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This paper studies market selection in an Arrow-Debreu economy with complete markets where 
agents learn over misspecified models. In this setting, standard Bayesian learning loses its formal 
justification and biased learning processes may provide a selection advantage. Studying two cases 
of model misspecification and four learning processes, our analysis reveals that, differently from 
correctly specified settings, the ecology of traders populating the market crucially affects selection 
dynamics and, thus, long-run asset valuation. In fact, model misspecification implies a general 
difficulty in ranking learning behaviors with respect to their survival prospects. For instance, 
prediction averaging shows an advantage when the true data generating process belongs to the 
same family of models that agents use to learn. This advantage partially disappears when the 
true model belongs to a more general class, as a trade off emerges between approximating the 
projection of the true model on the space on which the agents learn and adapting to the part 
of the true model that cannot be represented in that space. Rules that guarantee survival are 
possible, but they exploit imitative mechanisms that require information about all the other 
market participants.

1. Introduction

In pure exchange Arrow-Debreu economies with complete markets and bounded endowments, where traders with homogeneous 
discount factors update their beliefs learning over a correctly specified set of models that includes the state of nature process, only 
those who dynamically incorporate evidence into their probabilistic predictions according to Bayes’ rule are able to survive and 
influence assets’ long-run evaluation (Blume and Easley, 2006, 2009b). In such a context, a Bayesian agent asymptotically learns the 
true model, drives those who persistently forecast differently out of the market, and prices assets as in a representative agent model 
with rational expectations. Hence, the ecology of traders and the selection dynamics generated by their competition do not play any 
role for asset valuation in the long run.

When, in contrast, traders face model misspecification and the true data generating process does not belong to the set on which 
they learn, one of the assumptions that underpins Bayes’ theorem for computing conditional probabilities is missing and Bayesian 
learning loses its formal justification (see the discussion in Massari, 2021). In this case, little is known about the consequences on 
selection outcomes. In fact, previous studies show that Bayesian learning may lose its evolutionary advantage. Massari (2020) proves 
that an underreacting trader, assigning more weight to the prior than what Bayesian learning would prescribe, does not vanish and, 
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under some circumstances, drives a Bayesian agent out of the market. Antico et al. (2023) show that a sentiment investor following 
the learning model of Barberis et al. (1998) can dominate a Bayesian trader over generic regions of the parameter space. These 
results suggest that the introduction of an ecology of different learning rules may actually generate nontrivial selection results and, 
as a consequence, have a nontrivial effect on prices. This observation raises several questions that remain unaddressed in the market 
selection literature. For example, consider an ecology of traders characterized by heterogeneous learning rules, how are the emerging 
selection outcomes influenced by model misspecification? Can particular survival learning mechanisms be identified? How general 
are they?

In recent years, the economic consequences of model misspecification have attracted increasing attention (see, for instance, the 
blooming contributions in the game and decision theoretic literature, e.g., Hansen, 2014; Esponda and Pouzo, 2016; Fudenberg et 
al., 2017; Marinacci and Massari, 2019; Cerreia-Vioglio et al., 2020; Hansen and Sargent, 2022). The basic motivation is to try to 
embed in economic modeling the idea that “all models are wrong” (Box, 1976) and that “the very word “model” implies simplification 
and idealization” (Cox, 1995). Real traders face a large world situation (Gigerenzer and Gaissmaier, 2011) and usually must deal with 
misspecified learning problems.

This paper investigates how model misspecification affects selection outcomes in pure-exchange Arrow-Debreu economies with 
complete markets and bounded endowments. To do that, we consider four different learning processes and two cases of model 
misspecification.

The learning processes we consider include Bayesian learning, underreaction, moving average over a reference learning process, 
and limited memory Bayesian learning. The first two processes match those considered by Massari (2020). While Bayesian learning 
is a natural choice, underreaction was originally introduced and studied assuming correct specification by Epstein et al. (2010). 
The results of Massari (2020) in a context of model misspecification provide a rationale for our choice. Moreover, the mathematical 
formulation of underreaction is equivalent to the Soft-Bayes algorithm of Orseau et al. (2017), matches the dynamics of prices and 
wealth in the prediction market model of Bottazzi and Giachini (2017, 2019b), and describes how risk neutral probabilities and 
consumption shares evolve in the economy analyzed by Dindo and Massari (2020). The other two learning processes represent 
extreme benchmarks. On one end of the spectrum, the moving average learning process consists in building conditional probabilities 
by averaging the last predictions of a reference learning process. Referencing underreaction, for instance, one can strengthen the 
smoothing behavior that underreaction already displays. On the other end of the spectrum, limited memory Bayesian learning 
deliberately forgets past observations, continuously resetting Bayesian updating and, thus, causing a sort of overreaction to recent 
observations.

The first case of model misspecification that we consider, parametric misspecification, consists in assuming that the true proba-

bility measure belongs to the same class of probabilistic models that agents use to learn, but with different parameter values. This 
is the smallest possible deviation from correct specification. The second case of model misspecification, structural misspecification, 
assumes that the process driving the states of nature belongs to a different and more general class of processes than the one on which 
the agents learn. We do this to investigate whether the intuitions and the insights obtained under parametric misspecification extend 
to a more general scenario or not.

Our analysis bridges the general equilibrium literature with intertemporal utility maximization and complete markets (see e.g. 
Sandroni, 2000; Blume and Easley, 2006, 2009a; Jouini and Napp, 2011; Kogan et al., 2006, 2017; Massari, 2017; Dindo and 
Massari, 2020; Beddock and Jouini, 2021; Bottazzi and Giachini, 2022) with temporary equilibrium models, based on bounded 
rationality and evolutionary dynamics among investment rules (see e.g. Hens and Schenk-Hoppé, 2005; Evstigneev et al., 2009, 
2016; Holtfort, 2019; Bottazzi and Dindo, 2013, 2014; Bottazzi et al., 2018, 2019; Bottazzi and Giachini, 2017, 2019b,a; Elmiger, 
2020).1 Specifically, we combine the complete market Arrow-Debreu economy, characterizing most of the contributions belonging to 
the first strand of literature, with biased learning schemes, which are closer to the second. We do this to avoid compensation effects 
between nonoptimality in investment rules and misspecification in beliefs (see the discussion in Bottazzi et al., 2018; Giachini, 2021).

We prove several accuracy results on the learning processes considered and extend previous contributions, connecting long-run 
outcomes with beliefs’ accuracy in a context in which the existence of specific limits cannot be automatically assumed. In general, 
we show that when model misspecification is considered, the ecology of learning behaviors operating in the market and the nature of 
their misspecification are of crucial importance in determining the outcome of the selection and, as a consequence, the value of assets 
in the long run. For example, while prediction smoothing, as prescribed by underreaction and moving average learning, generates 
a generic selection advantage under parametric misspecification, this advantage may break down when structural misspecification 
occurs. The latter induces a trade-off between approximating the projection of the true model on the space on which the agents learn 
and adapting to the part of the true model that cannot be represented in that space. In general, learning models inducing any kind of 
convergence toward a single, best misspecified model do not operate efficiently in this framework. Finally, we discuss some examples 
of learning rules that can survive regardless of the form of model misspecification. Their common feature is exploiting information 
about other agents to asymptotically adapt and imitate the best learning processes present in the market. This further confirms the 
huge impact that the specific ecology of learning rules and the type of model misspecification have on asset pricing.

1 The two approaches can lead to identical dynamics. In fact, they can be linked by means of effective beliefs, see Bottazzi et al. (2018), Dindo (2019), Giachini 
2
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2. The model

Consider an Arrow-Debreu economy with an infinite horizon and discrete time 𝑡 = 0, 1, …. There is a homogeneous consumption 
good and the market is complete. Let 𝑠𝑡 ∈ {1, 2, … , 𝑆} be the state realized at time 𝑡 > 0, 𝜎 = (𝑠1, 𝑠2, … , 𝑠𝑡, …) a path, and 𝜎𝑡 =
(𝑠1, 𝑠2, … , 𝑠𝑡) a partial history until time 𝑡.

The set of all possible paths is Σ while Σ𝑡 indicates the set of all partial histories until time 𝑡. Let C(𝜎𝑡) = {𝜎 ∈ Σ|𝜎 = (𝜎𝑡, …)} be 
the cylinder with base 𝜎𝑡 and F𝑡 the 𝜎-algebra generated by the cylinders C(𝜎𝑡). Then, by construction, (F𝑡)∞𝑡=0 is a filtration and F
is the 𝜎-algebra generated by the union of filtrations. We indicate by 𝑝 the true probability measure on (Σ, F), such that (Σ, F, 𝑝)
is a well-defined probability space. We assume that any partial history has a positive probability of being realized, 𝑝(𝜎𝑡) > 0, ∀𝜎𝑡. 
Expectation is denoted with E and, when there is no subscript or superscript, it is computed with respect to 𝑝.

The economy is populated by 𝑁 agents indexed by 𝑖 = 1, 2, … , 𝑁 . Every agent 𝑖 is endowed with a stream of non-zero and 
uniformly bounded consumption good for any path 𝜎, (𝑒𝑖(𝜎𝑡))∞𝑡=0.

Denote by 𝑝𝑖 the subjective probability of agent 𝑖 over (Σ, F), by 𝑝𝑖(𝑠𝑡|𝜎𝑡−1) the subjective conditional probability of state 𝑠𝑡 after 
a partial history 𝜎𝑡−1, and by 𝑝𝑖(𝜎𝑡) =

∏𝑡

𝜏=1 𝑝𝑖(𝑠𝜏 |𝜎𝜏−1) the subjective likelihood of partial history 𝜎𝑡. Agent 𝑖 chooses its consumption 
plan (𝑐𝑖(𝜎𝑡))∞𝑡=0 solving

max
{𝑐𝑖(𝜎𝑡), ∀𝑡,𝜎}

E𝑝𝑖

[ ∞∑
𝑡=0
𝛽𝑡
𝑖
𝑢𝑖(𝑐𝑖(𝜎𝑡))

]
s.t.

∞∑
𝑡=0

∑
𝜎𝑡∈Σ𝑡

𝑞(𝜎𝑡)
(
𝑒𝑖(𝜎𝑡) − 𝑐𝑖(𝜎𝑡)

)
≥ 0,

where 𝛽𝑖 ∈ (0, 1) is agent 𝑖’s discount factor, 𝑢𝑖 is the Bernoulli utility of consumption of agent 𝑖, and 𝑞(𝜎𝑡) is the price of the Arrow-

Debreu security paying one if partial history 𝜎𝑡 is realized and zero otherwise. We also assume that individual probabilities 𝑝𝑖 are 
absolutely continuous with respect to 𝑝 and that Bernoulli utilities are continuously differentiable, increasing, strictly concave, and 
satisfy the Inada condition at zero. With these hypotheses, there is a unique competitive equilibrium and ∀𝜎𝑡, 𝑞(𝜎𝑡) > 0, ∑𝑁

𝑖=1 𝑐𝑖(𝜎𝑡) =∑𝑁

𝑖=1 𝑒𝑖(𝜎𝑡) = 𝑒(𝜎𝑡). From the F.O.C. of the optimal consumption problem, ∀𝑖, 𝑗 ∈ 1, … , 𝑁 (Blume and Easley, 2006),

𝑢′
𝑖
(𝑐𝑖(𝜎𝑡))

𝑢′
𝑗
(𝑐𝑗 (𝜎𝑡))

=
(
𝛽𝑗

𝛽𝑖

)𝑡 𝑝𝑗 (𝜎𝑡)
𝑝𝑖(𝜎𝑡)

𝑢′
𝑖
(𝑐𝑖(𝜎0))

𝑢′
𝑗
(𝑐𝑗 (𝜎0))

,

that is

1
𝑡
log

𝑢′
𝑖
(𝑐𝑖(𝜎𝑡))

𝑢′
𝑗
(𝑐𝑗 (𝜎𝑡))

= log
𝛽𝑗

𝛽𝑖
+ 1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

− 1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑗 (𝜎𝑡)

+ 1
𝑡
log

𝑢′
𝑖
(𝑐𝑖(𝜎0))

𝑢′
𝑗
(𝑐𝑗 (𝜎0))

. (1)

To describe the selection dynamics taking place in this competitive equilibrium, we introduce the following.

Definition 2.1. An agent 𝑖 vanishes if, 𝑝-almost surely, lim
𝑡→∞

𝑐𝑖(𝜎𝑡) = 0. It survives if it does not vanish.

The study of the asymptotic dynamics of agents’ relative consumption can be reduced to the analysis of their individual probability 
measures and discount factors. Consider the uniform distance of the logarithm of the subjective conditional probability of agent 𝑖
from the logarithm of the true conditional probability,

‖ log𝑝(⋅ ∣ 𝜎𝑡)∕𝑝𝑖(⋅ ∣ 𝜎𝑡)‖∞ =max
𝑠∈𝑆

| log𝑝(𝑠 ∣ 𝜎𝑡)∕𝑝𝑖(𝑠 ∣ 𝜎𝑡)|,
and the relative entropy of conditional probabilities and its partial average,

𝐷𝑝∣𝑝𝑖 (𝜎𝑡) =
𝑆∑
𝑠=1
𝑝(𝑠 ∣ 𝜎𝑡) log

𝑝(𝑠 ∣ 𝜎𝑡)
𝑝𝑖(𝑠 ∣ 𝜎𝑡)

and 𝐷𝑝∣𝑝𝑖 (𝜎𝑡) =
1
𝑡+ 1

𝑡∑
𝜏=0

𝐷𝑝∣𝑝𝑖
(
𝜎𝜏
)
. (2)

Under the hypothesis that the uniform distance of the logarithm of any individual conditional probability from the logarithm of the 
true conditional probability is bounded, the following proposition can be used to investigate the asymptotic behavior of (1).

Proposition 2.1. Given two agents 𝑖 and 𝑗, assume that ∃𝐿 > 0 such that, 𝑝-almost surely, ‖ log𝑝(⋅ ∣ 𝜎𝑡)∕𝑝ℎ(⋅ ∣ 𝜎𝑡)‖∞ < 𝐿, ℎ = 𝑖, 𝑗. Then, 
∀𝛼 < 1∕2, 𝑝-almost surely, for large 𝑡,

1
𝑡
log

𝑢′
𝑖
(𝑐𝑖(𝜎𝑡))

𝑢′
𝑗
(𝑐𝑗 (𝜎𝑡))

=
(
log𝛽𝑗 −𝐷𝑝∣𝑝𝑗 (𝜎𝑡−1)

)
−
(
log𝛽𝑖 −𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1)

)
+ 𝑜 (𝑡−𝛼) .

Moreover if, 𝑝-almost surely,

log𝛽𝑗 − log𝛽𝑖 + lim inf
𝑡→∞

(
𝐷𝑝∣𝑝𝑖 (𝜎𝑡) −𝐷𝑝∣𝑝𝑗 (𝜎𝑡)

)
> 0,

then agent 𝑖 vanishes.
3

Proof. See Section A.1. □
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Proposition 2.1 encompasses and extends previous results in the literature (Sandroni, 2000; Blume and Easley, 2006). It connects 
the analysis of agents’ relative consumption to the analysis of their beliefs, as expressed by their individual measures. The necessity of 
a bounded uniform distance is often fulfilled by assuming that the conditional probabilities of both the true and individual measures 
are uniformly bounded away from zero. Moreover, the literature often assumes models for which the asymptotic limit of the average 
relative entropy of individual conditional probabilities, 𝐷𝑝∣𝑝𝑖 (𝜎) = lim𝑡→∞𝐷𝑝∣𝑝𝑖 (𝜎𝑡), exists and is 𝑝-almost surely constant. This makes 
the previous proposition stronger and relatively easier to apply. In the following analysis, we will retain the first assumption, 
using measures that are uniformly bounded away from zero. Instead, the asymptotic convergence of the average relative entropy of 
individual conditional probabilities cannot generally be assumed when the analysis is extended to a context of model misspecification.

3. Learning processes

This section describes the four learning processes that we will analyze in this paper: Bayesian learning, learning with underreaction, 
moving average learning of an underlying process, and limited memory Bayesian learning. They are designed to show different degrees 
of sophistication, mechanisms, and asymptotic dynamics. They all share the following common structure.

Consider 𝐾 i.i.d. measures whose conditional probabilities are the vectors 𝝅1, . . . , 𝝅𝐾 that belong to the topological interior of 
the (𝑆 − 1)-simplex, 𝝅𝑘 = (𝜋𝑘(1), 𝜋𝑘(2), … , 𝜋(𝑆)) ∈ Δ𝑆−1+ . These vectors are uniformly bounded away from zero and diverse, that is, 
∃𝜖, 𝑑𝜋 > 0 such that 𝜋𝑘(𝑠) > 𝜖 and ‖𝝅𝑘 − 𝝅ℎ‖ > 𝑑𝜋, ∀𝑠, 𝑘, ℎ. To simplify our investigation, we assume the following.

Assumption 1. The individual conditional probabilities of the agents belong to the convex hull 𝐻𝐾 generated by the conditional 
probabilities of the 𝐾 models, ∀𝜎𝑡

(
𝑝𝑖(1 ∣ 𝜎𝑡),… , 𝑝𝑖(𝑆 ∣ 𝜎𝑡)

)
∈𝐻𝐾 =

{
𝐾∑
𝑘=1

𝜂𝑘𝝅𝑘 ∣
𝐾∑
𝑘=1

𝜂𝑘 = 1, 𝜂𝑘 ≥ 0

}
⊆Δ𝑆−1+ .

Moreover, ∃𝐿 > 0 such that, ∀𝑘 and ∀𝜎𝑡, ‖ log𝑝(⋅ ∣ 𝜎𝑡)∕𝜋𝑘(⋅)‖∞ < 𝐿.

Let 𝑤𝑖,𝑘(𝜎𝑡) be the weight agent 𝑖 attaches to model 𝑘 after having observed the partial history 𝜎𝑡. Then, agents’ individual 
conditional probabilities read, ∀𝑠,

𝑝𝑖(𝑠|𝜎𝑡) = 𝐾∑
𝑘=1

𝑤𝑖,𝑘(𝜎𝑡)𝜋𝑘(𝑠), with 𝑤𝑖,𝑘(𝜎𝑡) ≥ 0,∀𝑘, and

𝐾∑
𝑘=1

𝑤𝑖,𝑘(𝜎𝑡) = 1. (3)

Learning processes differ on how they compute the weights. By Assumption 1, the first requirement of Proposition 2.1 is verified, 
and the quantities in (2) are bounded.

Bayesian learning. Define 𝜋𝑘(𝜎𝑡) =
∏𝑡

𝜏=1 𝜋𝑘(𝑠𝜏 ). Then, in Bayesian learning, weights are updated according to Bayes’ rule,

𝑤𝑖,𝑘(𝜎𝑡) =
𝜋𝑘(𝑠𝑡)𝑤𝑖,𝑘(𝜎𝑡−1)
𝑝𝑖(𝑠𝑡|𝜎𝑡−1) =

𝜋𝑘(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

𝑤𝑖,𝑘(𝜎0) ∀𝑘, 𝑡, 𝜎 . (4)

The weight 𝑤𝑖,𝑘(𝜎𝑡) is the probability a Bayesian agent attaches to the event “model 𝑘 is the true one” conditional upon the observation 
of partial history 𝜎𝑡. By substituting (4) in 𝑝𝑖(𝜎𝑡), one obtains 𝑝𝑖(𝜎𝑡) =

∑𝐾

𝑘=1𝑤𝑖,𝑘(𝜎0)𝜋𝑘(𝜎𝑡). Bayesian learning can be considered the 
cornerstone of online learning. In fact, given a correct model specification, it is guaranteed to converge to the truth. This is generally 
not true when misspecified models are considered. However, Bayesian learning can retain its role as a benchmark due to the following 
result.

Proposition 3.1. Define 𝜋∗(𝜎𝑡) =max𝑘∈{1,…,𝐾}{𝜋𝑘(𝜎𝑡)}. For any Bayesian agent 𝑖 and ∀𝛼 < 1∕2, 𝑝-almost surely, for large 𝑡,

𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1) −𝐷𝑝∣𝜋∗(𝜎𝑡)(𝜎𝑡−1) = 𝑜 (𝑡
−𝛼) .

Proof. See Section A.2. □

The model 𝜋∗(𝜎𝑡) can be considered the best ex post model among those available to the Bayesian learner. In general, it depends 
on the specific realization 𝜎𝑡. Clearly, the knowledge of which model is going to be the best is not available ex ante. However, the 
Bayesian learning algorithm is able to converge to it in terms of average relative entropy. Proposition 3.1 also provides a lower 
bound to the speed of convergence.

Learning with underreaction. This learning protocol can be considered a form of “moderate” Bayesian learning obtained by combining 
Bayes update and prior probability (Epstein et al., 2010; Massari, 2020). The updating rule (4) is replaced by

𝜋𝑘(𝑠𝑡)𝑤𝑖,𝑘(𝜎𝑡−1)
4

𝑤𝑖,𝑘(𝜎𝑡) = 𝜆𝑖 𝑤𝑖,𝑘(𝜎𝑡−1) + (1 − 𝜆𝑖)
𝑝𝑖(𝑠𝑡|𝜎𝑡−1) ∀𝑘, 𝑡, 𝜎 , (5)
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with 𝜆𝑖 ∈ [0, 1). Conditional probabilities after a partial history 𝜎𝑡 can be seen as the convex combination of the conditional proba-

bilities agent 𝑖 would build after the partial history 𝜎𝑡−1 and the Bayesian conditional probabilities obtained after observing 𝑠𝑡 given 
a prior 𝒘𝑖(𝜎𝑡−1) =

(
𝑤𝑖,1(𝜎𝑡−1),… ,𝑤𝑖,𝐾 (𝜎𝑡−1)

)
(Epstein et al., 2010; Giachini, 2021). Setting 𝜆𝑖 = 0, Bayesian learning is recovered. The 

next result clarifies why underreaction represents a robust learning strategy in the case of model misspecification.

Proposition 3.2. For any underreacting agent 𝑖 and ∀𝛼 < 1∕2, it is 𝑝-almost surely, for large 𝑡,

𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1) −𝐷𝑝∣𝜋𝑘 (𝜎𝑡−1) ≤ 𝑜 (𝑡
−𝛼) ,∀𝑘 ∈ {1,2,… ,𝐾}.

Proof. See Section A.3. □

It follows that, for 𝑡 sufficiently large, an underreacting agent is at least as accurate as its best ex post model, 𝜋∗(𝜎𝑡), but possibly 
more accurate. Note that Proposition 3.2, such as Proposition 3.1, does not imply or require the asymptotic convergence to a single 
i.i.d. model. Comparing Proposition 3.1 and Proposition 3.2, it is clear that, for large 𝑡, an underreacting agent cannot have a 
higher average relative entropy than a Bayesian trader. The slower update of beliefs characterizing underreaction confers it a specific

advantage over Bayesian learning. In fact, Massari (2020) shows that, under discount factor homogeneity, an underreacting agent 
maintains a positive consumption share along any path when competing against a Bayesian trader.

Moving average learning. Moving average learning represents a further layer of smoothing over the conditional probabilities of the 
underlying process. It consists in taking a reference learning process 𝑝∗ and applying a moving average to the sequence of probabilistic 
predictions generated for every state. Assume agent 𝑖 adopts a moving average learning with memory 𝑀𝑖, then ∀𝜎𝑡 and for any 𝑠

𝑝𝑖(𝑠 ∣ 𝜎𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑝∗(𝑠 ∣ 𝜎𝑡) if 𝑡 <𝑀𝑖 − 1 ,

𝑀−1
𝑖

𝑀𝑖∑
𝑚=1

𝑝∗(𝑠 ∣ 𝜎𝑡−𝑚+1) if 𝑡 ≥𝑀𝑖 − 1 .

(6)

If the underlying learning process follows Assumption 1, the same thing can be restated in terms of weights with 𝑤𝑖,𝑘(𝜎𝑡) =

𝑀−1
𝑖

𝑀𝑖∑
𝑚=1

𝑤∗
𝑘
(𝜎𝑡−𝑚+1) if 𝑡 ≥𝑀𝑖 − 1.

Limited memory Bayesian learning. The limited memory Bayesian learning is a version of the standard Bayesian learning process in 
which the agent deliberately forgets observations in the past. Here, we consider the version with the shortest possible memory, that 
is, a memory of one. In any period 𝑡, agent 𝑖 is forgetting all the sequence of states occurred until 𝑡 − 2 (included) and restarts its 
Bayesian learning procedure considering the previous state and the initial prior weights,

𝑤𝑖,𝑘(𝜎𝑡) =𝑤𝑖,𝑘(𝑠𝑡) =
𝜋𝑘(𝑠𝑡)𝑤𝑖,𝑘(𝜎0)∑𝐾

𝑘′=1 𝜋𝑘′ (𝑠𝑡)𝑤𝑖,𝑘′ (𝜎0)
∀𝑘, 𝑡, 𝜎 . (7)

Because the models on which the agent learns are i.i.d., the limited memory Bayesian learning has a Markov structure. Note that this 
process strongly depends on the initial assignment of weights.

4. Misspecified models

The learning problem is correctly specified if the true probability 𝑝 belongs to the set of models on which the agents learn. That is, 
if the true process 𝑝 is i.i.d. with conditional probabilities equal to one of the 𝐾 vectors that define the convex hull in Assumption 1. 
In this case, based on the discussion in the previous section, the predictions of Bayesian and underreacting learners, as well as any 
moving-average learning built on top of these, will converge to the true model. If those agents share a homogeneous utility discount 
factor, they all survive. If instead they have different utility discount factors, only the agent with the highest discount factor survives. 
The limited memory Bayesian learner does not converge to the truth, and it is at a disadvantage. If not rescued by a higher discount 
factor, it will vanish. In general, this simple picture is no longer true under model misspecification.

In the following, we study two specific cases of misspecification. We start with the case of an i.i.d. true measure that does not 
belong to the set of models the agents can learn. In this case, the i.i.d. models on which the agents learn belong to the same class of 
the true measure, but their parameters are generically not correct. We call this case parametric misspecification. In the second case, 
structural misspecification, we assume that the true measure is Markov. Here, the models employed by the agents belong to a different 
and less general class than the truth. In both cases, we start by providing some clues about the relative performance of the models 
based on their general behavior, and then present some numerical exercises to further illustrate their properties.

4.1. Parametric misspecification
5

We assume that states of nature follow an i.i.d. process that is different from those on which the agents learn. Formally,
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Assumption 2. The true measure 𝑝 is an i.i.d. process whose conditional distribution is described by the vector 𝝅 = (𝜋(1), 𝜋(2), … , 𝜋(𝑆)) ∈
Δ𝑆−1+ , such that 𝑝(𝑠𝑡 ∣ 𝜎𝑡−1) = 𝜋(𝑠𝑡) and, ∀𝑘 ∈ {1, 2, … , 𝐾}, ‖𝝅𝑘 − 𝝅‖ > 0.

For each model 𝑘 used by agents, define 𝐷𝜋∣𝜋𝑘 =
∑𝑆

𝑠=1 𝜋(𝑠) log𝜋(𝑠)∕𝜋𝑘(𝑠) > 0. If there is a single best model 𝑘∗ = argmin𝑘{𝐷𝜋∣𝜋𝑘}, 
then for a Bayesian agent 𝑖, lim𝑡→∞𝑤𝑖,𝑘∗ (𝜎𝑡) = 1 and lim𝑡→∞𝐷𝑝∣𝑝𝑖 (𝜎𝑡) =𝐷𝜋∣𝜋𝑘∗ . In the non-generic situation in which there are multiple 
models with minimal relative entropy among those on which agents learn, then the conditional probabilities of a Bayesian trader can 
actually fluctuate. Inspired by Bottazzi and Giachini (2017) and Dindo and Massari (2020), a general result can be derived for the 
underreacting agent when the true model belongs to the convex hull of the models on which agents learn. This indicates a generic

advantage for the underreacting agent.

Proposition 4.1. If 𝝅 ∈𝐻𝐾 , then for any underreacting agent 𝑖 and ∀𝛼 < 1∕2, it is 𝑝-almost surely, for large 𝑡,

𝐷𝑝∣𝑝𝑖 (𝜎𝑡) ≤
1 − 𝜆𝑖

2(𝜆𝑖 + 𝜖)2
+ 𝑜 (𝑡−𝛼)

1 − 𝜆𝑖
.

Proof. See Section A.4. □

In other words, when the truth belongs to 𝐻𝐾 , an agent with a high level of underreaction can eventually generate extremely 
accurate conditional probabilities. As a consequence, it has a survival advantage over other traders. To see it, assume homogeneity 
in the utility discount factors and that agent 1 is under-reacting with the parameter 𝜆1. Thus, any trader 𝑖 > 1 for which it is, 𝑝-
almost surely and eventually in 𝑡, 𝐷𝑝|𝑝𝑖 (𝜎𝑡) > (1 − 𝜆1)∕(2(𝜆1 + 𝜖)2), will vanish. Analogously, if all traders, except the underreacting 
one, are bounded away from the truth, 𝐷𝑝|𝑝𝑖 (𝜎𝑡) > 𝛿 > 0, ∀𝑖 > 1, then the underreacting agent makes everybody else vanish if 𝜆1 >
(
√
1 + 8𝛿 − 1)∕(4𝛿).
Concerning moving average learning, we have the following.

Proposition 4.2. Given a moving average learning process 𝑝𝑖 with the reference learning process 𝑝∗, consider 𝜎2(𝑠, 𝜎𝑡) =
∑𝑀−1
𝑚=0(

𝑝∗(𝑠 ∣ 𝜎𝑡−𝑚) − 𝑝𝑖(𝑠, 𝜎𝑡)
)2 ∕𝑀 . Then, if 𝑝 satisfies Assumption 2,

𝜎2(𝜎𝑡)
2(1 − 𝜖)

≤
1
𝑀

𝑀−1∑
𝑚=0

𝐷𝑝∣𝑝∗ (𝜎𝑡−𝑚) −𝐷𝑝∣𝑝𝑖 (𝜎𝑡) ≤
𝜎2(𝜎𝑡)
2𝜖

.

Proof. See Section A.5. □

If the underlying process 𝑝∗ converges 𝑝-almost surely to a constant conditional probability distribution, such as Bayesian learning 
in the presence of a single best model, then lim𝑡→∞ 𝜎

2(𝜎𝑡) = 0 and, in the long run, the performance of the moving average process 
becomes identical to the one of the underlying process. Conversely, if the underlying process entails some sort of persistent fluctuation 
in conditionals, moving average brings a definite advantage as its relative entropy is strictly lower than the average of the relative 
entropy of the underlying process.

Finally, if agent 𝑖 is a limited memory Bayesian learner, under Assumption 2, 𝑝-almost surely, 𝐷𝑝∣𝑝𝑖 (𝜎) = lim𝑡→∞𝐷𝑝∣𝑝𝑖 (𝜎𝑡) =∑𝑆

𝑠=1 𝜋(𝑠)𝐷𝑝∣𝑝𝑖 (𝑠). Alternating among different convex combinations of models depending on the last realized state, the accuracy 
of the limited memory Bayesian agent depends upon how accurate those convex combinations are on average.

In summary, even if prediction smoothing appears as a key mechanism, the previous results do not allow us to devise any general 
ranking among the different learning models. Specifically, Proposition 4.1 does not imply that the accuracy of the underreacting 
learner increases monotonically with 𝜆𝑖. At the same time, by persistently resetting the learning process, the limited memory Bayesian 
learner constantly mixes the misspecified i.i.d. models and never converges to a single one. This might be advantageous.

The numerical exercises proposed in the next section exemplify the difficulties in ranking and provide some new insights about 
the relative performances of the models matter of study.

4.1.1. Numerical exploration

We consider an economy with two possible states of the world, 𝑆 = 2, driven by an i.i.d. true process with conditional probabilities 
𝝅 = (𝜋, 1 − 𝜋), 𝜋 ∈ (0, 1). Agents learn on two models (i.e. 𝐾 = 2) with respective probabilities 𝝅1 = (𝜋1, 1 − 𝜋1) and 𝝅2 = (𝜋2, 1 − 𝜋2); 
𝜋1, 𝜋2 ∈ (0, 1), 𝜋1 < 𝜋2. Agents’ initial prior is uniform, that is, 𝑤𝑖,𝑘(𝜎0) = 0.5 ∀𝑖, 𝑘. The performances of the different learning processes 
are expressed in terms of their average relative entropy 𝐷𝑝∣𝑝𝑖 (𝜎𝑡) and are reported in Fig. 1 as a function of the true probability 𝜋.

By Proposition 3.1, the Bayesian process (darker and thicker solid line) always converges to the best model, apart from the 
single point in which the two models on which the agents learn have the same relative entropy. The average relative entropy of the 
limited memory Bayesian model converges to the 𝜋-average of the relative entropy of its two conditional probability distributions. 
In both cases, the average relative entropy can be computed analytically. For the underreacting processes with different values of 
6

the parameter 𝜆𝑖 and the moving average processes built on them with 𝑀𝑖 = 10, the reported values of 𝐷𝑝∣𝑝𝑖 (𝜎𝑡) are computed as the 
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Fig. 1. Average relative entropy of the different learning models as a function of 𝜋, i.e. the true probability of the realization of state 1. Parameter settings are 𝜋1 = 0.3, 
𝜋2 = 0.8, and, for the moving average model, 𝑀𝑗 = 10. For estimated values, standard errors are on the order of 10−4 or smaller.

average over 102 independent random partial histories of length 𝑡 = 2 × 104. Over this time length, the quantities appear extremely 
stable across replicas, with standard errors of the order 10−4 , at most.2

As predicted, when the true probability matches one of the two underlying models, i.e. 𝜋 = 𝜋1, 𝜋2, the average relative entropy 
of the Bayesian and of the underreacting learners are both equal to zero. They remain equal when 𝜋 < 𝜋1 or 𝜋 > 𝜋2, irrespective of 
the value of 𝜆𝑖. On the contrary, when 𝜋 ∈ (𝜋1, 𝜋2), the average relative entropy of the underreacting learner decreases as its degree 
of underreaction increases. This is due to the fact that the underreacting agents persistently and effectively use a mixture of models 
to build their predictions. Moving average learning processes built on top of the respective underreaction processes see improved 
performances when the latter ones adopt persistent model mixing, 𝜋 ∈ (𝜋1, 𝜋2). They are identical to the underlying processes when 
those converge to a single i.i.d. model. Note that there is a specific interval for the values of 𝜋 where the limited memory Bayesian 
learner outperforms the Bayesian learner. However, it succumbs to an agent showing a sufficiently high level of underreaction.

The fact that the average relative entropy of underreaction monotonically decreases in 𝜆𝑖, clearly visible in Fig. 1, is a feature 
revealed by the numerical exercise that was not predicted by the results of the previous sections. However, the reduction in average 
relative entropy due to underreaction does not seem to come into play immediately when increasing 𝜆𝑖. To further investigate this 
point, in Fig. 2 we report the average relative entropy of an underreacting agent 𝑖 as a function of 𝜆𝑖, for different values of 𝜋. We 
consider the same number and length of partial histories used in Fig. 1.

For any value of 𝜋 ∈ (𝜋1, 𝜋2), there exists a threshold value 𝜆
𝑖

such that, as 𝜆𝑖 increases beyond it, the monotonically decreasing 
behavior appears. Intuitively (see also the discussion in Massari, 2020), this should happen when the mixing coefficient 𝜆𝑖 is large 
enough for the mixture of the two models to start having a lower average entropy than the best model. Assume, without loss of 
generality, that 𝐷𝜋∣𝜋2 < 𝐷𝜋∣𝜋1 . Thus, the threshold value should solve 𝐷𝜋∣𝜆

𝑖
𝜋2+(1−𝜆𝑖)𝜋1

= 𝐷𝜋∣𝜋2 , that is, 𝜆𝑖 = (�̃�1 − 𝜋1)∕(𝜋2 − 𝜋1), with 
�̃�1 ∈ (𝜋1, 𝜋) and such that 𝐷𝜋∣�̃�1 =𝐷𝜋∣𝜋2 . This value is reported as our theoretical prediction in Fig. 2 (dashed line), and it fits the data 
with high accuracy.

To see how the characteristics of the learning processes shape the dynamics of consumption shares and prices, we consider the 
above economy populated by four agents: the first is a Bayesian (B); the second underreacts with 𝜆 = 0.65 (UR); the third is a limited 
memory Bayesian learner (LMB); the fourth uses the moving average learning process with memory 𝑀 = 10 over the predictions of 
the underreaction learning process of the second agent (MA). We assume, ∀𝑖 ∈ I = {B,UR,LMB,MA}, 𝛽𝑖 = 𝛽, 𝑒𝑖(𝜎𝑡) = 𝑒∕4 > 0 ∀𝑡, 𝜎, and 
𝑢𝑖(𝑐) = (1 − 𝛽) log(4𝑐∕𝑒), so that the market shares evolve according to

𝑐𝑖(𝜎𝑡+1)
𝑒

=
𝑝𝑖(𝑠𝑡+1 ∣ 𝜎𝑡)𝑐𝑖(𝜎𝑡)∑

𝑗∈I
𝑝𝑗 (𝑠𝑡+1 ∣ 𝜎𝑡)𝑐𝑗 (𝜎𝑡)

.

The price of the Arrow-Debreu security relative to 𝜎𝑡 is 𝑞(𝜎𝑡) = 𝛽𝑡
∑
𝑖∈I 𝑝𝑖(𝜎𝑡)∕4 (Bottazzi and Giachini, 2022) so that the price of a 

claim traded at 𝜎𝑡 that pays 1 at 𝑡 + 1 if 𝑠 is realized and zero otherwise is

𝑞(𝑠 ∣ 𝜎𝑡) =
𝑞(𝑠, 𝜎𝑡)
𝑞(𝜎𝑡)

= 𝛽

𝑒

∑
𝑖∈I
𝑝𝑖(𝑠 ∣ 𝜎𝑡)𝑐𝑖(𝜎𝑡) . (8)

Fig. 3, top row, shows the dynamics of consumption and beliefs for 𝜋 = 0.6. From Fig. 1, we know that the MA agent is the most 
accurate trader in this case. As expected, the consumption share of the MA agent converges to 1. Agent B is the fastest to approach 
7

2 The first 104 steps of each independent replication have been discarded to mitigate the possible initial condition bias.
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Fig. 2. Average relative entropy of an underreacting agent as a function of 𝜆𝑖 and for different values of 𝜋. Parameter settings: 𝜋1 = 0.3, 𝜋2 = 0.8. The values of 𝜋 have 
been chosen such that 𝐷𝜋∣𝜋2 (𝜎) <𝐷𝜋∣𝜋1 (𝜎) holds. Standard errors are in the order of 10−4 or smaller.

Fig. 3. Top: 𝜋 = 0.6. Bottom: 𝜋 = 0.25. Left: consumption share dynamics in a market populated by agents B, UR, LMB, MA. Center: conditional probability attached 
to state 1 by B and LMB as a function of time. Right: conditional probability attached to state 1 by UR and MA as a function of time. The black dots on 1 represent 
𝑠𝑡 = 1, those on 0 represent 𝑠𝑡 = 2.

a zero consumption share, while agent UR is the slowest. The speed of convergence to zero is inversely proportional to their average 
relative entropy. Looking at the subjective probabilities attached to state 1 (Fig. 3, top row, center, and right panels), agent B 
converges to model 2 quite quickly. Instead, the UR, LMB and MA agents fluctuate persistently. However, while agents UR and MA 
tend to stay between the truth and the best model, displaying a rather smooth path, agent LMB displays the expected jumpy behavior. 
For sufficiently large 𝑡, the price of the claim in (8) is only influenced by the conditional probability of the MA agent.

Fig. 3, bottom row, shows the dynamics of consumption and beliefs for 𝜋 = 0.25. In this case, agents B, UR, and MA have the same 
level of average relative entropy, whereas agent LMB is less accurate. Consumption shares stabilize quite quickly for the surviving 
agents and agent LMB vanishes. Looking at subjective probabilities, agents B, UR, and MA converge to model 1, while the predictions 
8

of the LMB agent continue to fluctuate far away from the truth, generating on average a higher relative entropy. Concerning the price 
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of the claim in (8), the convergence of the conditional probabilities of the surviving agents implies that it follows model 1 when 𝑡 is 
sufficiently large.

4.2. Structural misspecification

The case of structural misspecification is defined as follows.

Assumption 3. The true measure 𝑝 follows a discrete-time Markov chain with transition matrix 𝑃 : 𝑝(𝑠𝑡+1|𝜎𝑡) = 𝑃𝑠𝑡,𝑠𝑡+1 ∀𝑡, 𝜎 and 
𝑝(𝑠|𝜎0) = 𝑝𝑠,0 with 𝑝𝑠,0 > 0 ∀𝑠 ∈ {1, 2, … , 𝑆}. For any (𝑠, 𝑠′) ∈ {1, 2, … , 𝑆} × {1, 2, … , 𝑆}, 𝑃𝑠,𝑠′ > 0.

The strict positiveness of the transition matrix’s entries implies that the Markov chain defining the true probability measure 𝑝
is irreducible and, as a consequence, the invariant probability distribution 𝝅 = (𝜋(1), 𝜋(2), … , 𝜋(𝑆)), with 𝜋(𝑠) > 0 ∀𝑠, exists unique. 
To understand how the different learning processes perform in this case, it is useful to compute the average relative entropy of the 
different i.i.d. models on which the agents learn with respect to the true process.

Proposition 4.3. For any 𝑘 = 1, … , 𝐾 , 𝑝-almost surely,

lim
𝑡→∞

𝐷𝑝∣𝜋𝑘 (𝜎𝑡) =𝐷𝑝∣𝜋𝑘 (𝜎) =𝐷𝜋∣𝜋𝑘 (𝜎) +𝐷𝑝∣𝜋 (𝜎), (9)

where

𝐷𝜋∣𝜋𝑘 (𝜎) =
𝑆∑
𝑠=1
𝜋(𝑠) log 𝜋(𝑠)

𝜋𝑘(𝑠)
and 𝐷𝑝∣𝜋 (𝜎) =

𝑆∑
𝑠′=1

𝜋(𝑠′)
𝑆∑
𝑠=1
𝑃𝑠′ ,𝑠 log

𝑃𝑠′ ,𝑠

𝜋(𝑠)
.

Proof. See Section A.6. □

The average relative entropy of an i.i.d. model 𝝅𝑘 with respect to the Markov chain 𝑝 is the sum of two components: the relative 
entropy of 𝝅𝑘 with respect to the invariant distribution of the chain 𝝅 and the average relative entropy of the invariant distribution 𝝅
with respect to the transition probabilities. By Proposition 3.1, a Bayesian agent is asymptotically as accurate as the i.i.d. model with 
the lowest relative entropy with respect to the invariant distribution. However, it cannot do anything to prevent the information 
loss due to the second term on the right-hand side of (9). An underreacting agent still maintains a specific advantage over the 
Bayesian agent (Massari, 2020), but no generic advantage, such as that of Proposition 4.1, is present here. The intuition is that 
averaging different i.i.d. models may improve the prediction of the invariant distribution, but may be counterproductive when the 
true probabilities naturally fluctuate. The same limitation affects moving average learning.

The situation for the limited memory Bayesian learning process is the opposite. In this case, the limitation in the number of 
observations used by the agent makes its conditional probabilities display a Markovian behavior and can be a source of accuracy. 
Specifically,

𝐷𝑝∣𝑝𝑖 (𝜎) =
𝑆∑
𝑠′=1

𝜋(𝑠′)
𝑆∑
𝑠=1
𝑃𝑠′ ,𝑠 log

𝑃𝑠′ ,𝑠∑𝐾

𝑘=1 𝜋𝑘(𝑠)𝑤𝑖,𝑘(𝑠′)
,

with 𝑤𝑖,𝑘(𝑠′) as in (7). Therefore, if the i.i.d. models and initial weights are such that the resulting conditional probabilities are close 
to the true transition probabilities, ∑𝐾

𝑘=1 𝜋𝑘(𝑠)𝑤𝑖,𝑘(𝑠
′) ∼ 𝑃𝑠′ ,𝑠 ∀𝑠′, 𝑠, the limited memory process can show a high level of accuracy.

In summary, learning processes that do not provide relevant selection advantages in the parameter misspecification case may 
become effective as structural misspecification occurs. This will be made clearer in the numerical exercises of the next section.

4.2.1. Numerical exploration

For our numerical exercises, we consider the same settings used in subsection 4.1.1 with the exception of the true probability. 
That is, we set 𝐾 = 𝑆 = 2 and simplify the notation considering 𝑃1,2 = 1 − 𝑃1,1 and 𝑃2,2 = 1 − 𝑃2,1. The invariant distribution reads

𝝅 =
(

𝑃2,1

1 − 𝑃1,1 + 𝑃2,1
,

1 − 𝑃1,1
1 − 𝑃1,1 + 𝑃2,1

)
.

Its average relative entropy with respect to the truth is reported in the left panel of Fig. 4. When 𝑃1,1 = 𝑃2,1 the true process 
is i.i.d. and the average relative entropy of the invariant measure is zero. The right panel of Fig. 4 reports the average relative 
entropy of a Bayesian agent. It is always strictly positive and progressively grows moving towards the corners (𝑃1,1, 𝑃2,1) = (0, 1)
and (𝑃1,1, 𝑃2,1) = (1, 0). This is due to the second term of (9) and represents the unavoidable loss of accuracy caused by structural 
misspecification.

Fig. 5 reports the average relative entropy of the four learning processes with respect to the truth, removing the model-

independent term 𝐷𝑝∣𝜋 (𝜎).3 The “valleys” in the Bayesian case, top-left panel, correspond to an invariant distribution that exactly 
9

3 The average relative entropy of the underreacting agent and of the moving average agent are computed numerically. See the caption for details.
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Fig. 4. Average relative entropy of the invariant distribution (left) and of a Bayesian agent (right) for different combinations of 𝑃1,1 and 𝑃2,1 . Parameter settings: 
𝜋1 = 0.3, 𝜋2 = 0.8.

Fig. 5. Differences between average relative entropy of the learning process and the average relative entropy of the invariant distribution. Top-left: Bayesian learning.

Top-right: underreaction with 𝜆 = 0.65. Bottom-left: moving average agent with 𝑀 = 20 exploiting the underreaction with 𝜆 = 0.65. Bottom-right: limited memory 
Bayesian learning. Parameter settings: 𝜋1 = 0.3, 𝜋2 = 0.8. The average relative entropy of underreaction and moving average have been estimated over 200 independent 
realizations of 2500 steps each. For estimated values, standard errors are in the order of 10−4 or smaller. The plots are rotated of 90◦ clockwise with respect to Fig. 4

in order to improve the visualization of results.

matches one of the two i.i.d. models on which the agent learns. The underreaction process with 𝜆 = 0.65 and the moving average 
process with 𝑀 = 20 that leverages the predictions of the underreacting agent, in the upper right and lower left panels, respectively, 
show an improvement in performance in the region between the two valleys, similar to what was observed for the parametric mis-

specification case in Fig. 2. However, a trade-off now appears between dampening conditional probability fluctuations to get closer 
to the best i.i.d. model and keeping changing conditional probabilities to match transition probabilities. In the parameter region 
where the Markov chain favors switching, 𝑃1,1 ≃ 0 and 𝑃2,1 ≃ 1, the moving average is more accurate than the underreacting process 
it exploits. Conversely, in the region where the Markov chain is more persistent, 𝑃1,1 ≃ 1 and 𝑃2,1 ≃ 0, underreaction can become 
more accurate than the invariant distribution and outperforms the moving average. Proposition 4.2 ruled out this possibility in the 
case of parametric misspecification. This is also the parameter region where the limited memory Bayesian process with a uniform 
prior, in the lower right panel, reaches the best performances in terms of accuracy.

These considerations are summarized in Fig. 6, which reports the most accurate learning models in the (𝑃1,1, 𝑃2,1) space. Note that 
in the 𝑃1,1 ≃ 0.8 and 𝑃2,1 ≃ 0.6 region, underreaction prevails over the other learning processes. In this region, underreaction achieves 
10

the best combination between averaging to get close to the invariant and fluctuating to follow transition probabilities. In the large 



Journal of Economic Dynamics and Control 156 (2023) 104739G. Bottazzi, D. Giachini and M. Ottaviani

Fig. 6. Most accurate processes over the (𝑃1,1, 𝑃2,1) space. White: Multiple maximally accurate processes or the difference between the two lowest average relative 
entropy processes is not significant at ∼ 99% confidence level. Light gray: underreaction with 𝜆 = 0.65 is the most accurate. Dark gray: moving average with 𝑀 = 20
exploiting underreaction is the most accurate. Black: limited memory Bayesian learning is the most accurate.

Fig. 7. Top: 𝑃1,1 = 0.15, 𝑃2,1 = 0.75. Middle: 𝑃1,1 = 0.75, 𝑃2,1 = 0.15. Bottom: 𝑃1,1 = 0.35, 𝑃2,1 = 0.2. Left: consumption share dynamics in a market populated by agents 
B, UR, LMB, MA. Center: conditional probability attached to state 1 by B and LMB for the first 100 time steps. Right: conditional probability attached to state 1 by 
UR and MA for the first 100 time steps. The black dots on 1 represent 𝑠𝑡 = 1, those on 0 represent 𝑠𝑡 = 2.

white areas around 𝑃1,1 = 𝑃2,1 = 0 and 𝑃1,1 = 𝑃2,1 = 1, Bayes, underreaction, and moving average achieve the same (maximal) accuracy 
level. This is analogous to what was observed for large and small values of 𝜋 in Fig. 1.

We conclude this section with some numerical examples of the dynamics of consumption shares, conditional probabilities, and 
11

prices. We populate the economy with the four agents described above, using the same labeling system and making the same 
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assumptions on discount factors, endowments, and utilities as in Subsection 4.1.1. First, we set 𝑃1,1 = 0.15 and 𝑃2,1 = 0.75, so that the 
MA agent has the lowest average relative entropy. The share of consumption of the MA agent approaches 1 around time step 200; 
see the top left panel of Fig. 7. The order in which the consumption of the other agents approaches zero is inversely proportional to 
the average relative entropy of their conditional probabilities. Concerning the dynamics of the predictions (top-central and top-right 
panels of Fig. 7), agent B converges to model 1 quite quickly, agent UR shows small fluctuations around a sort of long-run trend, 
agent LMB strongly fluctuates between its two conditional probabilities, and agent MA captures the long-run trend of agent UR. 
Concerning the price of the claim in (8), for sufficiently large 𝑡, it is completely determined by the conditional probability of agent 
MA. Next, we set 𝑃1,1 = 0.75 and 𝑃2,1 = 0.15, so that the limited memory Bayesian learning process has the lowest average relative 
entropy. As shown in the middle row of Fig. 7, the LMB agent achieves a unitary consumption share in less than 100 steps. Looking 
at how beliefs evolve, agent B settles on model 1 after few fluctuations; agent UR and MA persistently fluctuate, but their smoothing 
behavior does not allow them to rapidly adapt when a switch occurs; agent LMB, instead, moves and adapts quickly as sequences 
of equal states alternate. Thus, in this case, it is agent LMB to solely determine the price of the claim in (8) for sufficiently large 𝑡. 
Finally, we set 𝑃1,1 = 0.35 and 𝑃2,1 = 0.2, so that, according to Fig. 6, we are in a situation of multiple maximally accurate agents. 
As shown in the bottom row of Fig. 7, in less than 100 steps agent B, UR, and MA see their consumption stabilize in positive and 
heterogeneous shares. Agent LMB’s consumption share, instead, goes to zero. Indeed, while agents B, UR, and MA converge to model 
1 and become identical, the probability that LMB assigns to state 1 continues to fluctuate between two levels that are outside the 
range defined by the transition probabilities. As a consequence, the price of the claim in (8) follows model 1 for sufficiently large 𝑡.

5. General survival behaviors under model misspecification

Our results show that the kind of model misspecification that agents face crucially affects selection outcomes. In fact, learning 
rules with low survival prospects under parametric misspecification can dominate when structural misspecification is considered. 
However, there are belief formation rules that persist in the market no matter the data generating process. For example, survival is 
guaranteed by any belief structure that causes an agent to always consume its endowment. Another example is provided by Bayesian 
learning over the learning processes of the other market participants, as the following proposition clarifies.

Proposition 5.1. Assume that ∀𝑖, 𝛽𝑖 = 𝛽 and that agent 𝑁 assigns to the partial history 𝜎𝑡 the weighted arithmetic mean of the likelihoods 
of the other agents,

𝑝𝑁 (𝜎𝑡) =
𝑁−1∑
𝑖=1

𝑣𝑖𝑝𝑖(𝜎𝑡),∀𝜎𝑡, (10)

with 𝑣𝑖 > 0, ∀𝑖 = 1, … , 𝑁 − 1 and ∑𝑁−1
𝑖=1 𝑣𝑖 = 1. Then, limsup𝑡→∞ 𝑐𝑁 (𝜎𝑡) > 0 on all 𝜎.

Proof. See Section A.7. □

According to (4), agent 𝑁 derives its conditional probabilities as the averages of the conditional probabilities of the other traders, 
weighted by their individual likelihood. Therefore, the accuracy of its beliefs asymptotically matches the highest accuracy in the mar-

ket. To understand the result, consider an economy populated by three agents with the same utility discount factor: agent 1 has nearly 
correct beliefs, agent 2 has substantially wrong beliefs, and agent 3 behaves as in (10). Then, almost surely, lim𝑡→∞ 𝑝2(𝜎𝑡)∕𝑝1(𝜎𝑡) = 0
and lim𝑡→∞ 𝑝3(𝜎𝑡)∕𝑝1(𝜎𝑡) = 𝑣1. Agent 3 manages to maintain its individual likelihood asymptotically proportional to that of agent 
1. This is all that matters for survival. In fact, almost surely, lim𝑡→∞ 𝑢

′
1(𝑐1(𝜎𝑡))∕𝑢

′
3(𝑐3(𝜎𝑡)) = 𝑣1𝑢

′
1(𝑐1(𝜎0))∕𝑢

′
3(𝑐3(𝜎0)) > 0. While agent 2

vanishes, both agents 1 and 3 survive.

This selection result mirrors those obtained with the Follow the Leader Strategy (FLS) and the Follow the Market Strategy (FMS) 
by Massari (2017).4 However, the learning behavior prescribed by (10), the FLS, and the FMS all share a common feature: to be 
implemented, they require a trader to know (at least) the learning processes of all the other agents in the market.5 This is in contrast 
with the learning processes investigated in the previous sections, that do not require any information about the market ecology. 
On the one hand, this indicates that high survival prospects under model misspecification could be more related to the amount of 
information one trader possesses about market participants than to how sophisticated its learning mechanism is. On the other hand, 
it confirms the importance of the ecology of traders, as, despite the presence of imitative behaviors and assuming homogeneity in 
the utility discount factors, prices shall be ultimately dictated by the most accurate learning processes in the market.

6. Conclusions

We study market selection in a complete-market Arrow-Debreu economy considering four learning processes and two cases of 
model misspecification: parametric and structural. As well as proving new accuracy results on learning processes and extending 

4 In our framework, the FLS consists in 𝑝𝑖(𝑠𝑡 ∣ 𝜎𝑡−1) = 𝑝𝑗 (𝑠𝑡 ∣ 𝜎𝑡−1) with 𝑗 ∶ 𝑝𝑗 (𝜎𝑡−1) = argmax𝑛{𝑝𝑛(𝜎𝑡−1)} and 𝑝𝑖(𝑠𝑡 ∣ 𝜎𝑡−1) =
∑
𝑗∈K𝑡−1

𝑝𝑗 (𝑠𝑡 ∣ 𝜎𝑡−1)∕|K𝑡−1| if ties occur (with 
K𝑡−1 the set of agents whose beliefs have the highest likelihood). Instead, the FMS consists of 𝑝𝑖(𝑠𝑡 ∣ 𝜎𝑡−1) ∝ 𝑞(𝜎𝑡)∕𝑞(𝜎𝑡−1).
12

5 Actually, the FMS is more demanding than the other two: it also requires information about preferences, intertemporal discount factors, and endowments.
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previous selection results to a context in which some limits may not exist, we show that, in stark contrast with what happens under 
correct specification, the ecology of traders greatly matters for selection. Deriving a general ranking of learning processes with 
respect to their survival prospects is difficult, and the type of misspecification considered strongly influences the outcome. Under 
parametric misspecification, learning processes built upon an averaging approach have a selection advantage over generic regions of 
the parameter space. Such an advantage partially disappears when structural misspecification occurs, as a trade-off emerges between 
approximating the best i.i.d. model and capturing the persistent fluctuations in true conditional probabilities.

The examples of learning rules that allow an agent to survive no matter the kind of model misspecification characterizing the 
economy rely upon imitating the most accurate traders and, as such, require the knowledge of fundamental details concerning 
all the other market participants. This further confirms that the ecology of traders populating a market and the kind of model 
misspecification that affects the economy are crucial to understand long-term dynamics.

For our analysis, we have purposely chosen a framework in which selection outcomes are (mostly) driven by belief accuracy. 
Relaxing or changing part of our assumptions can lead to different conclusions. For example, the assumption of bounded aggregate 
endowment eliminates the selection effect of risk preferences that has been shown to exist in continuous time and with CRRA 
traders by Yan (2008). The analysis in discrete-time economies performed by Bottazzi and Dindo (2022) confirms that an unbounded 
aggregate endowment can have a nontrivial selection effect in our framework: depending on the assumptions on risk preferences 
and how the aggregate endowment grows, one may have different scenarios, ranging from risk preferences playing no role to 
becoming the only things that matter. Along the same lines, investigating how misspecification affects selection under recursive 
preferences (Easley and Yang, 2015; Dindo, 2019; Borovička, 2020), incomplete markets (Sandroni, 2005; Blume and Easley, 2006), 
or differential financial constraints (Guerdjikova and Quiggin, 2019) may all be interesting avenues for future contributions.

Appendix A. Proofs of propositions

This section collects the proof of the formal propositions in the paper. We start with a preliminary lemma, used in several proofs, 
that connects the likelihood ratio of two measures and the average relative entropy of their conditional probabilities.

Lemma A.1. Let 𝑃 be a stochastic process on (Σ, F) adapted to filtration (F𝑡)∞𝑡=0. If ∃𝐿 > 0 such that, 𝑝-almost surely, ‖ log𝑝(⋅ ∣ 𝜎𝑡)∕𝑃 (⋅ ∣
𝜎𝑡)‖∞ < 𝐿, then ∀𝛼 < 1∕2, 𝑝-almost surely,

lim
𝑡→∞

𝑡𝛼
(
1
𝑡
log

𝑝(𝜎𝑡)
𝑃 (𝜎𝑡)

−𝐷𝑝∣𝑃 (𝜎𝑡−1)
)
= 0.

Proof. Define the random variable

𝒛(𝑠 ∣ 𝜎𝜏−1) = log𝑝(𝑠|𝜎𝜏−1)∕𝑃 (𝑠|𝜎𝜏−1) −𝐷𝑝∣𝑃 (𝜎𝜏−1),
so that

log
𝑝(𝜎𝑡)
𝑃 (𝜎𝑡)

=
𝑡∑
𝜏=1

log
𝑝(𝑠𝜏 ∣ 𝜎𝜏−1)
𝑃 (𝑠𝜏 ∣ 𝜎𝜏−1)

=
𝑡∑
𝜏=1

𝑧(𝑠𝜏 ∣ 𝜎𝜏−1) + 𝑡𝐷𝑝∣𝑃 (𝜎𝑡−1).

For any 𝜎𝑡, E[𝒛 ∣ 𝜎𝑡] = 0, and E[𝒛2 ∣ 𝜎𝑡] < ‖ log𝑝(⋅ ∣ 𝜎𝑡)∕𝑃 (⋅ ∣ 𝜎𝑡)‖2∞. If 𝛼 < 1∕2,

∞∑
𝑡=1
𝑡2𝛼−2𝐸[𝒛2 ∣ 𝜎𝑡−1] ≤𝐿2

∞∑
𝑡=1
𝑡2𝛼−2 < +∞.

Thus, by Theorem 3, p. 243, in Feller (1971), 𝑝-almost surely,

lim
𝑡→∞

𝑡𝛼
(
1
𝑡
log

𝑝(𝜎𝑡)
𝑃 (𝜎𝑡)

−𝐷𝑝∣𝑃 (𝜎𝑡−1)
)
= lim
𝑡→∞

𝑡𝛼−1
𝑡∑
𝜏=1

𝑧(𝑠𝜏 ∣ 𝜎𝜏−1) = 0. □

Under the stated condition, when 𝑡 becomes large, the average likelihood log ratio, 𝑡−1 log𝑝(𝜎𝑡)∕𝑃 (𝜎𝑡), and the average relative 
entropy, 𝐷𝑝∣𝑃 (𝜎𝑡−1), differ by a term that decreases at a rate that is not slower than 1∕

√
𝑡.

A.1. Proof of Proposition 2.1

Applying Lemma A.1 to the individual measures of agents 𝑖 and 𝑗, it is

1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

− 1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑗 (𝜎𝑡)

−𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1) +𝐷𝑝∣𝑝𝑗 (𝜎𝑡−1) = 𝑜(𝑡
−𝛼),

so that the first statement follows from (1). For the second statement, note that the hypothesis implies that, 𝑝-almost surely, 
lim𝑡→∞ log𝑢′

𝑖
(𝑐𝑖(𝜎𝑡))∕𝑢′𝑗 (𝑐𝑗 (𝜎𝑡)) = +∞. As the endowment is bounded, 𝑢′

𝑗
(𝑐𝑖(𝜎𝑡)) is bounded away from zero. Thus, it must be 
13

lim𝑡→∞ log𝑢′
𝑖
(𝑐𝑖(𝜎𝑡)) = +∞. According to the Inada condition, this, in turn, implies that lim𝑡→∞ 𝑐𝑖(𝜎𝑡) = 0.
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A.2. Proof of Proposition 3.1

Let 𝜋∗(𝜎𝑡) = 𝜋𝑘∗(𝜎𝑡)(𝜎𝑡). Iterative substitution of (4) in (3) immediately shows that 𝑝𝑖(𝜎𝑡) =
∑𝐾

𝑘=1𝑤𝑖,𝑘(𝜎0)𝜋𝑘(𝜎𝑡). Thus,

𝑤𝑖,𝑘∗(𝜎𝑡)(𝜎0)𝜋𝑘∗(𝜎𝑡)(𝜎𝑡) ≤ 𝑝𝑖(𝜎𝑡) ≤ 𝜋𝑘∗(𝜎𝑡)(𝜎𝑡) and taking the logarithm, dividing by 𝑡, and rearranging terms,

0 ≤ 1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

− 1
𝑡
log

𝑝(𝜎𝑡)
𝜋𝑘∗(𝜎𝑡)(𝜎𝑡)

≤ −1
𝑡
log𝑤𝑖,𝑘∗(𝜎𝑡)(𝜎0).

Consider 𝛼 < 1∕2. From the previous inequalities,

lim
𝑡→∞

𝑡𝛼

(
1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

− 1
𝑡
log

𝑝(𝜎𝑡)
𝜋𝑘∗(𝜎𝑡)(𝜎𝑡)

)
= 0.

At the same time, from Lemma A.1, 𝑝-almost surely,

lim
𝑡→∞

𝑡𝛼
(
1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

−𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1)
)
= lim
𝑡→∞

𝑡𝛼

(
1
𝑡
log

𝑝(𝜎𝑡)
𝜋𝑘∗(𝜎𝑡)(𝜎𝑡)

−𝐷𝑝∣𝜋𝑘∗(𝜎𝑡) (𝜎𝑡−1)

)
= 0.

Hence, 𝑝-almost surely lim𝑡→∞ 𝑡
𝛼
(
𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1) −𝐷𝑝∣𝜋𝑘∗(𝜎𝑡) (𝜎𝑡−1)

)
= 0.

A.3. Proof of Proposition 3.2

Define 𝜌𝑖,𝑘(𝑠𝑡+1|𝜎𝑡) = 𝜆𝑖 𝑝𝑖(𝑠𝑡+1|𝜎𝑡) +(1 −𝜆𝑖) 𝜋𝑘(𝑠𝑡+1) ∈𝐻𝐾 . Note that 𝑤𝑖,𝑘(𝜎𝑡) =𝑤𝑖,𝑘(𝜎𝑡−1)𝜌𝑖,𝑘(𝑠𝑡|𝜎𝑡−1)∕𝑝𝑖(𝑠𝑡|𝜎𝑡−1). Iterative substitution 
with the previous equation gives

𝑝𝑖(𝜎𝑡) = 𝑝𝑖(𝜎𝑡−1)
𝐾∑
𝑘=1

𝜌𝑖,𝑘(𝑠𝑡|𝜎𝑡−1)𝑤𝑖,𝑘(𝜎𝑡−1) =⋯ =
𝐾∑
𝑘=1

𝜌𝑖,𝑘(𝜎𝑡)𝑤𝑖,𝑘(𝜎0),

where 𝜌𝑖,𝑘(𝜎𝑡) =
∏𝑡−1
𝜏=1 𝜌𝑖,𝑘(𝑠𝜏+1|𝜎𝜏 ). For the concavity of the logarithm, ∀𝑘,

log𝑝𝑖(𝜎𝑡) ≥ log𝜌𝑖,𝑘(𝜎𝑡)𝑤𝑖,𝑘(𝜎0) ≥ 𝜆𝑖 log𝑝𝑖(𝜎𝑡) + (1 − 𝜆𝑖) log𝜋𝑘(𝜎𝑡) + log𝑤𝑖,𝑘(𝜎0),

which implies log𝑝𝑖(𝜎𝑡) ≥ log𝜋𝑘(𝜎𝑡) + 1∕(1 − 𝜆𝑖) log𝑤𝑖,𝑘(𝜎0). Consider 𝛼 < 1∕2. From the previous inequality,

lim
𝑡→∞

𝑡𝛼
(
1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

− 1
𝑡
log

𝑝(𝜎𝑡)
𝜋𝑘(𝜎𝑡)

)
≤ − lim

𝑡→∞
𝑡𝛼−1

(1 − 𝜆𝑖)
log𝑤𝑖,𝑘(𝜎0) = 0.

At the same time, from Lemma A.1, 𝑝-almost surely,

lim
𝑡→∞

𝑡𝛼
(
1
𝑡
log

𝑝(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

−𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1)
)
= lim
𝑡→∞

𝑡𝛼
(
1
𝑡
log

𝑝(𝜎𝑡)
𝜋𝑘(𝜎𝑡)

−𝐷𝑝∣𝜋𝑘 (𝜎𝑡−1)
)
= 0,

whence the assertion.

A.4. Proof of Proposition 4.1

Let 𝝅 =
∑𝐾

𝑘=1 𝜁𝑘 𝝅𝑘, with 𝜁𝑘 ≥ 0 and ∑𝐾

𝑘=1 𝜁𝑘 = 1. Define 𝜌𝑖,𝑘(𝑠𝑡+1|𝜎𝑡) and 𝜌𝑖,𝑘(𝜎𝑡) as in Section A.3 and remember that 𝑝𝑖(𝜎𝑡) =∑𝐾

𝑘=1 𝜌𝑖,𝑘(𝜎𝑡) 𝑤𝑖,𝑘(𝜎0). Using the Taylor expansion with Lagrange remainder in 1 − 𝜆𝑖, ∀𝜎𝜏 , ∃𝜂𝑘,𝑠(𝜎𝜏 ) ∈ [0, 1 − 𝜆𝑖] such that

𝐷𝑝∣𝑝𝑖 (𝜎𝜏 ) −
𝐾∑
𝑘=1

𝜁𝑘 𝐷𝑝∣𝜌𝑖,𝑘 (𝜎𝜏 ) = (1 − 𝜆𝑖)
𝑆∑
𝑠=1
𝜋(𝑠)

(
𝜋(𝑠)
𝑝𝑖(𝑠|𝜎𝑡) − 1

)
−

(1 − 𝜆𝑖)2

2

𝐾∑
𝑘=1

𝜁𝑘

𝑆∑
𝑠=1
𝜋(𝑠)

(𝜋𝑘(𝑠) − 𝑝𝑖(𝑠|𝜎𝑡))2(
𝜂𝑘,𝑠(𝜎𝜏 )𝜋𝑘(𝑠) + (1 − 𝜂𝑘,𝑠(𝜎𝜏 ))𝑝𝑖(𝑠|𝜎𝑡))2 .

From Assumption 1,

𝐾∑
𝑘=1

𝜁𝑘

𝑆∑
𝑠=1
𝜋(𝑠)

(𝜋𝑘(𝑠) − 𝑝𝑖(𝑠|𝜎𝑡))2(
𝜂𝑘,𝑠(𝜎𝜏 )𝜋𝑘(𝑠) + (1 − 𝜂𝑘,𝑠(𝜎𝜏 ))𝑝𝑖(𝑠|𝜎𝑡))2 ≤

1
(1 − 𝜃 + 𝜖)2

,

and because 𝑥 − 1 ≥ log𝑥,

𝑆∑
𝑠=1
𝜋(𝑠)

(
𝜋(𝑠)

𝑝𝑖(𝑠|𝜎𝜏 ) − 1
)
≥𝐷𝑝∣𝑝𝑖 (𝜎𝜏 ),

so that

𝐾∑ (1 − 𝜆𝑖)2
14

𝐷𝑝∣𝑝𝑖 (𝜎𝜏 ) −
𝑘=1

𝜁𝑘𝐷𝑝∣𝜌𝑖,𝑘 (𝜎𝜏 ) ≥ (1 − 𝜆𝑖)𝐷𝑝∣𝑝𝑖 (𝜎𝜏 ) − 2(𝜆𝑖 + 𝜖)2
.
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Consider now 𝛼 < 1∕2. Sum on 𝜏 from 0 to 𝑡 − 1 and divide by 𝑡 both sides of the previous inequality. For the left-hand side, using 
Lemma A.1 and simplifying common terms,

lim
𝑡→∞

𝑡𝛼

(
𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1) −

𝐾∑
𝑘=1

𝜁𝑘𝐷𝑝∣𝜌𝑖,𝑘 (𝜎𝑡−1)

)
= lim
𝑡→∞

𝑡𝛼−1
𝐾∑
𝑘=1

𝜁𝑘 log
𝜌𝑖,𝑘(𝜎𝑡)
𝑝𝑖(𝜎𝑡)

≤− lim
𝑡→∞

𝑡𝛼−1
𝐾∑
𝑘=1

𝜁𝑘 log𝑤𝑖,𝑘(𝜎0) = 0.

Thus, for the right-hand side,

lim
𝑡→∞

𝑡𝛼
(
(1 − 𝜆𝑖)𝐷𝑝∣𝑝𝑖 (𝜎𝑡−1) −

(1 − 𝜆𝑖)2

2(𝜆𝑖 + 𝜖)2

)
≤ 0,

whence the assertion.

A.5. Proof of Proposition 4.2

From the bounds of the arithmetic and geometric means inequality in Perisastry and Murty (1982) and the bound on probability 
models in Assumption 1, ∀𝑠, 𝜎𝜏 ,

𝜎2(𝑠, 𝜎𝑡)
2(1 − 𝜖)

≤ log𝑝𝑖(𝑠 ∣ 𝜎𝑡) −
1
𝑀

𝑀−1∑
𝑚=0

log𝑝∗(𝑠 ∣ 𝜎𝑡−𝑚) ≤
𝜎2(𝑠, 𝜎𝑡)

2𝜖
.

Adding and subtracting log𝜋(𝑠) in the middle term,

𝜎2(𝑠, 𝜎𝑡)
2(1 − 𝜖)

≤
1
𝑀

𝑀−1∑
𝑚=0

log 𝜋(𝑠)
𝑝∗(𝑠 ∣ 𝜎𝑡−𝑚)

− log 𝜋(𝑠)
𝑝𝑖(𝑠 ∣ 𝜎𝑡)

≤
𝜎2(𝑠, 𝜎𝑡)

2𝜖
.

Multiplying for 𝜋(𝑠) and summing over 𝑠 proves the assertion.

A.6. Proof of Proposition 4.3

Using the Law of Large Numbers for variables of bounded variance,

𝐷𝑝∣𝜋𝑘 (𝜎) = lim
𝑡→∞

1
𝑡

𝑡∑
𝜏=1

𝑆∑
𝑠=1
𝑝(𝑠|𝜎𝜏 ) log 𝑝(𝑠|𝜎𝜏 )

𝜋𝑘(𝑠)
= lim
𝑡→∞

1
𝑡

𝑡∑
𝜏=1

𝑆∑
𝑠=1
𝑃𝑠𝜏 ,𝑠

log
𝑃𝑠𝜏 ,𝑠

𝜋𝑘(𝑠)
=

𝑆∑
𝑠′=1

𝜋(𝑠′)
𝑆∑
𝑠=1
𝑃𝑠′ ,𝑠 log

𝑃𝑠′ ,𝑠

𝜋𝑘(𝑠)
.

The statement follows by adding and subtracting ∑𝑆

𝑠=1 𝜋(𝑠) log𝜋(𝑠) and exploiting the properties of the invariant distribution, i.e. 
𝜋(𝑠) =∑𝑆

𝑠′=1 𝑃𝑠′ ,𝑠𝜋(𝑠
′) ∀𝑠.

A.7. Proof of Proposition 5.1

If lim𝑡→∞ 𝑐𝑁 (𝜎𝑡) = 0, then lim𝑡→∞
∑𝑁−1
𝑖=1 𝑐𝑖(𝜎𝑡) = 𝑒(𝜎𝑡) > 0. This implies that lim𝑡→∞ 𝑢

′
𝑁
(𝑐𝑁 (𝜎𝑡))−1 = 0 and lim inf 𝑡→∞∑𝑁−1

𝑖=1 𝑣𝑖𝑢
′
𝑖
(𝑐𝑖(𝜎𝑡))−1 > 0. So, if agent 𝑁 vanishes on 𝜎,

lim
𝑡→∞

𝑢′
𝑁
(𝑐𝑁 (𝜎𝑡))−1∑𝑁−1

𝑖=1 𝑣𝑖𝑢
′
𝑖
(𝑐𝑖(𝜎𝑡))−1

= lim
𝑡→∞

𝑝𝑁 (𝜎𝑡)∑𝑁−1
𝑗=1 𝑣𝑖𝑝𝑖(𝜎𝑡)

= 0,

but this is impossible as 𝑝𝑁 (𝜎𝑡)∕ 
∑𝑁−1
𝑖=1 𝑣𝑖𝑝𝑖(𝜎𝑡) = 1 ∀𝑡.

References

Antico, A., Bottazzi, G., Giachini, D., 2023. On the evolutionary stability of the sentiment investor. In: Bourghelle, D., Grandin, P., Jawadi, F., Rozin, P. (Eds.), 
Behavioral Finance and Asset Prices: The Influence of Investor’s Emotions. Springer International Publishing, Cham, pp. 155–173.

Barberis, N., Shleifer, A., Vishny, R., 1998. A model of investor sentiment. J. Financ. Econ. 49 (3), 307–343.

Beddock, A., Jouini, E., 2021. Live fast, die young: equilibrium and survival in large economies. Econ. Theory 71 (3), 961–996.

Blume, L., Easley, D., 2006. If you are so smart why aren’t you rich? Belief selection in complete and incomplete markets. Econometrica 74, 929–966.

Blume, L., Easley, D., 2009a. The market organism: long-run survival in markets with heterogenous traders. J. Econ. Dyn. Control 33, 1023–1035.

Blume, L., Easley, D., 2009b. Market selection and asset pricing. In: Hens, T., Schenk-Hoppé, K. (Eds.), Handbook of Financial Markets: Dynamics and Evolution. In: 
Handbooks in Economics Series. North-Holland.
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