
Approximate Constrained Lumping
of Polynomial Differential Equations

Alexander Leguizamon-Robayo1(B), Antonio Jiménez-Pastor1,
Micro Tribastone2, Max Tschaikowski1, and Andrea Vandin3,4

1 Aalborg University, Aalborg, Denmark
alexanderlr@cs.aau.dk

2 IMT School for Advanced Studies Lucca, Lucca, Italy
3 Sant’Anna School of Advanced Studies, Pisa, Italy

4 DTU Technical University of Denmark, Lyngby, Denmark

Abstract. In life sciences, deriving insights from dynamic models can
be challenging due to the large number of state variables involved. To
address this, model reduction techniques can be used to project the
system onto a lower-dimensional state space. Constrained lumping can
reduce systems of ordinary differential equations with polynomial deriva-
tives up to linear combinations of the original variables while preserv-
ing specific output variables of interest. Exact reductions may be too
restrictive in practice for biological systems since quantitative informa-
tion is often uncertain or subject to estimations and measurement errors.
This might come at the cost of limiting the actual aggregation power of
exact reduction techniques. We propose an extension of exact constrained
lumping which relaxes the exactness requirements up to a given tolerance
parameter ε. We prove that the accuracy, i.e., the difference between the
output variables in the original and reduced model, is in the order of
ε. Furthermore, we provide a heuristic algorithm to find the smallest ε
for a given maximal approximation error. Finally, we demonstrate the
approach in biological models from the literature by providing coarser
aggregations than exact lumping while accurately capturing the original
system dynamics.

Keywords: Approximate reduction · Dynamical systems ·
Constrained lumping

1 Introduction

Dynamical models of biochemical systems help discover mechanistic principles
in living organisms and predict their behavior under unseen circumstances.
Realistic and accurate models, however, often require considerable detail that
inevitably leads to large state spaces. This hinders both human intelligibility
and numerical/computational analysis. For example, even the relatively primary
mechanism of protein phosphorylation yields, in the worst case, a combinatorial
state space as a function of the number of phosphorylation sites [37].

As a general way to cope with large state spaces, model reduction aims at
providing a lower-dimensional representation of the system under study that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Pang and J. Niehren (Eds.): CMSB 2023, LNBI 14137, pp. 106–123, 2023.
https://doi.org/10.1007/978-3-031-42697-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42697-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-42697-1_8

Approximate Constrained Lumping of Polynomial Differential Equations 107

retains some dynamical properties of interest to the modeler. In applications
to systems biology, it is beneficial that the reduced state space keeps physical
interpretability, mainly when the model is used to validate mechanistic hypothe-
ses [3,38,41]. There is a variety of approaches in this context, such as those
exploiting time-scale separation properties [32,51], quasi-steady-state approxi-
mation [35,39], heuristic fitness functions [42], spatial regularity [48], sensitivity
analysis [40] and, at last, conservation analysis, which detects linear combina-
tions of variables that are constant at all times [49].

By lumping, one generally refers to the latter class, with a self-consistent
system of dynamical equations comprised of a set of macro-variables, each given
in terms of combination of the original ones [1,6,22,32,40]. In linear lumping,
this reduction is expressed as a linear transformation of the original state vari-
ables. Since this can destroy physical intelligibility in general, constrained lump-
ing allows restricting to only part of the state, allowing defining linear combina-
tions of state variables that ought to be preserved in the reduction [30]. Lumping
techniques of Markov chains date back to early nineties [27], were later extended
to stochastic process algebra [11,24,44,46,52] and have expanded recently to effi-
cient algorithmic approaches for stochastic chemical reaction networks [12] and
deterministic models of biological systems [15,17,19]. In these work, reduction
mappings are linear mappings induced by a partition (i.e., an equivalence rela-
tion) of state variables; in the aggregated system each macro-variable represents
the sum of the original variables of a partition block.

In this paper we are concerned with systems of ordinary differential equa-
tions (ODEs) with polynomial derivatives, subsuming mass-action kinetic models
(e.g., [45,50]) which is however also rich enough to cover electric circuits [13].
For these, CLUE has been presented as an algorithm that efficiently computes
constrained linear lumping [33], avoiding the computational shortcomings of pre-
vious work due to the symbolic computation of the eigenvalues of a nonconstant
matrix [28,30], enabling the analysis of models with several thousands of equa-
tions on standard hardware. In particular, CLUE can compute the smallest linear
dimensional reduction that preserves the dynamics of arbitrary linear combina-
tions of original state variables given by the user.

The aforementioned lumping approaches are exact, in that the reduced model
does not incur any approximation error (but only loss of information because,
in general, the aggregation map is not invertible). Approximate lumping is a
natural extension that has been studied for a long time (e.g., [29]). Indeed,
although exact reduction methods have been experimentally proved successful
in a large variety of biological systems (e.g., [34]), approximate reductions can be
more robust to parametric uncertainty—which notoriously affects systems biol-
ogy models (e.g., [4,7])—and offer a flexible trade-off between the aggressiveness
of the reduction and its precision. For partition-based lumping algorithms, this
has been recently explored. In [18], the authors present an algorithm for approx-
imate aggregation parameterized by a tolerance parameter ε, which, informally,
relaxes an underlying criterion of equality for two variables to be exactly lumped
into the same block.

108 A. Leguizamon-Robayo et al.

In this paper, we present for the first time a polynomial time algorithm for the
computation of approximate constrained lumpings. It is an extension of CLUE
that relaxes its conditions for exact lumping using a lumping tolerance parameter
that is roughly related to how close a lumping matrix is to an exact lumping.
Moreover, we show that the actual error is proportional to the lumping tolerance.
Using a prototype implementation, we evaluate our approximate constrained
lumping on three representative case studies from the literature. Overall, the
numerical results show that our approximate extension can lead to substantially
smaller reduced models while introducing limited errors in the dynamics.
Further Related Work. We are complementary to classic works [29,30] which
do not address the efficient algorithmic computation of lumping. Moreover, we
are more general than [18,26,47] which consider so-called “proper” lumping
(i.e., [40]) where each state variable appears in exactly one aggregated variable.
Likewise, we are complementary to rule-based reduction techniques [21] which
are independent of kinetic parameters [14]. As less closely related abstraction
techniques, we mention (bisimulation) distance approaches for the approximate
reduction of Markov chains [5,20] and proper orthogonal projection [2], which,
however, apply to linear systems. Abstraction of chemical reaction networks by
means of learning [10,36] and simulation [23] are complementary to lumping
methods.
Outline. Section 2 provides necessary preliminary notations, Sect. 3 introduces
approximate constrained lumping, while Sect. 4 discusses how to compute it and
how to choose the lumping tolerance value. Section 5 evaluates our proposal on
models from the literature, while Sect. 6 concludes the paper.
Notation. The derivative with respect to time of a function x : [0;T] → R

m

is denoted by ẋ. We denote a dynamical system by ẋ = f(x), and denote its
initial condition by x(0) = x0. For f : Rm → R

n, we denote the Jacobian of f
at x by J(x). For any vector x ∈ R

m, we denote by R[x] the rings of polynomial
functions of x with real coefficients respectively. Given a matrix L ∈ R

m×n, the
rowspace of L or the vector space generated by the rows of L is denoted by
rowsp(L). We denote by L̄ ∈ R

n×m a right pseudoinverse of L (i.e. LL̄ = In

where In ∈ R
n×n is the identity matrix). The term pseudoinverse refers to a

right pseudoinverse.

2 Preliminaries

In this paper we study systems of ODEs with polynomial derivatives of the form:

ẋ = f(x), (1)

where f : Rm → R
m, x �→ (f1(x), . . . , fm(x))T and fi ∈ R[x], for i = 1, . . . , m.

Definition 1. Given a system of polynomial ODEs, and a full rank matrix
L ∈ R

l×m with l < m, we say that L is an exact lumping of dimension l (or that
the system is exactly lumpable by L) if there exists a function g : Rl → R

l with
polynomial entries such that L ◦ f = g ◦ L.

Approximate Constrained Lumping of Polynomial Differential Equations 109

Example 1. Consider the following system

ẋ1 = x2
2 + 4x2x3 + 4x2

3, ẋ2 = 2x1 − 4x3, ẋ3 = −x1 − x2. (2)

Then, the matrix L = (1 0 0, 0 1 2)T is an exact lumping of dimension 2. To see
this we compute

(
ẏ1
ẏ2

)
=

(
ẋ1

ẋ2 + 2ẋ3

)
=

(
(x2 + 2x3)2

−2x2 − 4x3

)
=

(
y2
2

−2y2

)
.

In this case, we have g(y) = (y2
2 ,−2y2)T . �

Definition 2. Given a system of polynomial ODEs, and an exact lumping L ∈
R

l×m, we say that y = Lx are the reduced (or lumped) variables, and their
evolution is given by the reduced system ẏ = g(y).

Given an initial condition x0 ∈ R
n and an exact lumping L, there is a correspond-

ing initial condition y0 in the lumped variables given by y0 = Lx0. Similarly,
since y = Lx and g ◦ L = Lf , we have that

Lẋ = Lf(x) = g(Lx) = g(y) = ẏ .

This means that we can study the evolution of the lumped variables y(t) by
solving the (smaller) reduced system rather than the (larger) original one.

Suppose that we want now to recover the evolution of some linear combina-
tion of state variables. To answer whether this is possible in the context of our
example, we introduce the notion of constrained lumping. Roughly speaking,
this is an exact lumping able to preserve given observations of interest.

Definition 3. Let xobs = Mx for some matrix M ∈ R
p×m, for p < m. We say

that a lumping L is a constrained lumping with observables xobs if rowsp(M) ⊆
rowsp(L). This means that each entry of xobs is a linear combination of the
reduced variables y.

Example 2. Consider the system in Eq. (2) and suppose we are interested in
observing the quantity 2x1 +x2 +2x3. In this case xobs = Mx with M = (2 1 2).
We can see that L from Example 1 is a constrained lumping as we can recover the
observable from the reduced system, i.e., xobs = 2y1 + y2. Suppose now that we
want to observe the quantity x1 + x2 + x3. This will be described by xobs = Mx
with M = (1 1 1). In this case, the matrix L is not a constrained lumping as
there is no way to obtain xobs as a linear combination of y1 and y2. �

To understand how constrained lumping can be computed, we first review
the following known characterization of lumping.

Theorem 1 (Characterization of Exact Lumping [43]) Given a system
ẋ = f(x) of m polynomial ODEs and a matrix L ∈ R

l×m with rank l, the
following are equivalent.

110 A. Leguizamon-Robayo et al.

1. The system is exactly lumpable by L.
2. For any pseudoinverse L̄ of L, Lf = (Lf) ◦ L̄L.
3. The row space of L is invariant under J(x) for all x ∈ R

m, where J(x) is
the total derivative of f at x, known also as the Jacobian. More formally,
rowsp(LJ(x)) ⊆ rowsp(L) for all x ∈ R

m.

The characterization of exact lumpings in Theorem 1 provides us with a
way to compute constrained lumpings L. This is because thanks to Point 3,
the problem of computing a lumping is equivalent to the problem of finding a
J(x)-invariant subspace of Rm for all x ∈ R

m. This gives rise to Algorithm 1.

Algorithm 1. Constrained lump-
ing [33]
Input: Asystemẋ=f(x)ofmpolynomialODEs;

A p × m matrix M with row rank p.
1: compute J(x), the Jacobian of f(x)
2: compute a representation J(x) =

∑N
i=1 Jiμi(x) (Theorem 2);

3: compute L (Algorithm 2)
4: return Constrained lumped ODE system

ẏ = Lf(L̄y).

Algorithm 2. Computation of L
Input: Matrices Ji, i = 1, . . . , N , such that

J(x) =
∑N

i=1 Jiμi(x) (Theorem 2);
A p × m matrix M with row rank p.

1: set L := M
2: repeat
3: for all 1 ≤ i ≤ κ and rows r of L do
4: compute rJi

5: if rJi /∈ rowsp(L) then
6: append row rJi to L
7: end if
8: end for
9: until no rows are appended to L

10: return Lumping matrix L.

We can see that Algorithm 1 uses a secondary algorithm, Algorithm 2, to
actually compute constrained lumpings L. We explain next how this is done effi-
ciently. In particular, the next theorem shows how to verify Point 3 of Theorem 1
by performing a finite number of numerical checks. The number is proportional
to the number of monomials present in the polynomial vector field f .

Theorem 2 ([33, Lemma I.1]). Consider a system of polynomial ODEs as
in Eq. (1). Let J(x) be the Jacobian matrix of f . We have that J(x) can be
represented as

J(x) =
N∑

i=0

Jiμi(x), (3)

where {μi(x) : i ∈ {0, . . . , N}} is the set of monomials in J(x). Then, for all
rows r of L, rJ(x) ∈ rowsp(L) for all x if and only if rJi ∈ rowsp(L) for
i = 1, . . . , N .

Example 3. The Jacobian for the system of Example 1 is given by

J(x) =

⎛
⎝ 0 2x2 + 4x3 4x2 + 8x3

2 0 −4
−1 −1 0

⎞
⎠ .

Approximate Constrained Lumping of Polynomial Differential Equations 111

Using Theorem 2, J(x) can be represented as

J(x) = J1μ1(x) + J2μ2(x) + J3μ3(x)

=

⎛
⎝ 0 0 0

2 0 −4
−1 −1 0

⎞
⎠ 1 +

⎛
⎝0 2 4

0 0 0
0 0 0

⎞
⎠ x2 +

⎛
⎝0 4 8

0 0 0
0 0 0

⎞
⎠ x3.

We note that, in this example, the μi functions are μ1(x) = 1, μ2(x) = x2 and
μ3(x) = x3. Thanks to the fact that the vector field is polynomial, monomials
μi can be computed in polynomial time [33]. �

Theorem 2 gives a computational way to verify Point 3 in Theorem 1, see
Algorithm 1–2 whose polynomial complexity is addressed in [33].

3 Approximate Constrained Lumping

In this section we provide an estimation for the error underlying an approximate
lumping. We begin by demonstrating why the exact lumping condition can be
too restrictive for finding reductions. Consider the following system of ODEs:

ẋ1 = x2
2 + 4.05x2x3 + 4x2

3, ẋ2 = 2x1 − 4x3, ẋ3 = −x1 − x2. (4)

Notice that the system given by Eq. (4) is similar to that of Eq. (2), as we have
just added a term 0.05x2x3 to its first equation. This new system is not exactly
lumpable by the matrix L of Example 1. However, we would like to know if it
is still possible to use the matrix L to obtain a useful reduced system which
approximates well the original one. To do so, we first want to evaluate how close
the matrix L is to be (or how much it deviates from) an exact lumping.

Fig. 1. Points projected to rowsp(L).

By Theorem 1, Point 2, a full rank matrix L is a lumping if and only if the
equality Lf(L̄Lx) − Lf(x) = 0 is satisfied for all x ∈ R

m. In our proposal of
approximate lumping, we relax this requirement by asking it to be satisfied up
to a certain tolerance.

Definition 4. Consider the system of ODEs as in Eq. (1). Let L ∈ R
l×m be full

rank matrix with l < m and denote by L̄ the Moore-Penrose right pseudo inverse
of L. We define the projection onto rowsp(L) as PL = L̄L and the deviation of
L at x by

devL(f, x) := ‖Lf(L̄Lx) − Lf(x)‖2. (5)

112 A. Leguizamon-Robayo et al.

To understand the intuition behind Definition 4, consider the point x in
Fig. 1. Then the deviation computes the difference between the images under
L◦f of x (purple) and PLx (green). The deviation is identically zero if and only
if L is a lumping.

Example 4. Consider the matrix L given in Example 1. A pseudoinverse of L is
given by L̄ = (1 0 0, 0 0.2 0.4)T . Writing f1 for the corresponding vector field,
we obtain that devL(f1, (1, 1, 1)T) = 0, as L is an exact lumping. Now consider
the system given by Eq. (4) and use f2 to denote the corresponding vector field.
Then, we get that devL(f2, (1, 1, 1)T) = 0.014. Therefore, the matrix L is not
an exact lumping of Eq. (4). �

From a modelling perspective, a reduced model is meaningful insofar as its
predictions for a set of initial conditions of interest are close enough to those
of the original model throughout a given finite time horizon of interest. On the
other hand, the theory in [33] guarantees that reduced models provide exact
predictions. This might restrict the actual aggregation power of the technique.
Here, we aim at relaxing the theory by considering reductions that do not need
to be exact or tight. Having this in mind, we introduce the following notion.

Definition 5. Consider the system of ODEs given by Eq. (1) and a set of initial
conditions S. Let L ∈ R

l×m be a full rank matrix with l < m. Given η > 0 and
a time horizon T > 0, we say that Eq. (1) is approximately lumpable by L with
deviation tolerance η if

devL(f, x(t)) ≤ η, (6)

for all t ∈ [0, T] and all initial conditions x(0) ∈ S, where x(t) is the solution of
the system in Eq. (1). We say that L is an approximate lumping for the set S,
time horizon T , and deviation tolerance η (or (S, T, η)-lumping). We will omit
S, T or η whenever they can be inferred from the context.

Remark 1. The notion of approximate lumping generalizes that of exact lumping
from Definition 1. To see this, suppose L is an exact lumping. Then by Point 2
of Theorem 1, ‖Lf(L̄Lx) − Lf(x)‖2 = devL(f, x) = 0, for all x ∈ R

m. It follows
that L is a (Rm,∞, 0)-lumping.

Fig. 2. Example 5: evolution
of devL(f(x(t))).

A common type of study is to see the evolu-
tion of a system ẋ(t) = f(x(t)) until it reaches
a steady-state for t → ∞. In practice, modelers
equip biological models with finite time horizon T ,
thus implicitly assuming that the system will reach
steady-state at T . We shall adhere to this heuristic
but point out that a rigorous steady-state analysis
would require to ensure asymptotic convergence
using, e.g., Lyapunov functions [18].

Example 5. Consider the system in Eq. (4), the
matrix L of Example 1 and let x(0) = (1, 1, 1)T . Then L is an approximate

Approximate Constrained Lumping of Polynomial Differential Equations 113

(a) Evolution of the reduced and origi-
nal systems with the (singleton) set of
initial conditions S = {(1, 1, 1)T }.

(b) Error evolution ‖e(t)‖2

Fig. 3. Reduced system and error computation for Example 6 using the matrix L of
Example 1 on Eq. (4).

lumping for x(0), time T = 0.475, and deviation tolerance 0.1, i.e., L is a
({x(0)}, 0.475, 0.1)-lumping. To see this, note that in Fig. 2 the deviation of the
dynamics is bounded by 0.1. �

After having generalized the notion of lumping in that of approximate lump-
ing, we next introduce approximate constrained lumping in the obvious manner.

Definition 6. Let xobs = Mx for some matrix M ∈ R
p×m with p < m. We say

that an approximate lumping L of Eq. (1) is an approximate constrained lumping
with observables xobs if rowsp(M) ⊆ rowsp(L).

Similarly to Definition 2, Definition 6 means that the observables xobs can
be recovered as a linear combination of the reduced variables y = Lx.

Definition 7. The reduced system induced by an approximate lumping L is
given by ẏ = Lf(L̄y), where y ∈ R

l.

Example 6. Consider the system in Eq. (4) and the matrix L given in Example 1.
We can compute the reduced system as follows

(
ẏ1

ẏ2

)
= Lf

(
L̄

(
y1

y2

))
= Lf

⎛
⎝

⎛
⎝y1 0

0 0.2y2

0 0.4y2

⎞
⎠

⎞
⎠ = L

⎛
⎝ 1.004y2

2

2y1 − 1.6y2

−y1 − 0.2y2

⎞
⎠ =

(
1.004y2

2

−2y2

)
.

We can see that L induces the reduced system ẏ = (1.004y2
2 ,−2.0y2)T . �

Definition 8. Given the system in Eq. (1) and an approximate lumping L, we
define the error of the reduction by e(t) := y(t) − Lx(t), where y is the solution
to the reduced system given by Definition 7. The dynamics of the approximation
error, instead, is given by ė = ẏ − Lẋ, with e(0) = 0.

114 A. Leguizamon-Robayo et al.

Example 7. Following Example 6, we compute the trajectories of the reduced
and original system. We also compute the L2-error of the reduction. This is
summarized in Fig. 3. Note that, in this example, we obtained a reduction of a
system that was not exactly lumpable. In Fig. 3a, we can appreciate that, for
the given time horizon, the reduced and original values are close to each other.
�

We next show that it is possible to bound the error introduced by approxi-
mate constrained lumping. Despite that our worst case bound is often conserva-
tive in practice, the bound confirms the consistency of the approach: the error
is of order O(η) — that is, the smaller the deviation η, the smaller the actual
error e. As we will see in Sect. 5, despite the conservative nature of the bound,
our framework can find approximate lumpings with low errors for published
biological models.

Theorem 3 (Error Bounds). Fix a bounded set of initial conditions S, a
finite time horizon T and assume that the respective reachable set of the m-
dimensional polynomial ODE system ẋ = f(x) is bounded on [0;T]. Then, there
exists a constant C ≥ 0 such that for any η > 0 for which L is a (S, T, η)−
lumping, it holds that ‖e(t)‖2 ≤ η · KC,L,T , where

KC,L,T =
1

C‖L‖2‖L̄‖2
(
eC‖L‖2‖L̄‖2T − 1

)

and C is the Lipschitz constant of f over the set of initial conditions S.

4 Computing Constrained Approximated Lumping

Armed with the estimation of the error underlying approximate lumpings, we
next focus on their computation. In Sect. 4.1, we introduce a numerical lumping
tolerance ε to compute a lumping matrix L, opposed to the deviation tolerance
η. Moreover, we show how the lumping tolerance ε and the deviation tolerance
η relate to each other. In Sect. 4.2 instead we discuss how to pick the best value
for the lumping tolerance ε.

4.1 Lumping Algorithm

Fig. 4. Decomposition of rJi

into rowsp(L) and rowsp(L)⊥.

In this section, we relax the condition in Line 5
of Algorithm 2, thus allowing to find approximate
reductions. Intuitively, we add a new row rJi to the
matrix L only if it is far enough from rowsp(L). We
make this rigorous by fixing a lumping tolerance
ε and adding a row rJi only if ‖rJi − πi‖2 > ε,
where πi := rJiPL is the orthogonal projection of
rJi onto rowsp(L). Thus, we propose Algorithm 3.

Approximate Constrained Lumping of Polynomial Differential Equations 115

Algorithm 3. Approximate Constrained Lumping Algorithm
Input: numerical threshold ε ≥ 0;

set of matrices Ji, i = 1, . . . , N such that J(x) =
∑N

i=1 Jiμi(x) (Theorem 2)
a p × m matrix of observables M with row rank p

1: compute orthonormal rows spanning the row space of M and store them as M
2: set L := M
3: repeat
4: for all 1 ≤ i ≤ N and rows r of L do
5: compute πi := rJiL

TL
6: if ‖rJi − πi‖2 > ε then
7: append row (rJi − πi)/‖rJi − πi‖2 to L
8: end if
9: end for

10: until no rows have been appended to L
11: return lumping matrix L.

Remark 2. In Line 7 of Algorithm 3 we do not append rJi, given by the orange
vector in Fig. 4. Rather, we append the normalized component of rJi in the
orthogonal direction to rowsp(L), which is rJi − πi, the green vector in Fig. 4.
This ensures that the matrix L is orthonormal, thus we can use the fact that the
pseudoinverse of an orthonormal matrix is its transpose to obtain that L̄ = LT .

We now provide a detailed example of the use of Algorithm 3.

Example 8. We apply Algorithm 3 to Eq. (4) for ε = 0.1 and M = (1, 0, 0). In
other words, we are observing the component x1 from the original system. The
Jacobian of f(x) can be represented as J1(1) + J2(x2) + J3(x3), where

J1 =

⎛
⎝ 0 0 0

2 0 −4
−1 −1 0

⎞
⎠ , J2 =

⎛
⎝0 2 4.05

0 0 0
0 0 0

⎞
⎠ , J3 =

⎛
⎝0 4.05 8

0 0 0
0 0 0

⎞
⎠ .

We begin the computation in Line 2 by setting L = M = (1, 0, 0) and begin
the main loop in Line 4 with r = (1, 0, 0). To carry out the computation of
Line 5, we have that rJ1 = (0, 0, 0), rJ2 = (0, 2, 4.05), rJ3 = (0, 4.05, 8). Since
rJ1 = π1 = (0, 0, 0), by the check of Line 6, we do not append any new row
to L. As next, we compute π2 following Line 5. As π2 = 0, it follows that
‖rJ2 − π2‖2 = ‖rJ2‖2 = 4.52 > 0.1, which, by Line 6, means that we need to
append a new row to L. By Line 7, we add normalized rJ2 − π2 as a row of L
(Line 7), thus obtaining

L =
(

1 0 0
0 0.443 0.897

)
. (7)

Going back to Line 5, we compute π3 = rJ3L
T L = (0, 3.970, 8.040). Following

Line 6, since ‖rJ3 − π3‖2 = 0.09 < 0.1, we do not add any additional row to L.
As we have only checked one of the rows of L so far, we follow the main loop
(Line 4) by setting r = (0, 0.443, 0.897). We compute

rJ1 = (−0.011,−0.900,−1.771), rJ2 = (0, 0, 0), rJ3 = (0, 0, 0).

116 A. Leguizamon-Robayo et al.

We skip to the check of Line 6, where we have that ‖rJ1 − π1‖2 = 0.02 < 0.1.
Similarly, we have that ‖rJ2 − π2‖2 = ‖rJ3 − π3‖2 = 0, meaning that no more
rows should be added to L, terminating the algorithm. The output of Algorithm 3
is then the matrix L of Eq. (7). �

Being a generalization of Algorithm 2, the polynomial complexity of Algo-
rithm 3 follows from [33] and the fact that linear projections can be computed
in polynomial time. Likewise, its result is unique and minimal, provided that the
input matrix M has full row-rank.

The next result relies on Theorem 2 and ensures that the approximate reduc-
tions found by Algorithm 3 admit a deviation tolerance of order O(ε). That is,
the deviation tolerance η is in the order of the lumping tolerance ε.

Theorem 4. (Correctness of Algorithm 3). Consider a system of ODEs of
the form (1) of dimension m and a set of initial conditions S, such that none
of the solutions explode in a finite time t ≤ T , where T is a given time horizon.
Let L be the matrix computed via Algorithm 3 with lumping tolerance ε and
let Ω be an open ball centered in the origin of diameter K such that for all
x(0) ∈ S, the solution x(t) of (1) remains in Ω for all t ∈ [0, T]. Then, L is a
(T, S,

√
mC ′Kε)-lumping, where C ′ = supi,x∈Ω |μi(x)|.

4.2 Heuristic Search of Lumping Tolerance

In order to apply Algorithm 3, it is important to choose an appropriate value
for ε. While Theorem 3 together with Theorem 4 allows for an estimation of the
error in terms of ε, in practice, this bound is not tight enough. For this reason,
we introduce a heuristic approach to appropriately choose ε.

Intuitively, by increasing ε, one can lump more variables together at the
price of incurring larger approximation errors. We would like to find the largest
admissible ε such that the approximation error is small enough. Note that the
minimum value that ε can have is 0, corresponding to an exact reduction. A
naive idea would be to set ε = 0 and add small increments until the reduction
is satisfying. However, this requires an appropriate choice of increment which in
turn depends on the model. Instead, Lemma 1 gives us an upper bound for ε
which can be computed for each model.

Lemma 1. (Upper bound on ε). Consider a matrix of observables M ∈
R

p×m of rank p with j−th row denoted by rj and a decomposition of the Jacobian
J(x) =

∑n
i=1 Jiμi(x). Then there is value εmax given by

εmax = max
j,i

‖rjJi‖2, (8)

for i = 1, . . . , n and each j = 1, . . . , l, such that for any ε ≥ εmax the output of
Algorithm 3 will be a matrix of orthonormal rows spanning the row space of M .

In other words, any ε ≥ εmax will collapse the dynamics of the system onto M .
Note also that the error e and the deviation devL of the reduction underlying

Approximate Constrained Lumping of Polynomial Differential Equations 117

an approximate lumping L increase as the lumping tolerance ε increases. To
find the largest admissible ε, we need a way to approximate the error without
having to simulate the original and reduced systems. To this aim, we estimate
the deviation of lumping matrix L by sampling and averaging the deviation for
N randomly chosen points over [0; ‖x0‖2]m, where x0 is the center of the initial
set. The computation corresponds to the Monte Carlo approximation of the L1

norm of devL over [0; ‖x0‖2]m. The choice of the compactum is motivated by
the fact that the diameter of the reachable set will be of the order of the initial
set.

Algorithm 4. Finding the largest acceptable ε for Algorithm 3
Input: set of matrices Ji, i = 1, . . . , N such that J(x) =

∑N
i=1 Jiμi(x) (Theorem 2)

maximum deviation ηmax

minimal difference dmin

set of initial conditions S and its center x0

number of random samples M ≥ 1
1: set εmin = 0
2: compute εmax = maxj,i‖rjJi‖2

3: repeat
4: compute ε = (εmax + εmin)/2
5: compute L using Algorithm 3 with ε
6: compute devL = 1

M

∑M
i=1‖Lf(LTLxi)−Lf(xi)‖2 for random xi ∈ [0; ‖x0‖2]

m

7: if devL > ηmax then
8: set εmax = ε
9: else

10: set εmin = ε
11: end if
12: compute d = εmax − εmin

13: until d < dmin

14: return εmin.

To find the largest admissible ε that leads to a reduction close to a given
maximal deviation tolerance ηmax, it suffices to search over ε ∈ [0, εmax] thanks
to Lemma 1. We find such an ε by performing a binary search over [0, εmax],
relying on the intuition that devL(ε1) ≤ devL(ε2) where ε1 ≤ ε2 and L(εi) is the
result of Algorithm 3 for input εi. The corresponding realization is provided in
Algorithm 4, where the maximal acceptable deviation tolerance ηmax is chosen
as a percentage of ‖f(x0)‖2, with x0 being again the center of the initial set.
This is motivated by the fact that devL is stated in terms of f , see Definition 4.

5 Evaluation

In this section, we evaluate our method by demonstrating its higher reduction
power over exact constrained lumping. We use the following selection of models
from the literature, with observables taken from the cited papers (For models
with more than one observable we arbitrarily selected one.)

118 A. Leguizamon-Robayo et al.

– BioNetGen CCP [31]: the central carbon pathway of E. coli is a metabolic
process that converts glucose into energy and building blocks for cell growth.
Observable: concentration of 1,3-diphosphoglycerate (D13PG). This corre-
sponds to the sum of 2 out of the 87 variables in the model.

– NIHMS80246 S6 [9]: FceRI-like network of a cell-surface receptor of the
receptor tyrosine kinase (RTK) family.
Observable: total amount of phosphorylation at Y2 (S2P). This corresponds
to the sum of 10 out of the 24 variables in the model.

– pcbi 1003544 s006 [25]: trivalent-ligand bivalent-receptor (TLBR) model,
which is a simplified representation of receptor aggregation following multi-
valent ligand binding.
Observable: total concentration of membrane receptor (RC). This corre-
sponds to the sum of 18 out of the 62 variables in the model.

These are chemical reaction networks written in the input language of the
tool BioNetGen [8] as available in the corresponding cited papers. We use MAT-
LAB to implement all algorithms presented in this paper, as well as to carry
out the simulations of the reduced and original models. The Jacobians for all
models were automatically computed using ERODE [16], using the importing
capabilities of ERODE for the .net format generated using BioNetGen ver-
sion 2.2.5-stable. The time horizon T and initial conditions for all models were
taken from their original papers. For reproducibility, we provide all the gener-
ated MATLAB files, including the specifications of the models, at https://www.
erode.eu/models/CMSB2023.zip.

Overall, these models showcase three exemplary situations: (1) the suitable
ε computed by Algorithm 4 gives good reductions with low errors, while an
excessively large ε completely destroys the observed dynamics; (2) our approach
can only provide limited reduction improvements; (3) a model that cannot be
reduced by exact constrained lumping, whereas approximate constrainted lump-
ing is able to halve the number of variables while adding limited errors.

Table 1 presents the detailed results of these three experiments. Using Algo-
rithm 4, we seek to find the largest lumping tolerance ε that does not exceed
a given maximal deviation tolerance ηmax, where the latter is described as a
percentage of the initial slope via ηmax = SlopePercentage‖f(x0)‖2. Similarly
to the choice of the compact set for the evaluation of devL, the choice of ηmax is
justified by the fact that the slopes at points contained in the reachable set are
roughly of the same order to the slope at the center of the initial set f(x0). For
difference percentages, we then find the largest admissible lumping tolerance ε
using Algorithm 4. Table 1 summarizes the results of the experiments. The col-
umn Red. size shows the size of the reduced model obtained by Algorithm 3.
We display the absolute error and the relative error at the time horizon, respec-
tively, in the columns e(T) and e(T)Rel (where the relative error is given as the
absolute error divided by the value of the observable of the exact reduction).
We also display the number of iterations and the average computation time of
Algorithm 4 over 5 runs in the Time column. All experiments were carried out
on a 4.7 GHz Intel Core i7 computer with 32 GB of RAM. For each model, we

https://www.erode.eu/models/CMSB2023.zip
https://www.erode.eu/models/CMSB2023.zip

Approximate Constrained Lumping of Polynomial Differential Equations 119

plot in Fig. 5 the corresponding simulations of the observables for the considered
values of ε.

Table 1. Validation: greater reduction power on original models.

Red. size e(T) eRel(T)[%] ε SlopePercentage Iterations Time[s]

Experiment 1) Model: BioNetGen CCP, size: 87, exact lumping: 30

30 6.210E–06 5.960E–05 0.13313 10% 22 2.098

23 3.199E+00 3.070E+01 0.34426 30% 22 1.459

9 4.835E+00 4.641E+01 0.71208 50% 22 0.719

5 1.042E+01 1.000E+02 0.71720 70% 22 0.593

4 1.042E+01 1.000E+02 1.32714 90% 22 0.395

Experiment 2) Model: NIHMS80246 S6, size: 24, exact lumping: 19

19 2.706E–08 2.706E–08 0.01696 10% 19 0.607

18 4.793E–04 4.793E–04 0.03000 30%-70% 19 0.895

8 9.999E+01 1.000E+02 0.21033 90% 19 0.441

Experiment 3) Model: pcbi 1003544 s006, size: 62, exact lumping: 62

28 3.200E–09 2.366E–09 0.00079 10%-90% 22 2.762

In Experiment 1, we can see that, while for SlopePercentage 10% we get
no reduction improvements, for SlopePercentage 30% and 50% get substantial
reduction improvements going down to 23 and 9 variables, respectively, while
preserving the shape of the dynamics of the observable (middle lines in Fig. 5a).
Furthermore, it is interesting to note that aggressive reductions come at the price
of larger errors. In fact, by setting SlopePercentage to 70% we lump the system
so much that the observable in question degenerates to a constant (bottom flat
line in Fig. 5a).

In Experiment 2 we can see that by setting SlopePercentage to 10% we
do not get reduction improvements, while by allowing it to go up to 70% we
only get very limited improvements (we reduce to 18 variables rather than to
19), without adding noticeable errors (this can be seen in Fig. 5b, were the exact
and approximate reductions are indistinguishable). More aggressive reductions,
e.g., obtaining 8 variables for SlopePercentage 90%, destroy the dynamics (the
bottom flat line in Fig. 5b).

Finally, Experiment 3 shows a model that is not exactly lumpable. That is,
exact lumping does not allow to lump its 62 variables. Instead, our approximate
variant allows to reduce the model to less than 50% of the original variables
(45%). This happens for any SlopePercentage from 10% to 90%. Most impor-
tantly, this reduction comes at very limited cost: as we can see in Fig. 5c, the
lines can be hardly distinguished.

120 A. Leguizamon-Robayo et al.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Fig. 5. Simulation of exact and approximately lumped models from Table 1, for varying
SlopePercentage. The 0-line refers to exact constrained lumping.

6 Conclusion

In this work we introduced approximate constrained lumping, a framework for
the reduction of systems of polynomial differential equations. While approximate
lumping has been studied before, to the best of our knowledge no polynomial
time algorithm for its computation has been provided before. The proposed algo-
rithm takes as input a numerical tolerance and computes an approximate con-
strained lumping whose error is guaranteed to be proportional to the numerical
threshold (with the proportional constant being not dependent on the thresh-
old). The applicability of the framework is demonstrated by finding approximate
lumpings of published models with low errors. Future work will consider the
extension to more general vector fields, where the challenge is to express the
derivative of the vector field as a sum of computationally amenable functions.
In the case of polynomial vector fields considered here, for instance, these are
monomials.

Acknowledgment. The work was partially supported by the DFF project
REDUCTO 9040-00224B, the Poul Due Jensen Grant 883901, the Villum Investi-
gator Grant S4OS, the PRIN project SEDUCE 2017TWRCNB and the co-funding
of European Union - Next Generation EU, in the context of The National Recovery
and Resilience Plan, Investment 1.5 Ecosystems of Innovation, Project Tuscany Health
Ecosystem (THE), CUP: B83C22003920001.

References

1. Abate, A., Andriushchenko, R., Ceska, M., Kwiatkowska, M.: Adaptive formal
approximations of Markov chains. Perform. Evaluation 148 (2021)

2. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Advances in
Design and Control. SIAM (2005)

3. Apri, M., de Gee, M., Molenaar, J.: Complexity reduction preserving dynamical
behavior of biochemical networks. J. Theor. Biol. 304, 16–26 (2012)

4. Babtie, A., Stumpf, M.: How to deal with parameters for whole-cell modelling. J.
Roy. Soc. Interface 14(133), 20170237 (2017)

Approximate Constrained Lumping of Polynomial Differential Equations 121

5. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of
bisimilarity distances. In: N. Piterman and S. A. Smolka, editors, TACAS, vol.
7795. LNCS, pp. 1–15 (2013)

6. Backenköhler, M., Bortolussi, L., Großmann, G., Wolf, V.: Abstraction-guided
truncations for stationary distributions of Markov population models. In: QEST,
pp. 351–371 (2021)

7. Barnat, J., Beneš, N., Brim, L., Demko, M., Hajnal, M., Pastva, S., Šafránek,
D.: Detecting attractors in biological models with uncertain parameters. In: Feret,
J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 40–56. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67471-1 3

8. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

9. Borisov, N.M., Chistopolsky, A.S., Faeder, J.R., Kholodenko, B.N.: Domain-
oriented reduction of rule-based network models. IET Syst. Biol. 2(5), 342–351
(2008)

10. Cairoli, F., Carbone, G., Bortolussi, L.: Abstraction of Markov population dynam-
ics via generative adversarial nets. In: Cinquemani, E., Paulevé, L. (eds.) CMSB
2021. LNCS, vol. 12881, pp. 19–35. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-85633-5 2

11. Cardelli, L.: From processes to odes by chemistry. In: Ausiello, G., Karhumäki,
J., Mauri, G., Ong, L. (eds.) Fifth Ifip International Conference on Theoretical
Computer Science - Tcs 2008 (2008)

12. Cardelli, L., Pérez-Verona, I.C., Tribastone, M., Tschaikowski, M., Vandin, A.,
Waizmann, T.: Exact maximal reduction of stochastic reaction networks by species
lumping. Bioinform. 37(15), 2175–2182 (2021)

13. Cardelli, L., Tribastone, M., Tschaikowski, M.: From electric circuits to chemical
networks. Nat. Comput. 19(1), 237–248 (2020)

14. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)

15. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical
reaction networks: a categorical and algorithmic perspective. In: Grohe, M., Koski-
nen, E., Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2016, July 5–8, 2016, pp. 485–494. ACM, New
York (2016)

16. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

17. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation
of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)

18. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Guaranteed error
bounds on approximate model abstractions through reachability analysis. In:
McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 104–121.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2 7

19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. Theoret. Comput. Sci. 777, 132–154 (2019)

20. Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Linear distances between
Markov chains. In: Desharnais, J., Jagadeesan, R. (eds.) CONCUR, vol. 59. LIPIcs,
pp. 20:1–20:15 (2016)

https://doi.org/10.1007/978-3-319-67471-1_3
https://doi.org/10.1007/978-3-030-85633-5_2
https://doi.org/10.1007/978-3-030-85633-5_2
https://doi.org/10.1007/978-3-662-54580-5_19
https://doi.org/10.1007/978-3-319-99154-2_7

122 A. Leguizamon-Robayo et al.

21. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. PNAS 106(16), 6453–6458 (2009)

22. Großmann, G., Kyriakopoulos, C., Bortolussi, L., Wolf, V.: Lumping the approx-
imate master equation for multistate processes on complex networks. In: McIver,
A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 157–172. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99154-2 10

23. Helfrich, M., Ceska, M., Kret́ınský, J., Marticek, S.: Abstraction-based segmental
simulation of chemical reaction networks. In: Petre, I., Paun, A. (eds.) CMSB, vol.
13447, pp. 41–60 (2022)

24. Hillston, J., Tribastone, M., Gilmore, S.: Stochastic process algebras: from individ-
uals to populations. Comput. J. 55(7), 866–881 (2011)

25. Hogg, J.S., Harris, L.A., Stover, L.J., Nair, N.S., Faeder, J.R.: Exact hybrid par-
ticle/population simulation of rule-based models of biochemical systems. PLOS
Comput. Biol. 10(4), e1003544, April 2014. Publisher: Public Library of Science

26. Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent
types. In: 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 1–11, June 2013. ISSN: 2158–3927

27. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

28. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem.
Eng. Sci. 44(6), 1413–1430 (1989)

29. Li, G., Rabitz, H.: A general analysis of approximate lumping in chemical kinetics.
Chem. Eng. Sci. 45(4), 977–1002 (1990)

30. Li, G., Rabitz, H.: New approaches to determination of constrained lumping
schemes for a reaction system in the whole composition space. Chem. Eng. Sci.
46(1), 95–111 (1991)

31. Mu, F., Williams, R.F., Unkefer, C.J., Unkefer, P.J., Faeder, J.R., Hlavacek,
W.S.: Carbon-fate maps for metabolic reactions. Bioinformatics (Oxford, England)
23(23), 3193–3199 (2007)

32. Okino, M., Mavrovouniotis, M.: Simplification of mathematical models of chemical
reaction systems. Chem. Rev. 2(98), 391–408 (1998)

33. Ovchinnikov, A., Pérez Verona, I., Pogudin, G., Tribastone, M.: CLUE: exact max-
imal reduction of kinetic models by constrained lumping of differential equations.
Bioinformatics 37(12), 1732–1738, June 2021

34. Pérez-Verona, I.C., Tribastone, M., Vandin, A.: A large-scale assessment of exact
model reduction in the BioModels repository. In: Bortolussi, L., Sanguinetti, G.
(eds.) CMSB 2019. LNCS, vol. 11773, pp. 248–265. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-31304-3 13

35. Radulescu, O., Gorban, A.N., Zinovyev, A., Noel, V.: Reduction of dynamical
biochemical reactions networks in computational biology. Front. Genet. 3, 131
(2012)

36. Repin, D., Petrov, T.: Automated deep abstractions for stochastic chemical reac-
tion networks. Inf. Comput. 281, 104788 (2021)

37. Salazar, C., Höfer, T.: Multisite protein phosphorylation – from molecular mecha-
nisms to kinetic models. FEBS J. 276(12), 3177–3198 (2009)

38. Schmidt, H., Madsen, M., Danø, S., Cedersund, G.: Complexity reduction of bio-
chemical rate expressions. Bioinformatics 24(6), 848–854 (2008)

39. Segel, L., Slemrod, M.: The quasi-steady-state assumption: a case study in pertur-
bation. SIAM Rev. 31(3), 446–477 (1989)

https://doi.org/10.1007/978-3-319-99154-2_10
https://doi.org/10.1007/978-3-030-31304-3_13
https://doi.org/10.1007/978-3-030-31304-3_13

Approximate Constrained Lumping of Polynomial Differential Equations 123

40. Snowden, T., van der Graaf, P., Tindall, M.: Methods of model reduction for large-
scale biological systems: a survey of current methods and trends. Bull. Math. Biol.
79(7), 1449–1486 (2017)

41. Sunnaker, M., Cedersund, G., Jirstrand, M.: A method for zooming of nonlinear
models of biochemical systems. BMC Syst. Biol. 5(1), 140 (2011)

42. Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Egac: a genetic algo-
rithm to compare chemical reaction networks. In: GECCO, GECCO 2017, p. 833–
840 (2017)

43. Tomlin, A.S., Li, G., Rabitz, H., Tóth, J.: The effect of lumping and expanding
on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997).
Publisher: Society for Industrial and Applied Mathematics

44. Tribastone, M.: Behavioral relations in a process algebra for variants. In: Gnesi, S.,
Fantechi, A., Heymans, P., Rubin, J., Czarnecki, K., Dhungana, D. (eds.) SPLC,
pp. 82–91. ACM (2014)

45. Troják, M., Safránek, D., Pastva, S., Brim, L.: Rule-based modelling of biological
systems using regulated rewriting. Biosyst. 225, 104843 (2023)

46. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability in Markovian process
algebra. Theoret. Comput. Sci. 538, 140–166 (2014)

47. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogeneous non-
linear models with differential hulls. IEEE TAC (2016)

48. Tschaikowski, M., Tribastone, M.: Spatial fluid limits for stochastic mobile net-
works. Perform. Evaluation 109, 52–76 (2017)

49. Vallabhajosyula, R., Chickarmane, V., Sauro, H.: Conservation analysis of large
biochemical networks. Bioinformatics 22(3), 346–353 (2005)

50. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomathematics 2013, 53
(2013)

51. Whitby, M., Cardelli, L., Kwiatkowska, M., Laurenti, L., Tribastone, M.,
Tschaikowski, M.: PID control of biochemical reaction networks. IEEE Trans.
Autom. Control 67(2), 1023–1030 (2022)

52. Wirsing, M., et al.: Sensoria patterns: augmenting service engineering with formal
analysis, transformation and dynamicity. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation, pp. 170–190
(2008)

	Approximate Constrained Lumping of Polynomial Differential Equations
	1 Introduction
	2 Preliminaries
	3 Approximate Constrained Lumping
	4 Computing Constrained Approximated Lumping
	4.1 Lumping Algorithm
	4.2 Heuristic Search of Lumping Tolerance

	5 Evaluation
	6 Conclusion
	References

