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Abstract: Calibrating intrinsic and extrinsic camera parameters is a fundamental problem that is a
preliminary task for a wide variety of applications, from robotics to computer vision to surveillance
and industrial tasks. With the advent of Internet of Things (IoT) technology and edge computing
capabilities, the ability to track motion activities in large outdoor areas has become feasible. The
proposed work presents a network of IoT camera nodes and a dissertation on two possible approaches
for automatically estimating their poses. One approach follows the Structure from Motion (SfM)
pipeline, while the other is marker-based. Both methods exploit the correspondence of features
detected by cameras on synchronized frames. A preliminary indoor experiment was conducted to
assess the performance of the two methods compared to ground truth measurements, employing a
commercial tracking system of millimetric precision. Outdoor experiments directly compared the
two approaches on a larger setup. The results show that the proposed SfM pipeline more accurately
estimates the pose of the cameras. In addition, in the indoor setup, the same methods were used for a
tracking application to show a practical use case.

Keywords: extrinsic calibration; multi-camera calibration; multiple view geometry; large outdoor
environments; real-time tracking; IoT nodes

1. Introduction

Vision sensors have been employed in many fields, and are perhaps the most widely
adopted kind of sensors. Several manufacturing processes make use of industrial robot
arms, and for reaching industrial quality standards in terms of accuracy, precision, and
flexibility they regularly exploit vision sensors. Such vision sensors are cameras used to
guide a robot in picking and placing [1], performing measurements, or other tasks. There is
a need to relate the cameras’ 2D projections with the 3D positions of the robot’s coordinate
system in order to accomplish the manufacturing tasks. Therefore, a calibration process is
necessary. Other manufacturing processes employ only cameras, for example, to perform
quality inspection [2]; in such scenarios, camera calibration is an essential step to identify
the defects accurately. The need for camera calibration is more demanding for surveillance
in large areas, for example when there is a risk of collision among agents in the scene [3].
In these cases, multiple sensors distributed over a network are needed, along with 3D
tracking capabilities of the agents in the area.

A complete calibration procedure computes the camera’s intrinsic and extrinsic pa-
rameters and pose with regard to the robot or other cameras. A camera calibration typically
determines the camera’s internal geometrical characteristics, i.e., its intrinsic parameters,
and the 3D transformation (position and orientation) between the camera’s and the world’s
coordinate systems, i.e., the extrinsic parameters, as well as the lenses’ distortion coefficients.
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Camera calibration can be classified into two categories: photogrammetric calibration and
self-calibration. The first [4] relies on an object with a 3D geometry that is precisely known.
In the second [5], objects are not known and the camera moves in a static scene, constraining
the intrinsic equation. Photogrammetric calibration is more stable and efficient; while self-
calibration is more flexible, it is less reliable. When using multiple cameras, it is necessary
to relate all of the measurements to a common reference frame, achieving the relative
position of all the cameras. Many techniques have been proposed in the literature regarding
extrinsic camera calibration. A common approach is based on the use of fiducial markers.

With this approach, special markers are detected in the camera images and their
relative poses are estimated by matching markers between multiple cameras. The most
common types of markers are ARtag, AprilTag, and CALTag. ARtag markers are binary
square markers that have been introduced to apply augmented reality to captured scenes [6].
Their inner binary codification makes them robust for pose detection. AprilTags introduces
an increased number of barcodes and reduces false positives and confusion between the
tags [7]. ARtag and AprilTag markers, however, have demonstrated high sensitivity to
edge occlusion [8]. The CALTag marker has proved to be more robust to overlapping and
rotations of the markers thanks to its design and recognition algorithm. Many other fiducial
markers are present in the literature, and employ different marker shapes [9].

In the several last years marker-based techniques have seen increasing use, and they
are now considered state-of-the-art standards for extrinsic camera calibration. However,
considering the research on autonomous vehicles in localization and mapping, valid candi-
dates to achieve more accurate and robust camera calibration can be derived. The motion
of a camera can be estimated from Visual Odometry (VO) [10], which can be considered as
the estimation process that tries to incrementally obtain a camera pose by measuring the
changes in the captured images due to its ego-motion. Therefore the reconstructed trajec-
tory shows only local consistency; when global consistency is necessary, VO algorithms can
be used as part of Simultaneous Localization And Mapping (SLAM) procedures [11,12].
Lately, similar methods with single camera inputs have been introduced with the aim of
recovering both the relative camera poses and the environment structure. This kind of
study is known in the literature under the name of Structure from Motion (SfM) [13]. SfM
algorithms are able to reconstruct the relative motion of the camera from unordered sets of
images, thus being more general than VO. These algorithms have been widely studied for
many years now, and researchers have successfully recovered long-range trajectories from
both perspective and omni-directional cameras [14–16].

Considering the camera as fixed and the objects in the environments as in motion,
such methods can be used to first detect keypoints in the images of different camera
views and then match the keypoint features across views in order to obtain 2D–2D point
correspondences and solve the camera pose using multi-view geometry.

To the authors’ knowledge, there has been no comparison of these different camera
calibration approaches in the literature thus far, specifically when applied to large outdoor
environments in which a distributed system of camera nodes is necessary for 3D tracking.
Hence, the proposed work presents a novel network of IoT camera nodes and compares
the performance of two approaches for automatically estimating their poses in both indoor
and outdoor environments. The first approach follows the SfM pipeline, while the other is
marker-based. To this end, a network of synchronized camera nodes was designed and
implemented. In addition, a fiducial object was designed for the proposed calibration
algorithm based on SfM. Figure 1 shows the proposed concept along with the two calibra-
tion methods used for comparison. The performance assessment was based on an indoor
experiment and an outdoor experiment in a large environment. The indoor experiment was
conducted to assess the performance of the two methods with ground truth measurements,
employing a commercial tracking system of millimetric precision. Outdoor experiments
directly compared the two approaches on a larger setup with uncontrolled illumination.
The results show that the proposed SfM pipeline more accurately estimates the pose of the
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cameras. In addition, the same methods were used for a tracking application in the indoor
setup to show a practical use case. The main contributions of this work are as follows:

1. Distributed IoT node architecture for synchronized visual perception of the environment;
2. A comparison of camera calibration algorithms, the former marker-based and the

latter based on SfM;
3. A novel and simple calibration tool for the SfM technique.

Central Unit

Tracking concept

Tracked Area

Calibration Methods

Marker

IoT Node

SfM
Fiducial
Object

Figure 1. Schematic representation of the IoT node architecture along with an outdoor target area
and two tracked agents.

The remainder of the paper is organized as follows: Section 2 presents related methods
in the literature and the problem statement; Section 3 explains the background concepts
related to camera calibration (intrinsic and extrinsic); Section 4 provides an overview of
the proposed methods; Section 5 shows the experimental setup of the indoor and outdoor
scenarios; Section 6 discusses the results obtained from the experiments and the limitations
of the proposed approach; and finally, Section 8 concludes the work.

2. State of the Art

Methods for solving the relative camera pose estimation problem can be categorized
into geometric methods using the SfM pipeline [17], sometimes called Maker-based [18],
and end-to-end deep pose regressors. In the following, both categories of methods are
briefly discussed along with the background relative to geometric methods; in particular,
state-of-the-art concepts that relate to the Multiple View Geometry field are presented.

Geometric methods estimate the camera pose using a two-stage framework: first, 2D
point correspondences among cameras are obtained, then the camera pose is solved by
employing a geometric pipeline. Keypoints (Harris [19], FAST [20], etc.) are detected in the
images of different views and described with hand-crafted features (SIFT [21], ORB [22],
etc.). Such keypoints are matched (BFM [23], FLANN [24], etc.) across images to obtain
point correspondences. It is worth noticing that recently many deep learning techniques
simultaneously solve the keypoints’ detection and description using neural networks
(SuperPoint [25], UR2KiD [26], D2-net [27]). Finally, the poses of the cameras are obtained
using a multiview geometry pipeline, which first uses the N-point algorithm [28,29], usually
inside a RANSAC [30] loop, to solve for the essential matrix that is then decomposed to the
camera rotation and an up-to-scale camera translation [31]. Finally, bundle adjustment [32]
is used to further optimize the 3D poses of all cameras. While geometric methods are
quite mature, they can present difficulty in feature matching across camera views when the
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distance between cameras is large. In the presented work, balls attached to the extremities
of a wand were used to obtain correspondences for the camera pose estimations.

Deep pose regressors for relative camera pose estimation are quite recent [33,34], and
take inspiration from PoseNet [35], which was first applied in absolute camera pose esti-
mation and solved the problem by employing a convolutional neural network [36] trained
on data labeled using SfM [37]. It was based on GoogLeNet, with two output branches
to regress translations and rotations. Followups of PoseNet include Baysian PoseNet [38],
which inputs a pair of images into a Siamese network architecture for extracting deep
features from which the camera poses are regressed; Posenet-LSTM [39], where LSTM is
used to model the context of the images; and Geometric-PoseNet [40], where the loss is
calculated using the re-projection error of the coordinates using the predicted pose and
the ground truth. A different approach [41] showed that an end-to-end neural network
can be trained to regress to infer the homography between two images. In [42], a regressor
network is proposed to produce an essential matrix, which can be then used to find the
relative pose. Although an end-to-end process is convenient, the performance of deep
regressors has not reached that of geometric methods [43]. In addition, they require im-
ages taken from moving cameras for training. In the proposed scenario, the cameras are
static, making such approaches inapplicable. A recent work [44] which employs fixed
cameras used people in the scene as ‘keypoints’ and associated them across different cam-
era views using re-identification for obtaining correspondences. This method associates
human bounding boxes across cameras and converts bounding box correspondences to
point correspondences.

Considering the existing literature, Table 1 compares examples of recent research. For
each approach, the table reports its underlying method, the features used for matching
elements in image pairs, the number of cameras employed in the experiments or that can
be supported by the method, whether the method is based on fixed or moving cameras,
and whether it is scalable to larger setups. However, none of these approaches considered
multiple calibration methods, few in the literature address multiple camera setups, and
many are limited to indoor environments. On the contrary, the approach presented in
here exploits a custom, low-cost, and easily realizable wand for obtaining correspondences
across different camera views that are more robust features for recognition in a scene.
Moreover, it compares two different calibration methods, and is shown to be functional
and scalable in both indoor and outdoor scenarios.

Table 1. A short summary of methods reported in the literature. The columns describe the method
used for camera calibration, the features matched between images, the supported number of cameras,
the use of fixed or moving cameras, and the scalability of the approach to larger environments.

Name Method Features N◦ Cameras Motion Scalability

Korthals et al. [18] Marker Aruco Multiple Fixed yes
based indoor only

RelocNet [33] DNN Frustum 2 Moving yes
overlap

CamNet [34] DNN Frustum 2 Moving yes
overlap

Yi et al. [42] MLP SIFT 2 Moving yes

Xu et al. [44] SfM people 2 Fixed no
bounding box

This Paper Marker Aruco Multiple Fixed yes
SfM Wand
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Problem Statement

The target problem is the estimation of the relative pose of any number of cameras in a
common reference frame. The ambition of this work is to solve this problem in large outdoor
environments independently of the camera distribution and environmental disturbances.

3. Background on Camera Models

This section introduces the mathematical models underlying standard calibration
algorithms, which constitute the background to the proposed methods.

3.1. Intrinsic Calibration with Pinhole Cameras

Everything in the following assumes the use of cameras that follow the pinhole
model. Pinhole cameras suffer from distortions introduced by the lenses, and thus require
calibration to can determine the relationship between the camera’s natural units (pixels)
and the real-world units (meters).

The pinhole model is characterized by a projection matrix, i.e., the camera matrix,
and by radial and tangential distortion coefficients. The distortion coefficients do not
depend on the scene viewed. On the contrary, the projection matrix changes according
to the captured image resolution. Such a matrix is composed of the image’s principal
point (cx, cy), which usually is located at the image’s center, and the focal lengths ( fx, fy)
expressed in pixel units. u

v
1

 =

 fx 0 cx
0 fy cy
0 0 1

 xu

yu

1

 = K

 xu

yu

1

 (1)

The undistorted coordinates (xu, yu) are obtained by applying the distortion coefficient
to the normalized coordinates (xn, yn), and the normalized coordinates are achieved by
dividing the camera-related coordinates by the z coordinate. Finally, the camera-related
coordinates are found by transforming the 3D point in the world coordinates with the
extrinsic matrix [R‖t].  xu

yu

1

 = undistort

 xn

yn

1

 (2)

 xn

yn

1

 =

 x/z
y/z

1

 (3)

 x
y
z

 = R

 X
Y
Z

+ t (4)

This calibration process is usually accomplished using a chessboard or a matrix of
circular element patterns captured at different poses: first, the corner of the squares or
the centers of the circles composing the chessboard are computed in each view, then an
optimization that minimizes the re-projection error in pixel coordinates is used to extract
the intrinsic parameters.

3.2. Epipolar Geometry and Essential Matrices

Referring to Figure 2, a 3D point P is projected into two image planes located at
different positions, resulting in the projected point image coordinates p = (x, y, z) and
p1 = (x1, y1, z1). Using a calibrated camera and undistorted images, normalized coordi-
nates that are independent of the camera model can be used. It is necessary to project back
the image points into a unit sphere (for omnidirectional cameras) or into the projection
frustum (for perspective cameras) in order to obtain normalized coordinates.
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Figure 2. Schematic representation of a 3D point P as seen from two different camera positions, that
is, alternatively as the p projection or the p1 projection. The points e and e1 are the epipoles of the
two recorded images, l and l1 are the respective epipolar lines, and the triangle =̂ OPO1 represents
the epipolar plane.

The relationship between the two unknown cameras’ positions to the coordinates of
the images is provided by the epipolar constraint:

pT
1 Ep = 0. (5)

Here, E is the essential matrix and can be derived as E = [T]xR, where T = [Tx, Ty, Tz] =−−→
OO1 is the relative position between the two cameras images, R is the corresponding
relative rotation, and [T]x is the skew-symmetric matrix, defined as follows:

[T]x =

 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0

. (6)

Therefore, with a set of image correspondences, the epipolar constraint (5) can be used to
obtain the relative camera pose.

A different approach to recovering the essential matrix, assuming calibrated cameras
and undistorted images, is to use the fundamental matrix [45], as it is more robust for
rejecting possible sources of error caused by noisy inputs. Considering the fundamental
matrix F2

1 from camera 1 to camera 2, the corresponding essential matrix E2
1 is provided by

E2
1 = KT

2 F2
1 K1, (7)

where Kx is the matrix containing the focal lengths and the principal points of camera x.

3.3. Outliers Removal with RANSAC

In order to obtain a good estimation from the input data, outliers, i.e., feature points
with wrong data associations which could corrupt the estimated model, should be removed.
The method most widely diffused in the literature to find outliers during model estimation
is the Random Sample Consensus (RANSAC) method [30].

In the case of SfM, the model to be estimated is the relative motion between two
frames, which can be represented by the motion components R (rotation matrix) and T
(translation vector) as estimated from feature correspondences. The RANSAC procedure
begins by analyzing minimal sets of data sampled at random, generates model hypotheses
from them, then in a second step tests the generated hypotheses on the remaining data
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elements. Finally, the highest consensus hypothesis which has been obtained is chosen as
the best estimation. The number of iterations required to obtain a good solution depends
on different factors, such as the number of a minimal set of data points used to formulate a
hypothesis, the number of data points, the percentage of outliers in the available data, and
the chosen probability of success [30].

3.4. Motion Estimation

After outliers have been removed, Singular Value Decomposition (SVD) is applied
to the essential matrix to obtain possible pose hypotheses. The camera pose consists of
six degrees-of-freedom (DOF), namely, the rotation (roll, pitch, and yaw) and translation
(X, Y, Z) of the camera with respect to the world. Four possible camera pose configurations
can be computed: (C1, R1), (C2, R2), (C3, R3), and (C4, R4), where C ∈ R3 is the camera
center and R ∈ SO(3) is the rotation matrix. When applying SVD to a generic matrix A,
the decomposition USVT would be obtained, with U and V orthonormal matrices and a
diagonal matrix S that contains the singular values. The four pose configurations can be

computed from the essential matrix, being E = UDVT and W =

0 −1 0
1 0 0
0 0 0

, as follows:

1. C1 = U(:, 3) and R1 = UWVT

2. C2 = −U(:, 3) and R2 = UWVT

3. C3 = U(:, 3) and R3 = UWTVT

4. C4 = −U(:, 3) and R4 = UWTVT

Such ambiguity should be removed by checking the chirality condition that verifies
whether the triangulated 3D points have positive depth [46], i.e., whether the reconstructed
points are in front of the cameras.

3.5. Scale Determination

It is not feasible to compute the scale of translation among the camera frames by
analyzing the images acquired in sequential poses by cameras. However, it is possible
to estimate the relative scales for subsequent transformations. A possible approach is
to perform 3D points triangulation from two subsequent image pairs, first obtaining the
corresponding 3D points and then measuring the relative distances between them. The
scale can be obtained by computing the distance ratio r between a pair of points in P′xyz
and P′′xyz, as follows:

r =
‖pi − pj‖
‖p′′i − p′′j ‖

. (8)

The mean of scale ratios obtained from many points should be considered in order to
achieve robust results.

Alternatively, a bundle adjustment technique can be used to solve scales between
several points using Levenberg–Marquard optimization [47].

4. Methods

This section presents the implementation details of the proposed algorithms. In the
first step, each camera is calibrated to obtain the intrinsic parameters and distortion coeffi-
cients using checkerboards and the standard algorithm [48]. Two approaches for extrinsic
camera calibration are proposed to estimate the orientation and position of each camera in
accordance with a chosen world reference frame; one follows the SfM pipeline, while the
other is marker-based.

4.1. Marker-Based Camera Pose Estimation

In this approach, a marker is selected from an Aruco dataset [6], printed over a paper
sheet, and attached to a rigid plate. An Aruco marker is a binary square fiducial marker
formed by a wide black border and an inner binary matrix that determines its identifier.
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The black border enables its fast detection in the image, and the inner binary codification
makes it especially robust, allowing for the possibility of applying error detection and
correction techniques. The main benefit of these markers is that a single marker provides
enough correspondence, i.e., its four corners, to obtain the camera pose. Aruco markers are
divided into dictionaries. The main properties of a dictionary are the dictionary size and the
marker size. The first is the number of markers that compose the dictionary, and the former
is the size of those markers. Another important dictionary parameter is the inter-marker
distance, which represents the minimum distance among its markers and determines the
error detection and correction capabilities of the dictionary. In general, smaller dictionary
sizes and larger marker sizes increase the inter-marker distance, and vice versa. Therefore,
depending on the target environmental space it is important to choose suitable dimensions
for the fiducial marker that are adequately visible from all of the cameras. In the proposed
work, a square marker of 26.5 cm width was used for the indoor setup, while a square
marker of 80 cm width was employed for the outdoor setup. The latter guarantees at least
48 pixels per edge of the marker when its normal is aligned to a camera’s principal axis.
OpenCV library functions were used to detect the marker in the image frames. With an
image containing ArUco markers, the detection process returns a list of detected markers
that includes the position of the four corners in the image and its identifier for each marker.
The detection process exploits the binary codification, and should be able to determine
the original rotation of the marker in order to correctly number the four corners. Such
a detection process first analyzes the image to find square shapes as marker candidates,
using adaptive thresholding to segment the markers and extracting the contours from the
thresholded image. Wrong markers are filtered out by checking the convexity, the square
shape, and the dimensions of the contours. In addition, the final markers are extracted
from candidate markers by analyzing their inner codification. Therefore, a perspective
transformation can be applied to obtain the marker in its canonical form, and the canonical
image is thresholded using the Otsu algorithm to separate white and black bits. Then, the
number of black or white pixels in each cell is counted to determine whether it is a white
or a black bit, and the bits are analyzed to determine whether the marker belongs to the
specific dictionary.

In order to obtain the camera pose from the information provided by the ArUco
marker detection (the four corners), the Perspective-n-Point problem needs to be solved.
The projection formula is provided by

 u
v
w

 = K
[

R t
]

X
Y
Z
W

 (9)

where R = [r1 r2 r3] is the rotation matrix representing the orientation of the camera and
t is the translation. With the ArUco markers, the four points lie on a plane. Therefore,
transformation from the world to the image plane becomes a homograph; to know the
pose of the camera with respect to the tag knowing that the tag is on a plane, the world
coordinate has the coordinate Z = 0. Therefore, the projection Formula (9) becomes u

v
w

 = K
[

R t
] X

Y
W

 (10)

where R = [r1 r2]. The objective is to find the homography H = [R t] that encompasses the
pose of the camera, where the two unknowns are R and t. Being K−1H = [h

′
1 h

′
2 h

′
3], the

rotation matrix R can be computed as [h
′
1 h

′
2 h

′
1× h

′
2], and the translation t can be computed

as t = h
′
3||h

′
1||.

The obtained transformation Tm
i represents the pose estimation of marker m in the

frame of camera i. By computing such transformations for all the cameras, it is possible to
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relate the poses of the cameras to the marker itself. In particular, assuming that a marker
m is visible in both cameras, the homogeneous transformation matrix T from camera i to
camera j is provided by

T j
i = Tm

i (Tm
j )−1. (11)

A similar procedure is repeated for several different marker positions inside the
environment under analysis in order to verify the correct reconstruction of the poses of
the cameras.

4.2. SFM-Based Camera Pose Estimation

An SfM algorithm is composed of the following steps:

1. Feature extraction
2. Feature matching/tracking
3. Outlier removal
4. Motion/Pose estimation
5. Bundle adjustments

Each step of the proposed SfM method is discussed below in detail.

4.2.1. Feature Extraction

The proposed approach exploits a custom wand for the calibration procedure allowing
complete control over the selection of feature points. Even for this method, it is important
to select the size of the wand in accordance with the target environmental scenario in order
to guarantee fair vision for all the cameras. The wand was realized by placing two colored
balls (green and orange, with a 6 cm radius in the indoor setup and a 12.5 cm radius in the
outdoor setup) at the extremities of two staffs 100 cm long and 140 cm long, respectively. A
software package was responsible for finding the balls and estimating their centers. The
detection of the balls occurred on the basis of their colors, which were selected in order to
be relatively easy to identify in the outdoor scenario. In particular, the detection algorithm
worked as follows: the camera image was converted in Hue Saturation Value (HSV) color
space in such a way that the light changes typical of outdoor imaging did not affect the
balls’ color descriptions. Then, masks in the specific color range for the selected green and
orange colors were employed to filter the image and find the circular blobs, and the largest
blob with a radius considered to be feasible was selected as the correct candidate. Finally,
the center of the chosen blob was computed from principal image moments M∗∗ as follows:

(x, y) =
(

M10

M00
,

M01

M00

)
(12)

4.2.2. Feature Matching

The wand confers an advantage in the feature matching phase, as for every wand
position in the 3D environment the position in the image space of the two balls at its extrem-
ities is computed for each camera and compared among the cameras directly. Whenever a
misdetection occurs, it is discarded by the subsequent estimation steps.

4.2.3. Pose Estimation

As already discussed, the estimation of the cameras’ poses can be obtained by com-
puting the relative transformations among the cameras and defining a common frame
of reference. The proposed approach computes the fundamental matrix for each pair of
cameras using the RANSAC algorithm, which allows for discarding the wrong feature
matches and offers the possibility of choosing a desired maximum reprojection error for
the estimation. The latter aspect can play a crucial role, as the images can be noisy, the
quality of the camera optics may not be high, and approximation of the pinhole could
introduce possible errors during the projection calculations. Then, the essential matrix
is computed from the fundamental matrix and the relative camera pose candidates are
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generated via SVD decomposition. As mentioned above, while four solutions exist, only
one, i.e., the one that allows points to be reprojected in front of both cameras, is correct. In
our implementation, feature points in the 3D space were obtained via triangulation, and the
solution that projected all of the points in a positive depth space (z-coordinate of the first
camera reference frame) was selected as the correct one. At this point, the transformation
is correct up to a scale factor. The proposed implementation can rely on the fact that the
distance between the features belongs to a wand 88 cm long in the indoor setup and 115 cm
long in the outdoor setup. Therefore, the scale factor can be computed by dividing the
exact measurement m0 by the mean, median, or mode of all the computed distances of
the detected features. These three statistical measures are usually not very different from
each other in practice. However, it could be possible that the distribution of the computed
distances is not Gaussian due to external noise. By computing a histogram of the obtained
distances, as shown in Figure 3, a peak is found at a certain value, suggesting that the mode
could better approximate the correct measure. As an example, Figure 3 shows two parts of
this pipeline: the reconstruction of reprojected wand trajectories and the selectable metrics
for estimation of the wand length in the distance histogram.
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Figure 3. (Left): Example of a trajectory performed by the wand for two-camera calibration as
reprojected by a pair of cameras. (Right): Histogram of computed distances between wand features,
with marked statistical measures obtained from the sequence of wand movements. The green
dot indicates the mode, the magenta dot is the median, the cyan dot indicates the result of LM
optimization, and the red dot indicates the mean of the distribution.

4.2.4. Bundle Adjustments

After computing the relative transformations between two consecutive images and
concatenating the transformation to recover a complete trajectory of the camera, it is
possible to perform an iterative refinement considering both the previous pose and the last
n poses to increase the accuracy of the local trajectory estimation. Such an approach is called
windowed bundle adjustment (BA) [32]. In addition, the selection of good keyframes is
important for reducing the drift during 3D triangulation, which is necessary for estimating
the re-projection error. Windowed BA reduces the drift compared to 2-view VO, as it
incorporates constraints between several frames. In addition, loop detection algorithms [49]
can largely improve the estimation of the motion. It is worth noting that in the proposed
method it is not the camera that moves around; rather, it is the wand that moves in front of
the camera. The underlying mathematical problem is the same, and a solution can be found
by triangulating the wand extremities between two cameras or using BA to optimize both
the reprojected points and the cameras’ positions by considering all the cameras together.

4.3. IoT Camera Nodes

The hardware infrastructure relies on a distributed network of IoT camera nodes,
four in the indoor setup and five in the outdoor setup. A node consists of a USB camera
and its edge computing device. Such nodes communicate through a wireless network. In
particular, we used off-the-shelf low-cost hardware; detailed information is reported in
Table 2. Figure 4 shows an example of the type of IoT camera node used in the experiments.
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Table 2. Hardware description of the capture system.

Type Name

Computing node Up Board with Intel(R) Atom(TM) x5-Z8350
Camera ELP-usbfhd04h-dl36

Wifi dongle ALFA AWUS036ACH
Wifi router NETGEAR XR500

Master node Desktop with Intel(R) i7-5930K

Figure 4. Hardware of a single capture node.

The cost per node was bounded by low-cost cameras equipped with low-quality
optical lenses suffering from high distortion, making the calibration more difficult. The
cost could be reduced even further by substituting the up-board and router with cheaper
devices (e.g., a Raspberry Pi or a lower-end NETGEAR model, respectively). Potentially,
the cost could be reduced to less than USD 50 per node. In the presented scenario, the
cost of the whole system, excluding the master node, was approximately USD 300. Both
the master node and the up-boards ran the Linux operating system. Note that the results
reported in Section 6 are only affected by the quality of the cameras, and the choice of the
remaining hardware is agnostic to the calibration procedure.

4.3.1. Software System

A software package was developed to control the distributed network of nodes from
the master node. Communication among the nodes was based on web sockets [50], a
protocol that allows for two-way communication among the nodes of a network through
HTTP. The code executed by the master node was written in NodeJS [51], while the
code executed by the computing nodes was written in python, exploiting the python-
socketio library. In addition, a minimal web interface was developed to start the calibration
procedure and gather images in the master node as well as to receive visual feedback on
the quality of the captured images and the field of view of the cameras. Finally, the NodeJS
architecture allowed for fast recovery of the WebSockets connection between the nodes and
the master in case of a failure of the master.

4.3.2. Synchronization Algorithm

A protocol for synchronizing the frames among the cameras was developed in order
to guarantee that feature matching would happen among the same frames across cameras.
This protocol was made of the following steps:

1. The user sets a number N of images requested to be taken by each camera;
2. A TAKE(i) message is broadcast from the master to the nodes, triggering the acquisi-

tion of a frame;
3. An acknowledgment message (ACK) is sent by each node to the master after the acquisition;
4. The master waits for the ACK message to be received from each node, then it broadcasts

a TAKE(i+1) message;
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5. Steps 2 to 4 are repeated until N desired number of acquisitions are reached.

Figure 5 shows a possible execution of the synchronization protocol described above using
four camera nodes.

Master Node 2Node 1 Node 3

Ti
m

e 
m

s

Node 4

TAKE(1)

ACK(1)

ACK(1) ACK(1)
ACK(1)

TAKE(2)

ACK(2)

ACK(2)

ACK(2)
ACK(2)

Figure 5. UML diagram of the synchronization protocol used to acquire synchronized frames.

5. Testing Environments and Setups

This section details the experimental setups in the indoor and outdoor scenarios.

5.1. Indoor Setup

In the indoor setup, four cameras were attached to four columns over a reticular
structure at a height of about two meters, pointing down towards the center of the floor
enclosed by the structure. The longer side of the rectangle was 7.4 m long, while the shorter
side measured 3.7 m. Figure 6 shows an example of the synchronized images acquired
from this setup.

Figure 6. Images taken by the four cameras in the indoor setup.

5.2. Outdoor Setup

The outdoor setup involved five cameras placed over the roof of a tall building (nearly
11 m high) and pointing down to the area close to the building entrance. Figure 7 shows the
theoretical geometric setup. This setup was chosen to stress the capability of the proposed
approach in coping with a strict field of view and collinear camera setups, which usually
cause issues in the calibration step. Figure 8 depicts examples of frames captured by the
cameras during the calibration steps involving both the Aruco Marker and the wand. As
mentioned before, for the outdoor scenario the radius of the wand spheres and the size of
the marker were increased in order to improve the visibility of the features, considering
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the greater distance from the cameras. In particular, the Aruco markers were printed on
a rigid carton plate with a side of 800 mm, and the wand length was increased to 140 cm
with a ball diameter of 25 cm. Low-cost (up to 10 $ each) camera lenses were selected to
guarantee sufficient coverage of the area and a minimum density of 60 ppm in the covered
area. Figure 9 shows the frustum and pixel density for each camera in the outdoor setup.

Figure 7. Aerial view of the outdoor scenario and setup of the cameras. An orange line encircles the
capture space, while theoretical camera node positions are shown over the roof edge.

Figure 8. Images taken by the five cameras in the outdoor setup; the first row shows the results with
wand calibration, while the second row shows the results with Aruco markers.
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Figure 9. Frustum and pixel density obtained by lens selection for the outdoor setup. The red rectangle
was captured with a 125 ppm density and the green one with 62 ppm, which are the minimum values
suggested in the EN 62676-4 norm for recognition and observation purposes, respectively.

6. Results

In this section, we report the results of the experiments carried out to assess the
performance of the proposed calibration methods.

6.1. Ground Truth

For the preliminary study in the indoor setup, a ground truth trajectory in a three-
dimensional metric space using a VICON (https://www.vicon.com/software/nexus/,
accessed on 12 June 2022) system was generated. The VICON was installed on the same
reticular structure where the cameras are placed, avoiding any occlusions. An Aruco
marker was placed on a wooden table, over which a set of VICON sensors having a known
topology were attached. The center of this topology coincided with the center of the marker.
The marker was tracked along the trajectory by both the VICON tracking system and the
proposed marker-based method. It was decided to stop the tracked object in n predefined
positions in order to avoid synchronization issues, as the capture frequency of VICON is
much higher than the frequency of the cameras. In each position, the VICON measurement
was sampled to obtain a set of ground truth measurements G = {gi ∈ R3 : i ∈ [1, n]}; the
positions of the same set of points were then estimated by exploiting the marker-based
calibration and the SfM, achieving A = {ai ∈ R3 : i ∈ [1, n]} and S = {si ∈ R3 : i ∈ [1, n]},
respectively.

6.2. Indoor Setup

In this section, the comparison between a trajectory reconstructed through the cameras
and the VICON system is discussed. The ground truth trajectory is depicted in Figure 10
along with the sampled points acquired by the system of cameras. Each black point in
the figure represents the ground truth position of the center of the marker for at and st
estimations, where t is the time index. Figure 11 shows the reconstruction of the marker
trajectory by assuming to know the transformation between the Aruco reference frame and
VICON for the first detected point.

6.3. Outdoor Setup

To estimate the cameras’ poses in the outdoor scenario, a capture of 500 frames each
was acquired. The synchronized images depicting the wand motion in a small portion of
the outdoor environment that was visible from all the cameras’ view frustums were then
used to compute a pose estimation through the SfM approach. On the contrary, only a single
captured frame for each camera was necessary for marker-based estimation. Additionally,
the marker was moved on a tridimensional trajectory within the outdoor environment
to capture the motion trajectory. This trajectory was used to verify the capability of the
marker-based approach to reconstructing coherent tracking motions from multiple cameras.
The results depicted in Figure 12 show that the SfM approach provides a better estimation
concerning the camera poses in the environment. Wrong pose estimations could depend on
the different camera lenses used (see Table 3), which probably did not correctly fit on the
pinhole model, and certainly on depend on the resolution and clarity of the marker image

https://www.vicon.com/software/nexus/
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as perceived from a long distance. In the SfM case, this computational error is mitigated by
triangulation and optimization being carried out on several frames. However, referring to
Figure 13, even if the estimation of the marker-based approach is not accurate, the resulting
tracking motion captured from different cameras has a bounded reconstruction error; thus,
considering the knowledge of the environment under surveillance, the error in the height
estimation can be reduced using a projection on the plane of motion.
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Figure 10. (Left): Scatter plot of VICON trajectory in 3D. (Right): Plot of VICON trajectory split by
axis. Black points correspond to acquisitions by the camera system.
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Table 3. Camera optics.

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Optics [mm] 8 8 12 6 3.6
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Figure 13. Reconstruction of the marker-based trajectories.

7. Discussion

The indoor setup experiment showed that the proposed SfM method is feasible and
achieves very good reconstruction performance. In fact, the average position error in the
comparison against the VICON system is about 5 mm. The main results of the experiments
are related to the camera pose estimation in outdoor conditions, and show that the SfM
method achieves better performance than the marker-based method. The challenging
conditions of the experiment stressed the weaknesses of both methods. These conditions
included camera alignment, illumination, and poor quality of the cameras and the lenses.
The camera alignment made it difficult for both methods to perform triangulation, especially
for cameras farther from the target volume. Reflexes due to illumination and background
colors had detrimental effects on the recognition of the fiducial object in the SfM pipeline.
Under these conditions, the limitations of the marker-based method, mainly due to its need
for recognition of several corners and relatively stronger need for high resolution, caused
very high errors in the reconstruction of the camera poses. The SfM method performed
better, even if it resulted in errors on the order of 1 to 5 m. The proposed fiducial object
proved to be more suitable than markers to address the needs of a larger setup without
requiring additional cameras. This makes the proposed method much more scalable for
large areas than marker-based alternatives. In addition to camera pose estimation, the
trajectory tracking performance shows the coherence of the reconstruction among cameras
for both the SfM and the marker-based approaches, which finally provides evidence of the
usability of these methods for 3D trajectory tracking in outdoor environments.

Limitations

This work was limited to testing five cameras, although no theoretical limitations are
present as each camera was provided with its own computation node. However, possible
limitations may arise due to the required bandwidth in the whole communication system.
A second possible limitation is due to environmental conditions potentially affecting either
the communication channel or the image acquisition process.
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8. Conclusions

Vision sensing is a mature technology, and its use in large outdoor scenarios is envis-
aged in both the industrial and social worlds. In particular, in many application scenarios
there is the need to track and analyze the motion or behavior of human personnel and
machines in order to guarantee people’s safety and restrict access control. In this con-
text, the present manuscript introduced a network of camera nodes and compared two
alternative methods that enable multi-camera calibration and tracking in large outdoor
environments. The experimental setup employed low-cost cameras inside IoT nodes; the
results show that even with cost-effective optics and sensors, an extrinsic calibration can be
achieved allowing for proper tracking of objects. The method employing SfM algorithms
proved to be more accurate in camera pose reconstruction compared to the classical marker-
based approach. These results demonstrate that in changing lighting conditions typical
of outdoor environments, and with low-resolution features from a few pixels to sub-pixel
point correspondence, the proposed approach enables object and people tracking in large
outdoor setups.
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