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Monocular Category-Level 6D Pose Estimation

Alberto Remus , Salvatore D’Avella , Graduate Student Member, IEEE, Francesco Di Felice ,
Paolo Tripicchio , and Carlo Alberto Avizzano

Abstract—Object detection and pose estimation are strict re-
quirements for many robotic grasping and manipulation applica-
tions to endow robots with the ability to grasp objects with different
properties in cluttered scenes and with various lighting conditions.
This work proposes the framework i2c-net to extract the 6D pose
of multiple objects belonging to different categories, starting from
an instance-level pose estimation network and relying only on
RGB images. The network is trained on a custom-made synthetic
photo-realistic dataset, generated from some base CAD models,
opportunely deformed, and enriched with real textures for domain
randomization purposes. At inference time, the instance-level net-
work is employed in combination with a 3D mesh reconstruction
module, achieving category-level capabilities. Depth information is
used for post-processing as a correction. Tests conducted on real
objects of the YCB-V and NOCS-REAL datasets outline the high
accuracy of the proposed approach.

Index Terms—Perception for grasping and manipulation, deep
learning for visual perception, RGB-D perception.

I. INTRODUCTION

NOWADAYS, robots are used in a wide range of appli-
cations, including advanced manufacturing [1], human-

robot [2] collaboration, and logistics [3] that require a high
level of autonomy. Two of the primary tasks for robots in such
applications are object grasping and manipulation, and robots
have to show the ability to adapt to the changing environment
while interacting with the surroundings to perform such tasks
efficiently in line with the concept of Industry 4.0. A key factor
is the grasping of a variety of objects. In order to foster the gap,
an important aspect for autonomous and reliable grasping of
arbitrary objects involves object detection and pose estimation,
which are challenging tasks as objects can present different sizes,
material properties, and texture appearances, and they can be
occluded in cluttered scenes with different lighting conditions.
In addition, a desirable factor is that the method should be
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Fig. 1. On the left, an instance-level network that cannot generalize to unseen
instances in the wild. On the right, the same instance-level enriched with the
presented i2c-net framework shows category-level capabilities.

fast enough, especially for stringent cycle times in industries.
Therefore, even though a lot has been done in recent years, pose
estimation for autonomous and reliable grasping of different
objects remains an open challenge [4].

Thanks to the advantages of deep learning methods [5], clas-
sification, detection [6], and segmentation [7] of objects from
images received a significant step forward in the past decades.
Instead, pose estimation from a single image is not yet a mature
field, and there is still space for improvements toward a reliable
solution. One problem is that extracting 3D information from a
single color image is an ill-posed problem since the structures
of the objects are retrievable only up-to-scale. The other aspect
is the lack of labeled real data, whose collection is a difficult
and time-consuming task. Humans can rely on stereo-vision or
eye motion, and they can also exploit a strong knowledge of the
surrounding environment. In that direction, some approaches
exist that use multiple points of view to extract the pose of an
object or rely on point clouds [8]. However, the computation
time is long and increases with the number of viewpoints. An
alternative to manually labeled data is the use of synthetic photo-
realistic datasets [9] that, in combination with the sim-to-real
transfer, allow for a high number of training data and can also
be applicable to real-world scenarios.

Estimating the 6D pose of an object from an RGB image,
taking into account also the scale factor, requires adding 3D
information. One of the most diffused approaches is to use 3D
Computer Aided Design (CAD) models of the objects composed
of vertices and faces. Doing this, most of the approaches are
constrained to objects whose CAD models are used during
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training, thus hampering generalization, even to objects of the
same category [10]. If available, an alternative is to use depth
information adding a higher computational burden. However,
simulated depth images are more exposed to the sim-to-real
problem than RGB images.

This work presents instance-to-category net or i2c-net to
extract the 6D pose of multiple objects belonging to certain cat-
egories starting from an instance-level pose estimation network
and exploiting a custom-made synthetic dataset for training. The
idea is to extract as much 3D information as possible from RGB
images and available CAD models and use depth information
for post-processing as a correction. Considering some known
categories, like, for example, bottles or cans, a few base CAD
models, i.e., CAD models for known objects that encompass
the diverse shapes of the objects in that category, are used as a
starting point for a deformation procedure. Such deformations
generate new object models that are enriched with real textures
for domain randomization purposes. The instance-level pose
estimation network can be trained on such augmented photo-
realistic images, and at inference time it is used in combination
with a 3D mesh reconstruction network achieving category-level
capabilities. Several tests are conducted on real objects of the
YCB-V [11] and NOCS-REAL 275 [12] datasets to assess
the performance of the proposed framework. Fig. 1 shows a
qualitative comparison between the proposed framework and
the original GDR-Net, which demonstrated to have promising
performance as an instance-level pose estimation network.

The rest of the paper is organized as follows: Section II
describes the considered problem, related works, and open chal-
lenges; Section III details the structure of the presented pipeline,
from a general viewpoint to a fine-grained description of the
neural network models employed; Section IV collects exper-
imental results with qualitative and quantitative comparisons
with state-of-the-art approaches; and Section V is devoted to
conclusions by summarizing the contribution of the work.

II. PROBLEM DEFINITION AND RELATED WORK

One of the key aspects of autonomous and reliable grasping
is the pose estimation of the target object. Existing approaches
that extract the 6D pose information from a single RGB(-
Depth) image can be mainly distinguished in instance-level
and category-level methods. The first type is biased by the
CAD model and texture properties of the object used during
training and does not properly work if changes are applied
to such an object. The instance-level pose estimation problem
can be formalized as follows: given a set of images I and a
set of objects O for which the CAD model is available, the
objective is to find, for each RGB(-D) image Ij ∈ I and object
instance Mi ∈ O, the mapping (Ij ,Mi) �−→ (Rij, tij), where
Rij ∈ SO(3) is the object rotation matrix and tij ∈ R3 is the
3D translation vector for the particular object instance with
respect to the camera frame. The presence of the 3D CAD
model resolves the ill-posedness of the problem of extracting
3D information from a single color image, but jeopardizes the
generalization capabilities of the method. Indeed, instance-level
approaches may have practical applications in scenarios with

a fixed number of objects, while their effectiveness drops with
unseen instances. In the latest years, this type of network has
witnessed an impressive improvement concerning accuracy and
speed: from pioneering works in YOLO-6D [13], and Dope [10]
to more recent approaches in GDR-Net [14], and SO-Pose [15].
Depth information can increase the accuracy of the estimation
along with higher computational burden and lower real-time
performance [11].

Passing from instance-level to category-level, the problem
can be formalized as follows: given a set of images I, a set
of categories of objects sharing some common properties C =
∪N
k=1Ck, and a set of objects O belonging to such different

categories, the objective is to find, for each RGB(-D) image
Ij ∈ I and object instance Mi ∈ O the mapping (Ij ,Mi) �−→
(Ck,Rij, tij, sij), where Ck is the category which the object
Mi belongs to, and sij ∈ R3 its size. It is worth noticing that
the CAD model is not available for each object instance during
inference otherwise the problem ends up in the instance-level
setting. For that reason, the sij term represents the size of the 3D
bounding box tightly surrounding the object to solve the scale
ambiguity.

Such a scale factor is relevant for robotic grasping scenarios to
determine whether the target object can fit the gripper opening.
This family of problems leaves space for investigation, espe-
cially concerning the exploitation of RGB information. Indeed,
state-of-the-art approaches, like Shape-Prior [16] (or SPD), and
FS-Net [17], instead of using only color images during training,
extract a point cloud from the depth image of the observed
object and apply a set of 3D deformations to augment the
available data and catch intra-category salient features. Existing
methods can also be classified as single-stage or multiple-stage
estimators. In the former, the training process of both detection
and pose estimation outputs is performed jointly, as in the
case of key-point-based approaches presented in [10] or [18].
Multiple-stage methods like [14] or [15], instead, can benefit
from higher modularity considering the vast improvement that
2D detectors have been going through.

A dual problem to 6D pose estimation is 3D model re-
construction. Explicit shape representation [19] is a class of
approaches that approximates a surface as a function of 2D
coordinates and enhances the granularity of this approximation
by increasing the number of edges, triangles, or vertices at the
expense of additional processing time. Variations in the objects’
topology within the same category can hamper performances
due to the possible presence of holes and gaps inside the 3D
model, thus leaving space for the so-called implicit surface
representations [20]. Signed Distance Functions (SDF) are the
most widespread implicit model that computes the distance to
the closest surface for each considered 3D point and assigns a
positive (negative) sign if the point is inside (outside) [21]. In
addition, a novel approach to 3D reconstruction is constituted by
Neural Radiance Field (NeRF) [8] that generates 3D scenes from
a sequence of RGB images knowing the poses of the cameras.
Then, by sampling 3D coordinates and 2D viewing directions
for each camera ray, it is possible to feed a neural network and
get an RGB-density image as an output to reconstruct the final
3D mesh. The main drawback of such an approach regards
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Fig. 2. The presented method aims to find the 6D pose and 3D object size from a single RGB image, with the depth image used to correct the estimation.
It encompasses three neural network modules for 2D object detection (or segmentation), instance-level 6D pose estimation, and box-supervised 3D model
reconstruction. Dashed components are used at inference time only.

the high computational burden, both during the training and
testing phases, in the order of many seconds or minutes [8].
Instant-Nerf [22] goes in this direction by reducing inference
time by a factor of 10 to 100, however, NeRF-based methods
remain more suitable for 3D mesh reconstruction when multiple
views are available, an assumption not always true in fixed
camera robotics settings.

III. METHODOLOGY

The proposed approach presents a framework for 6D
category-level pose estimation starting from an instance-level
network (Fig. 2). The objective is to show that instance-level
models that achieved high performance in 6D pose estimation,
but suffer from low generalization capabilities, can still be effec-
tive for category-level tasks. The point is that, in general, RGB
instance-level architectures encompass backbones that can have
general-purpose applications like classification and detection.
Therefore, they can distill the most salient features if exposed to
various instances of the same category to output results in a latent
space. From that, other neural networks can retrieve geometrical
and shape information about the considered objects. The work
investigates in the experimental campaign some categories that
are common in the research community such as banana, bottle,
bowl, camera, can, laptop, and mug. This section gives an
overview of the proposed approach and details each module of
the pipeline, as well as the dataset generation procedure required
for the training.

The design of the architecture is modular, allowing chang-
ing the components with the most recent research advances in
computer vision as they respect the same required interface. In
particular, the pipeline starts from a 2D object detection module
that takes as input an RGB image and outputs the 2D bounding
box of the target. Then, a 3D model reconstruction module ex-
ploits the cropped 2D RGB image to generate the object 3D mesh
with absolute scale along the coordinate axes ŝ ∈ R3. Finally,

the 6D instance-level estimation module combines the cropped
2D RGB image and the 3D mesh to obtain the 3D rotation matrix
R and 3D translation vector t̂. A depth-correction module can
be used in post-processing to improve the estimates t̂ ∈ R3 and
ŝ ∈ R3 through cropped depth image of the considered target
object to obtain final translation t and scale s.

Given the significant recent advances in computer vision in
the field of 2D object detection, the proposed approach relies on
an off-the-shelf object detector, i.e., YOLOv5 [6] that takes the
full camera frame in input and provides both the class of a given
object and its 2D bounding box to the following stages of the
network.

Cluttered scenes may cause a degradation in instance-level
6D pose estimation, and consequently, at inference time, it
may be convenient to replace the 2D detection module with
a 2D instance segmentation like Detectron [7]. This is useful
to remove ambiguity in the single view by masking occluding
objects, and increasing the attention on the object of interest.
The benefits of segmentation are opportunely analysed in the
experimental campaign.

A. Photo-Realistic Dataset

A custom-made purely photo-realistic dataset is generated
to train the proposed framework. The dataset is built through
BlenderProc, a tool based on Blender graphic engine capable
of rendering RGB images with an acceptable sim-to-real gap,
together with 6D object pose annotations [9]. The constructed
dataset contains 9900 images for each of the considered cat-
egories, subdivided into 300 scenes with 33 images each, to
simulate various camera viewpoints, illumination, and back-
ground conditions. The target is to make the network generalize
to objects whose CAD is not available within the same category.
The method employs 15 base models for the camera object,
300 for laptop, and 100 for the other NOCS’ categories (bottle,
bowl, can, mug) that are more related to manipulation tasks.
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Fig. 3. Starting from a set of predefined CAD models [23] (a), a first randomization process (b) applies random textures to each instance, a shape randomization
process (c) further augments the 3D dataset along the coordinate axes, and finally, a photo-realistic renderer (d) generates annotated RGB images.

Accordingly, ShapeNet [23] is a valuable source to gather the
base CAD models. Taking inspiration from Shape-Prior [16]
and FS-Net [17], such meshes are randomly enlarged or shrunk
along their coordinate axes to augment the available dataset.

The deformation is applied to each side of the bounding
box within a given range that is a tunable parameter selected
depending on the required needs. A large range may be useful
to push for generalization over the same category, but it is worth
not exaggerating since a too broad range can lead to losing the
main properties of the category’s shape. The main innovation
compared to other category-aware works is that during training,
the proposed method uses only synthetic RGB images through
an aleatoric set of colored textures applied to the deformed
3D models to increase generalization and reduce overfitting
to particular surface patterns. In this way, the neural network
model can focus more on the shape to reconstruct the geometry
of the objects despite the intra-class variability. To this end, in
industrial settings that work per category of object, the number of
base models can be possibly reduced according to such diversity,
also addressing new incoming products in line with the flexibility
concept of Industry 4.0. Fig. 3 details the augmentation pipeline,
where 3D CAD models can be endowed with some color and
texture attributes picked at random. Such modified meshes are
then passed to Blenderproc in charge of randomly scaling the
models. In addition, Fig. 3 shows a qualitative representation
of the shape deformation along the coordinate axes: the yel-
low and red wireframes outline the maximum and minimum
deformation possible for a given category, compared to the base
model depicted in black. Furthermore, Blenderproc places the
objects in a photo-realistic environment, where a wide variety of
backgrounds and illumination conditions are simulated. Finally,
the software computes the 6D pose of each object with respect to
each camera view. A strength of this method is the possibility to
develop an in-house approach: all the data generation process is
fully under the control of the user, and further developments
are not constrained by the lack of access to real-world data
annotation tools as in [24].

B. RGB 6D Pose Estimation

This module exploits an instance-level network to extract ob-
jects’ 6D pose (3D rotation R and 3D translation t̂ with respect
to the camera frame) from an RGB input, the associated 3D

model, and the intrinsic parameters K ∈ R3×3 of the employed
visual sensor.

Given the high number of instance-level networks, the choice
of the particular model comes from a trade-off between accuracy,
speed, and flexibility. In this work, Geometry-Guided Direct
Regression Network or GDR-Net is the reference baseline. This
architecture is based on an encoder-decoder encompassing a
ResNet [25] backbone and a custom decoder to reconstruct
an internal representation of the geometry of the seen object’s
feature space. Such a capability is appealing for an extension
to category-level scenarios: the idea is to make the network
learn the 3D geometry common to a given class instead of
focusing on the details concerning a few instances of various
categories, as in instance-aware settings. The model is a fully
differentiable architecture enabling end-to-end training of the
encoder-decoder and the Perspective-n-Point (PnP) modules
in charge of finding the 6D pose of the 3D model given the
features extracted from the RGB input [14]. Nonetheless, the
recovery of the relative and, in particular, the absolute scale
along the coordinate axes of the item from a single image is still
beyond the possibilities of instance-level networks. To this end,
the 3D reconstruction module becomes essential to carry out a
successful category-aware estimation.

C. 3D Model Reconstruction

This neural model is trained over the same set of photo-
realistic RGB images of the considered categories and learns
how to infer the 3D mesh of unseen instances from a single
viewpoint. In this work a box-supervised 3D model reconstruc-
tor is developed on top of Multi-Category Mesh Reconstruction
(MCMR) [26] as in Fig. 4. In detail, the original architecture
makes use of the weakly perspective projection model, mostly
suitable when objects have a similar distance along the camera
axis [27]. Moreover, it encompasses a fully connected network
to regress 2D translation, 3D rotation, and 1D scaling factor.
However, by delegating the pose estimation task to the instance-
level network, it is possible to remove the above restriction and
get the full 3D translation. Consequently, in order to retrieve
the proper shape and scale of the 3D model, it is useful to
exploit prior knowledge acquired during the learning phase and
stored in 3D models called meanshapes. A meanshape can be
regarded as a latent feature that condenses the salient information
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Fig. 4. Box-supervised 3D model reconstruction, from monocular synthetic RGB 6D pose estimation dataset, a set of meanshapes is learned. The newly introduced
3D bounding box loss (in red) allows backpropagating information (in green) about the object’s size to the other neural components of the model. Dashed elements
are used at inference time only.

about the structure of the objects seen at training time. It is
possible to learn multiple meanshapes and let a classifier select
the most suitable one with respect to the image features. In
the presented approach, the loss function in [26] is completed
with the 3D bounding box supervision by introducing the term
L3Dbbox = (sprx − sgtx )2 + (spry − sgty )2 + (sprz − sgtz )2, where
sk is the length of the side k ∈ {x, y, z} of the object’s predicted
(pr) and ground truth (gt) 3D bounding boxes. In such a way, the
information is back-propagated to all the neural components,
and in particular to the SDF-based network [21] to regress the
proper scale of the object as well as its shape, with a good real-
time performance. In order to perform a comparison between
predicted and ground truth meshes, it is convenient to align such
3D models in terms of position. Therefore, at every training
step, the predicted mesh is shifted so that its bounding box’s
centroid becomes the 3D point [0,0,0], as by convention adopted
in the NOCS dataset. In principle, the actual absolute scale s
would be unknown, however, thanks to 3D box supervision, its
approximation ŝ is retrievable up to the range of dimensions
considered in the dataset generation process, as shown in Fig. 3.

D. Depth Correction Module

As detailed in Fig. 2, the 3D CAD model is not accessible at
inference time. Consequently, the instance-level 6D pose estima-
tion network needs to be completed with the above-mentioned
3D reconstruction module, which is sufficient for a proper 3D
rotation regression, given the correct relative scale of the 3D
model. On the other hand, a further correction may be performed
on the 3D translation to compensate for pose estimation errors
due to the absolute scale. To this purpose, it is convenient to
exploit a rendered depth map obtained by rendering the predicted
mesh, which comes from the 3D model reconstruction module,
by using the predicted rotation and translation provided by the
instance-level network. At this point, a correction based on
stereo depth may be applied, as depicted in Fig. 5 and outlined
in the following steps:

Fig. 5. Correction procedure of the pose estimation, the comparison between
rendered and measured depth maps can be used to properly rescale translation
coordinates.

� finding the width σu and height σv ratios between rendered
and measured depth maps;

� sampling p 2D points on the rendered depth map zr
{(ur

1, v
r
1), . . .(u

r
p, v

r
p)}. For experiments p = 8 shows to

be enough for each estimation;
� finding the corresponding points on the measured depth

map zm: {
um
i = σu ur

i

vmi = σv vri
� finding the final depth ratio as:

σz =
1

p

p∑
i=1

zm(um
i , vmi )

zr(ur
i , v

r
i )

so that both the 3D bounding box and the translation vector
can be properly scaled to t = σz t̂ and s = σz ŝ.

Despite the proposed method is not designed for heavily
cluttered scenes, it can address self-occlusions, as well as mild
occlusions where the 2D bounding box’s size is not affected
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TABLE I
PERFORMANCE COMPARISON ON NOCS REAL-275 DATASET [12] BETWEEN

I2C-NET AND VARIOUS STATE-OF-THE-ART APPROACHES, SUBDIVIDED INTO

METHODS REQUIRING REAL (R) ANNOTATIONS (ANN.) OR JUST SYNTHETIC (S)
ONES

by other objects, since if points are present in the sensor depth
map but not in the rendered depth map, then another pair is
sampled. The assumption behind this choice is the possibility to
rely on a grasping policy that prioritizes less occluded objects to
reduce the clutter for the next grasping. Another relevant feature
of this approach is the reduced complexity compared to other
corrections methods like Iterative Closest Point (ICP) on 3D
point clouds [28].

IV. EXPERIMENTAL RESULTS

To assess the performance of the presented method, NOCS-
REAL 275 [12] dataset is used as a widespread benchmark.
The proposed architecture is trained on a custom-made photo-
realistic dataset, which is not related to NOCS-REAL’s test
subset used for quantitative evaluation. In addition, YCB-V [11]
test set is used to show that the method can also work with
categories beyond the NOCS dataset.

The following metrics are introduced to allow a comparison
with other approaches:
� 3D Intersection over Union (3D IoU) measures the average

precision of the ratio between intersection and union of the
predicted and ground truth 3D bounding boxes [29].

� n cm, n◦ is the average precision of the predictions with a
roto-translational error below n centimeters and n degrees;
a symmetric-aware version of the metric can relax the error
in case of ambiguities along the axes of symmetry [29];

The reference framework for the experimental campaign is
PyTorch. Training is carried out on an NVIDIA RTX 3090 GPU
(24 GB), while inference on an RTX 3080 Laptop GPU (8 GB).
For real-world experiments in the wild, the used device is an
RGB-D Luxonis OAK-D camera [30].

Table I shows i2c-net architecture compared to some state-
of-the-art approaches, over category-level metrics. The reported
performance is referred to the configuration exploiting both
depth correction and instance-segmentation at inference time.
i2c-net registers the highest accuracy on 3D intersection over
union at 25% (3D25) and 50% (3D50). Concerning the n◦, n cm
metric, i2c-net is the best on 10◦, 10 cm. It is worth noticing
that the majority of other works rely on real-world annotations
during training, which hinders a proper extension to categories
not included in the NOCS dataset. Conversely, recent methods
like CPPF [32] exploit synthetic data only in the learning phase.

TABLE II
ABLATION STUDY ON THE IMPACT OF DEPTH CORRECTION AND INSTANCE

SEGMENTATION’S REMOVAL ON n◦,N cm METRIC TESTED ON NOCS REAL,
ALONG WITH HOW MUCH THE METHOD IS CAPABLE TO COMPENSATE FOR

THE ABSENCE OF 3D CAD MODEL

However, compared to it, i2c-net outlines superior performances
on all the reported measurements, thus highlighting that the
presented approach is quantitatively effective in a real-world sce-
nario. It must be noted that all the category-level state-of-the-art
approaches reported in Table I rely on depth information.

Fig. 6 contains a quantitative performance breakdown over
different categories in terms of average precision (AP) for 3D
Intersection over Union, rotation error, and translation error.
Different thresholds are used to extract the curves for each
metric, where the closer the AP value is to 100%, the better.
On the other hand, Fig. 7 shows qualitative results related to the
analysis.

Translation errors show consistent performances among all
the classes except for bowl, where the 3D reconstruction step
may face difficulties in detecting the depth of the hollow from
RGB images only. Further pose randomization techniques can
be applied to reduce such ambiguities. Conversely, bowl, as well
as bottle and can show results above the average regarding the
rotation error that does not penalize the different predictions
along the symmetry axes, not affecting grasping and manipu-
lation tasks. In addition, symmetric objects benefit from fewer
viewpoints required for a proper 3D shape reconstruction. There-
fore, increasing that number during training for other categories
can provide an improvement. Concerning the camera category,
results show lower performances on rotation error, due to shape
variability that is higher than in other categories. Conversely,
the class laptop behaves properly on n◦, n cm, while lags on
3D IoU, since the articulated structure of the object may lead to
a low overlapping between reconstructed and ground truth 3D
models, in spite of good pose estimation.

Table II reports an ablation study to highlight how much the
performance of the presented architecture, expressed through the
n◦, n cm metric, degrades by removing different modules. Such
an analysis covers depth correction and instance segmentation
to feed the network with a masked RGB input. In addition, the
first 4 rows of the table consider the case in which the ground
truth 3D model is available to give a baseline for the last 4 rows,
quantitatively assessing how much the presented method can
compensate for the lack of a 3D model by reconstructing it at
inference time.
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Fig. 6. Quantitative performance analysis over different NOCS categories.

Fig. 7. Qualitative results on some images from NOCS REAL-275 (first column) and YCB-V (second column) test sets, and real-world examples in the wild
(third column). All the involved instances are not included in the training dataset.

By comparing rows 6 and 8, and rows 5 and 7, not using the
depth correction module impacts between 11.92% and 36.6%
in case the 3D model is not available. Similarly, instance seg-
mentation, which can be convenient to counteract occlusions,
provides a lighter improvement, between 2.29% and 16.72%,
by comparing lines 1-3-5 against 2-4-6 respectively.

It is worth noticing that row 5 presents the best performance
in a category-level condition, such as when depth correction
and 2D segmentation are both used, while the 3D CAD is not
available, as already presented in Table I.

On the other hand, comparing lines 1-2 versus 5-6 respectively
highlights that once the 3D model needs to be reconstructed, the
performance drops between 8.2% and 21.98% when depth is
available, increasing up to 42.04% when i2c-net cannot access
any 3D information as in rows 7-8 versus rows 3-4, where,
instead, at least the 3D model is available. Despite this difference
is not negligible, the generalization gain obtained through 3D
mesh reconstruction is consistent since the 3D model of the seen
object is not available at inference time.

As depicted in Fig. 1, GDR-Net provides unsuccessful results
with instances in the wild, confirming the superiority of i2c-net

over its instance-level baseline in the presence of unseen in-
stances not contained in the dataset for the considered categories
(mug, bottle, and bowl).

A. Real-World Experiments

Fig. 7 highlights the capabilities of the network to generalize
beyond instances seen during training coherently to the quanti-
tative analysis. Since no ground truth is available, the oriented
3D bounding box can show qualitative results over different
categories, thanks to the intensive domain, texture, and shape
randomization carried out prior to the training phase. In addition,
to show the extension of the pipeline to categories not included
in NOCS REAL-275, testing on the YCB-V object banana is
reported in Fig. 7(b), beside the classes in common with the
former dataset.

Real-time experiments show an inference time of 60.3 mil-
liseconds (ms) on the RTX 3080 laptop GPU for each pose
estimation, averaging over 1000 evaluations. A more detailed
breakdown highlights 12.8 ms for the 2D object detection
with YOLOv5 small [6] and 27.7 ms for instance-level pose
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estimation. The remaining time is split between 3D reconstruc-
tion (7.4 ms) and depth correction (12.4 ms) that, together,
introduce a 50% overhead. However, even though this represents
the price for moving from an instance-level to a more general
category-level pipeline, real-time tasks can still be carried out
without further optimization.

V. CONCLUSION

Two of the primary tasks for robots in many applications are
object grasping and manipulation. Object detection and pose
estimation are fundamental skills to give robots the ability to
adapt to the changing environment and grasp a variety of objects
that present different sizes, material properties, and texture ap-
pearances in cluttered scenes with different lighting conditions.

This work presents i2c-net to extract the 6D pose of mul-
tiple objects belonging to different categories, starting from
an instance-level pose estimation network and exploiting a
custom-made synthetic dataset for training. Such a dataset uses
some base CAD models for known objects, encompassing the
diverse shapes of the objects in that category as a starting
point for a deformation procedure, which provides new object
models enriched with real textures for domain randomization
purposes. The selected instance-level pose estimation network
can be trained on such augmented photo-realistic images, and, at
inference time, it is used in combination with a 3D mesh recon-
struction network achieving category-level capabilities. Depth
information is used for post-processing as a correction. Tests
conducted on real objects of the YCB-V and NOCS REAL-275
datasets show the high accuracy of the proposed method as well
as good real-time performances.

REFERENCES

[1] S. D’Avella, C. A. Avizzano, and P. Tripicchio, “ROS-industrial based
robotic cell for industry 4.0: Eye-in-hand stereo camera and visual servoing
for flexible, fast, and accurate picking and hooking in the production line,”
Robot. Comput.- Integr. Manuf., vol. 80, 2023, Art. no. 102453.

[2] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge,
and O. Khatib, “Progress and prospects of the human–robot collaboration,”
Auton. Robots, vol. 42, no. 5, pp. 957–975, 2018.

[3] S. D’Avella, P. Tripicchio, and C. A. Avizzano, “A study on picking objects
in cluttered environments: Exploiting depth features for a custom low-cost
universal jamming gripper,” Robot. Comput.- Integr. Manuf., vol. 63, 2020,
Art. no. 101888.

[4] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from
object localization, object pose estimation to grasp estimation for parallel
grippers: A review,” Artif. Intell. Rev., vol. 54, no. 3, pp. 1677–1734, 2021.

[5] X. Wu, D. Sahoo, and S. C. Hoi, “Recent advances in deep learning for
object detection,” Neurocomputing, vol. 396, pp. 39–64, 2020.

[6] G. Jocher et al., “ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime
Instance Segmentation,” Nov. 2022, doi: 10.5281/zenodo.7347926.

[7] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detec-
tron 2,” 2019. [Online]. Available: https://github.com/facebookresearch/
detectron2

[8] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for view
synthesis,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 405–421.

[9] M. Denninger et al., “Blenderproc,” 2019, arXiv:1911.01911.

[10] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield,
“Deep object pose estimation for semantic robotic grasping of household
objects,” in Proc. Conf. Robot Learn., Oct. 29–31, 2018, vol. 87, pp. 306–
316.

[11] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A convolu-
tional neural network for 6D object pose estimation in cluttered scenes,”
in Proc. Robot.: Sci. Syst., 2018, doi: 10.15607/RSS.2018.XIV.019.

[12] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6D object pose and
size estimation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 2637–2646.

[13] B. Tekin, S. N. Sinha, and P. Fua, “Real-time seamless single shot 6D object
pose prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 292–301.

[14] G. Wang, F. Manhardt, F. Tombari, and X. Ji, “GDR-Net: Geometry-guided
direct regression network for monocular 6D object pose estimation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 16606–
16616.

[15] Y. Di, F. Manhardt, G. Wang, X. Ji, N. Navab, and F. Tombari, “SO-
Pose: Exploiting self-occlusion for direct 6D pose estimation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 12396–12405.

[16] M. Tian, M. H. Ang Jr, and G. H. Lee, “Shape prior deformation for
categorical 6D object pose and size estimation,” in Proc. Eur. Conf.
Comput. Vis., 2020, pp. 530–546.

[17] W. Chen, X. Jia, H. J. Chang, J. Duan, L. Shen, and A. Leonardis, “FS-Net:
Fast shape-based network for category-level 6D object pose estimation
with decoupled rotation mechanism,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2021, pp. 1581–1590.

[18] Y. Lin, J. Tremblay, S. Tyree, P. A. Vela, and S. Birchfield, “Single-stage
keypoint-based category-level object pose estimation from an RGB im-
age,” in Proc. IEEE Int. Conf. Robot. Automat., 2022, pp. 1547–1553.

[19] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang, “Pixel2Mesh:
Generating 3D mesh models from single RGB images,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 52–67.

[20] A. Tewari et al., “Advances in neural rendering,” Comput. Graph. Forum,
vol. 41, no. 2, pp. 703–735, 2022.

[21] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for shape
representation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 165–174.

[22] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022.

[23] A. X. Chang et al., “ShapeNet: An information-rich 3D model repository,”
2015, arXiv:1512.03012.

[24] A. Ahmadyan, L. Zhang, A. Ablavatski, J. Wei, and M. Grundmann,
“Objectron: A large scale dataset of object-centric videos in the wild with
pose annotations,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 7822–7831.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[26] A. Simoni, S. Pini, R. Vezzani, and R. Cucchiara, “Multi-category mesh
reconstruction from image collections,” in Proc. IEEE Int. Conf. 3D Vis.,
2021, pp. 1321–1330.

[27] Z. Zhang, Weak Perspective Projection. Berlin, Germany: Springer, 2014.
[28] P. Besl and H. McKay, “A method for registration of 3-D shapes,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256, Mar. 1992.
[29] J. Z. Fan, Y. Zhu, Y. He, Q. Sun, H. Liu, and J. He, “Deep learn-

ing on monocular object pose detection and tracking: A comprehensive
overview,” ACM Comput. Surv., vol. 55, pp. 1–40, 2023.

[30] Luxonis, “Oak-d, depth-ai documentation,” 2022. Accessed: Aug.
30, 2022. [Online]. Available: https://shop.luxonis.com/products/oak-d

[31] G. Gao, M. Lauri, Y. Wang, X. Hu, J. Zhang, and S. Frintrop, “6D object
pose regression via supervised learning on point clouds,” in Proc. IEEE
Int. Conf. Robot. Automat., 2020, pp. 3643–3649.

[32] Y. You, R. Shi, W. Wang, and C. Lu, “CPPF: Towards robust category-level
9D pose estimation in the wild,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2022, pp. 6866–6875.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on February 07,2023 at 08:22:55 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.5281/zenodo.7347926
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://dx.doi.org/10.15607/RSS.2018.XIV.019
https://shop.luxonis.com/products/oak-d


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


