself is formed by. Furthermore, the optimal dimension of
the latent space L resulting from the test is limited (4 in best performing cases),
which, considering the achieved low JAutoencoder error, highlights that the main
characteristics of the Jominy profile shape can be efficiently compacted.

Table 2. Best performing combinations of the hyper–parameters reported oin table 1
achieved while training the models on Dataset A.

1D–Conv Filters Pool. L JAut JNet JAut. CV JNet. CV JNet. TS
filters dim. dim. dim. layers layers MAE MAE MAE

3 2 2 4 (20, 20) (20, 20) 0.22 0.85 0.96
2 2 2 4 (30, 30) (30, 30) 0,20 0,95 1,04
4 2 3 4 (10, 10) (20, 20) 0,38 0,98 1,07
2 2 2 5 (20, 20) (20, 20) 0,22 1,00 1,07
2 2 2 3 (20, 20) (20, 20) 0,22 1,05 1,13

The best performing model was selected according to the performance of the
JNetwork in terms of MAE within the CV (first row of Table 2). The average
prediction error (MAE) of this model on the test data within the Dataset A is
0.96 HRC. The above introduced sequential model achieves a MAE of 1.10 HRC
(+16% with respect to JNetwork) on the same data after being trained with the
remaining observations of Dataset A.

A fully connected DNN was tested as well by using the same data. The
DNN architecture was optimized testing different number of layers and hidden
neurons similarly to what was done for the hyper–parameters optimization of
the proposed approach. The best performing set–up in this case, a three layers
network with (20,20,20) neurons in the hidden layers respectively and ReLU
activation function, achieves a MAE of 1.12 HRC (+17% with respect to the
proposed approach). The punctual behaviour of the three compared methods
are shown in Figure 4 in terms of prediction error. The barplot shows that the
sequential model outperforms the other ones in the initial part of the profile,
which are strongly related to a few chemical elements. On the other hand, the
JNetwork is much more accurate in the central part of the profile (which is crucial
from the industrial point of view) and obtains a more balanced performance
throughout the whole profile, demonstrating the correct learning of how chemical
composition affects the overall shape of the profile. The JNetwork also performs
excellently qualitatively as shown in Figure 5, in which two predicted Jominy
profiles are compared to the corresponding measured ones are shown as examples.

5.2 Transfer learning evaluation

The effectiveness of the proposed transfer learning approach based on the reuse
of the JDecoder component was evaluated according to the procedure described
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Fig. 4. Point–wise error of JNetwork, sequential model and DNN model on test data
after training with Dataset A.

Fig. 5. Examples of two predictions performed by the JNetwork on test data from the
Dataset A.

in Section 4. The straightforward approach to feed Dataset B input samples
to the JNetwork trained by using only Dataset A led to the achievement of a
MAE higher than 4 HRC throughout the profile, which is unacceptable from
the industrial point of view. This failure is probably due to the difference, both
in terms of chemistry and Jominy profile shape, between the two datasets. This
result encourages the application of the proposed approach. The results obtained
were compared to those of the sequential model and a fully connected ANN
trained using only the data in Dataset B, partitioned into training, validation
and testing with proportions 70%, 15%, 15% respectively. The ANN model was
optimized in terms of architecture in a similar manner to what was done for
Dataset A, obtaining a network of smaller size with respect to the previous one:
two layers both holding 10 neurons activated via ReLU. The average error on test
data of the JNetwork is 1.09 HRC, while the one of the sequential mode and of the
fully connected ANN are 1.34 HRC (23% greater) and 1.40 HRC (29% greater),
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respectively. These error values are sensibly higher than the one obtained by the
proposed approach. The punctual errors of the three approaches are depicted
in Figure 6 that confirms the goodness of the proposed method and puts into
evidence that the prediction of the other approaches shows low accuracy in the
central region of the profile, where the uncertainty of the shape is higher. The
poor performance of these methods is likely due to the low number of samples
available for training and validation of the employed ANNs. This latter issue is
overcome by the JNetwork approach by transferring useful knowledge from the
pre–trained JDecoder.

Fig. 6. Point–wise error of JNetwork trained via a transfer learning approach on
Dataset B after the training of the JDecoder with Dataset A, sequential model and
DNN model on test data after training with Dataset B.

6 Conclusions and future work

The paper presented a new approach to Jominy hardness profile prediction based
on the use of an autoencoder using a 1D convolutional layer to learn a compressed
encoding of the profile shape. Subsequently, the steel chemistry is mapped into
that encoding using a fully connected ANN. The method exploits the idea of
learning the Jominy profile shape rather than the point value of hardness at stan-
dard distances, one of the weaknesses of many existing approaches. In addition,
the method is suitable to transfer learning by using the pre-trained JDecoder
component and exploiting its ability to reconstruct the complete profile from
its compressed encoding. The proposed approach was tested using two different
industrial datasets showing very good results both in terms of accuracy of pre-
dictions and in the possibility of being used for transfer learning purposes in the
rather common cases of experimental data scarcity (i.e. new product types, dif-
ferent plants). These results encourage further developments of this technology
that will involve testing in a material design context as in [10], the evaluation of



12 M. Vannucci, V. Colla

different and types of autoencoders for profile encoding, and development of a
chemical encoder that exploits the theoretical knowledge regarding the influence
of various chemical elements in different regions of the profile.
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