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Abstract. A Finite-Volume based POD-Galerkin reduced order model is developed for
fluid dynamics problems where the (time-dependent) boundary conditions are con-
trolled using two different boundary control strategies: the lifting function method,
whose aim is to obtain homogeneous basis functions for the reduced basis space and
the penalty method where the boundary conditions are enforced in the reduced order
model using a penalty factor. The penalty method is improved by using an iterative
solver for the determination of the penalty factor rather than tuning the factor with a
sensitivity analysis or numerical experimentation.

The boundary control methods are compared and tested for two cases: the classi-
cal lid driven cavity benchmark problem and a Y-junction flow case with two inlet
channels and one outlet channel. The results show that the boundaries of the reduced
order model can be controlled with the boundary control methods and the same order
of accuracy is achieved for the velocity and pressure fields. Finally, the reduced order
models are 270-308 times faster than the full order models for the lid driven cavity test
case and 13-24 times for the Y-junction test case.
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1 Introduction

Complex fluid dynamics problems are generally solved using discretization methods
such as Finite Difference, Finite Element, Finite Volume (FV) or spectral element methods.
However, it is usually not feasible to use these methods for applications that require to
be solved almost in real time, such as on-the-spot decision making, (design) optimization
or control [1]. The high fidelity Computational Fluid Dynamics (CFD) tools, used for nu-
merical simulations of the Navier–Stokes equations, are too computationally expensive
for those purposes. This has motivated the development of reduced order modeling tech-
niques. However, low degree-of-freedom models that are solely based on input-output
data do not represent the physics of the underlying systems adequately and, moreover,
may be sensitive to operating conditions [2].

Therefore, techniques, such as Reduced Basis (RB) methods, have been developed
that retain the essential physics and dynamics of a high fidelity model that consists of
discretized Partial Differential Equations (PDEs) describing the fluid problem [3, 4]. The
basic principle of these reduced order methods is to project the (parametrized) PDEs onto
a low dimensional space, called the reduced basis space, in order to construct a physics-
based model that is reduced in size and, therefore, in computational cost [5–7].

Fluid flows can be controlled in several ways. As an example, the system configu-
ration can be manipulated by modifying the physical properties. However, in this work
the focus is on controlling boundary conditions (BC) that are essential for defining flow
problems.

An example of a boundary control application from the nuclear field is the cou-
pling of thermal-hydraulic system codes, i.e. transient simulations that are based on
one-dimensional models of physical transport phenomena, with three-dimensional CFD
codes [8, 9]. These type of system codes are, in general, based upon the solution of six
balance equations for liquid and steam that are coupled with conduction heat transfer
equations and that are supplemented by a suitable set of constitutive equations [10].

One of the main purposes of this coupling is to speedup the CFD calculations by only
including the region of interest in the CFD model and the rest of the domain in the much
faster system code. However, the gain in computational time of such a coupled model is
still limited by the CFD part. To overcome this burden, the system codes can be coupled
with reduced order models (ROM) of the high fidelity CFD codes. For transient problems,
time-dependent boundary conditions of the ROM are then to be controlled based on the
BCs obtained from the systems codes.

For industrial applications, the Finite Volume discretization method is widely used
by commercial software and open-source codes, as the method is robust [11] and satisfies
locally the conservation laws [12, 13].

By using a RB technique, the non-homogeneous BCs are, in general, no longer sat-
isfied at the reduced order level. Furthermore, the BCs are not explicitly present in the
ROM and therefore they cannot be controlled directly [14]. In literature [14–17], differ-
ent approaches to control the ROM BCs can be found of which two common approaches
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are extended and compared in this work: the lifting function method and the penalty
method. The aim of the lifting function method [15, 17] is to homogenize the BCs of the
basis functions contained in the reduced subspace, while the penalty method [14–16, 18]
weakly enforces the BCs in the ROM with a penalty factor. A disadvantage of the penalty
method is that it relies on a penalty factor that has to be tuned with a sensitivity analysis
or numerical experimentation [18]. Therefore, an iterative method is presented for tun-
ing the penalty factor, which is, to the best of the authors’ knowledge, introduced here for
the first time in the context of Finite-Volume based POD-Galerkin reduced order meth-
ods. The novelty of this method is that a error tolerance for the enforced BC has to be set
instead of an arbitrary value for the factor. Also the factor is determined automatically
by iterating rather than manually via numerical experimentation.

The work is organized as follows: in Section 2 the formulation of the full-order ap-
proximation of the PDEs is given and the methodology of the POD-based Galerkin pro-
jection is addressed in Section 3. In Section 4 the two boundary control methods, the
lifting function method and the iterative penalty method, are presented. In Section 5 the
set-up of two numerical experiments, a lid driven cavity and a Y-junction test case, are
given and the results are provided and discussed in Sections 6 and 7, respectively. Finally,
conclusions are drawn in Section 8 and an outlook for further developments is provided.

2 Full order model of the incompressible Navier–Stokes

equations

The fluid dynamics problem is physically described by the unsteady incompressible
Navier–Stokes equations. In an Eulerian framework on a domain Ω ⊂ R

d with d = 2,
3 and boundary Γ=(ΓDU

∪ΓNU
)∩(ΓDp∪ΓNp), the governing system of equations is given

by



























































∂u
∂t +∇·(u⊗u)−∇·(ν∇u)=−∇p+F in Ω×[0,T],

∇·u=0 in Ω×[0,T],

u(x,0)=u0(x) in Ω×{0},

u= f (x,t) on ΓDU
×[0,T],

(∇u)n=0 on ΓNU
×[0,T],

(pI)n=0 on ΓDp×[0,T],

(∇p)n=0 on ΓNp×[0,T],

(2.1)

where u = u(x,t) represents the vectorial velocity field that is evaluated at x ∈ Ω and
p= p(x,t) is the normalized scalar pressure field, which is divided by the constant fluid
density ρ. ν is the kinematic viscosity and F is a body force term. For velocity, the (time-
dependent) non-homogeneous Dirichlet boundary condition on ΓDU

is represented by
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f (x,t) and u0(x) denotes the initial condition for the velocity at time t= 0 s. On ΓNU
a

homogeneous Neumann boundary condition for velocity is applied and ΓDp and ΓNp are
the Dirichlet and homogeneous Neumann boundary conditions for pressure. n denotes
the outward pointing normal vector on the boundary and T is the total simulation time.
The equations are presented here in a general format. The problem-specific (boundary)
conditions are specified in Section 5, in which the numerical experiments are presented.

2.1 Pressure Poisson equation

Standard Galerkin projection-based reduced order models are unreliable when applied
to the non-linear unsteady Navier–Stokes equations [19]. Furthermore, the ROMs need
to be stabilized in order to produce satisfactory results for both the velocity and pres-
sure fields [18, 20–24]. Two different stabilization techniques are compared in [25]; the
supremizer enrichment of the velocity space in order to meet the inf-sup condition (SUP)
and the exploitation of a pressure Poisson equation during the projection stage (PPE).
The SUP-ROM performed about an order worse with respect to the PPE-ROM for what
concerns the velocity field but better for what concerns the pressure field. This difference
can be explained by the fact that within a supremizer stabilization technique, the POD
velocity space is enriched by non-necessary (for the correct reproduction of the velocity
field) supremizer modes. As the focus of this work is on controlling velocity boundary
conditions, it is decided to use the PPE approach for stabilizing the ROM. Moreover, other
approaches to simultaneously deal with velocity and pressure are the pressure stabilised
Petrov–Galerkin methods [21, 26, 27] or assuming that velocity and pressure share the
same temporal coefficients [14, 23]. For fluid problems that are solved numerically using
a Finite Volume discretization technique [12, 28], often a Poisson Equation is solved for
pressure as there is no dedicated equation for pressure in Eq. (2.1). The PPE is obtained
by taking the divergence of the momentum equations and subsequently exploiting the
divergence free constraint ∇·u=0. The resulting set of governing full order equations is
then given by















∂u
∂t +∇·(u⊗u)−∇·(ν∇u)=−∇p+F in Ω×[0,T],

∆p=−∇·(∇·(u⊗u))+∇·F in Ω×[0,T],

n·∇p=−n ·
(

ν∇×∇×u+ ∂ f
∂t

)

+n·F on Γ×[0,T],

(2.2)

In order to simplify the problem, no body force term, F, is considered in this work. For
more details on the derivation of the PPE the reader is referred to J.-G. Liu et al. [29].
These equations are discretized with the Finite Volume method and solved using a PIM-
PLE [30] algorithm for the pressure-velocity coupling, which is a combination of SIM-
PLE [31] and PISO [32].
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3 POD-Galerkin reduced order model of the incompressible

Navier–Stokes equations

There exist several techniques in literature for creating a reduced basis space onto which
the full order system (Eq. (2.1)) is projected such as the Proper Orthogonal Decomposi-
tion (POD), the Proper Generalized Decomposition (PGD) and the Reduced Basis (RB)
method with a greedy approach. For more details about the different methods the reader
is referred to [3, 5, 6, 33]. In this work, the Proper Orthogonal Decomposition method is
used to create a reduced set of basis functions, or so-called modes, governing the essen-
tial dynamics of the full order model (FOM). For this, full order solutions are collected at
certain time instances, the so-called snapshots. These snapshots do not necessarily have
to be collected at every time step for which the full order solution is calculated.

Subsequently, it is assumed that the solution of the FOM can be expressed as a linear
combination of spatial modes multiplied by time-dependent coefficients. The velocity
snapshots u(x,tn) and pressure snapshots p(x,tn) at time tn are approximated, respec-
tively, by

u(x,tn)≈ur(x,tn)=
Nu

r

∑
i=1

ϕi(x)ai(tn), p(x,tn)≈ pr(x,tn)=
N

p
r

∑
i=1

χi(x)bi(tn), (3.1)

where ϕi and χi are the modes for velocity and pressure, respectively. a(tn) =

[a1(tn),a2(tn),··· ,a2(tn)]
T and b(tn) = [b1(tn),b2(tn),··· ,b2(tn)]

T are column vectors con-
taining the corresponding time-dependent coefficients. Nu

r is the number of velocity
modes and N

p
r is the number of pressure modes and thus it is assumed that velocity and

pressure at reduced order level can be approximated with a different number of spatial
modes. Furthermore, the modes are orthonormal to each other:

(

ϕi,ϕj

)

L2(Ω)
= δij, where

δ is the Kronecker delta. The L2-norm is preferred for discrete numerical schemes [25,34]
with (·,·)L2(Ω) the L2-inner product of the fields over the domain Ω.

The optimal POD basis space for velocity, EPOD
u =

[

ϕ1,ϕ2,··· ,ϕNu
r

]

is then constructed
by minimizing the difference between the snapshots and their orthogonal projection onto
the basis for the L2-norm [35]. This gives the following minimization problem:

EPOD
u =arg min

ϕ1,···,ϕNu
s

1

Nu
s

Nu
s

∑
n=1

∥

∥

∥

∥

∥

u(x,tn)−
Nu

r

∑
i=1

(u(x,tn),ϕi(x))L2(Ω)ϕi(x)

∥

∥

∥

∥

∥

2

L2(Ω)

, (3.2)

where Nu
s is the number of collected velocity snapshots and Nu

r (with 1≤Nu
r ≤Nu

s ) denotes
the dimension of the POD space EPOD

u . The POD modes are then obtained by solving the
following eigenvalue problem on the snapshots [17, 19, 25, 36]:

CQ=Qλ, (3.3)
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where Cij =
(

u(x,ti),u(x,tj)
)

L2(Ω)
for i, j= 1,··· ,Nu

s is the correlation matrix, Q∈R
Nu

s ×Nu
s

is a square matrix of eigenvectors and λ ∈ R
Nu

s ×Nu
s is a diagonal matrix containing the

eigenvalues. The POD modes, ϕi, are then constructed as follows

ϕi(x)=
1

Nu
s

√
λi

Nu
s

∑
n=1

u(x,tn)Qin for i=1,··· ,Nu
r , (3.4)

of which the most energetic (dominant) modes are selected. The procedure is the same
for obtaining the pressure modes.

To obtain a reduced order model, the POD is combined with the Galerkin projection,
for which the full order system of equations (Eq. (2.2)) is projected onto the reduced POD
basis space. For more details about POD and Galerkin projection methods the reader is
referred to [17, 25, 37]. The following reduced system of momentum equations is then
obtained

Mr ȧ+Cr(a)a−νAra+Brb=0, (3.5)

where the ’over-dot’ indicates the time derivative and

Mrij
=
(

ϕi,ϕj

)

L2(Ω)
for i, j=1,··· ,Nu

r ,

Arij
=
(

ϕi,∆ϕj

)

L2(Ω)
for i, j=1,··· ,Nu

r ,

Brij
=
(

ϕi,∇χj

)

L2(Ω)
for i=1,··· ,Nu

r and j=1,··· ,Np
r .

(3.6)

These reduced matrices can be precomputed during an offline stage except for the non-
linear term Cr, which is given by

Crijk
=
(

ϕi,∇·(ϕj⊗ϕk)
)

L2(Ω)
for i, j,k=1,··· ,Nu

r . (3.7)

This non-linear term is stored as a third order tensor [17, 38] and the contribution of the
convective term to the residual of Eq. (3.5), R, is evaluated at each iteration during the
ROM simulations, or so-called online stage, as

Ri=aTCri••a. (3.8)

The dimension of the tensor Cr (Eq. (3.7)) is growing with the cube of the number of
modes used for the velocity space and therefore this approach may lead in some cases,
especially when a large number of basis functions are employed, to high storage costs.
Other approaches, such as EIM-DEIM [39, 40] or Gappy-POD [41] may be more afford-
able [25]. As the pressure gradient term is present in the momentum equation the system
is also coupled at reduced order level [17]. The projection of the PPE leads to the follow-
ing reduced system

Drb+Gr(a)a−νNra−Tr ȧ=0, (3.9)
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where

Drij
=
(

∇χi,∇χj

)

L2(Ω)
for i, j=1,··· ,Np

r ,

Grijk
=
(

∇χi,∇·(ϕj⊗ϕk)
)

L2(Ω)
for i=1,··· ,Np

r and j,k=1,··· ,Nu
r ,

Nrij
=
(

n×∇χi,∇×ϕj

)

L2(Γ)
for i=1,··· ,Np

r and j=1,··· ,Nu
r ,

Trij
=
(

χi,n·ϕj

)

L2(Γ)
for i=1,··· ,Np

r and j=1,··· ,Nu
r ,

(3.10)

where the last two terms on the right hand side of Eq. (2.2) are projected on the boundary
Γ.

Following the same strategy as in Eq. (3.8), the non-linear term in Eq. (3.9) is evalu-
ated by storing the third order tensor Gr. Eq. (3.10) consists only of first order derivatives
as integration by parts of the Laplacian term is used together with exploiting the pres-
sure boundary condition after the PPE is projected onto the POD space spanned by the
pressure modes. In that way, the numerical differentiation error can be reduced [25].

3.1 Initial conditions

The initial conditions (IC) for the reduced system of Ordinary Differential Equations
(Eqs. (3.5) and (3.9)), are obtained by performing a Galerkin projection of the full order
initial conditions onto the POD basis spaces as follows

ai(0)=(ϕi,u(0))L2(Ω) , bi(0)=(χi,p(0))L2(Ω) , (3.11)

for velocity and pressure, respectively. It is important to note that the reduced system of
equations are coupled and need to be solved iteratively. Moreover, the pressure is only
defined up to an arbitrary constant, as in the FOM. Therefore, next to an initial condition
for velocity, an initial guess for pressure is required for the system to converge more
easily and to ensure the consistency between the FOM and the ROM [34].

In the online stage, the reduced system of equations (Eqs. (3.5) and (3.9)) is solved
for the velocity and pressure coefficients in the time period [t1, tonline], where tonline is the
final simulation time.

3.2 Relative error

Three types of fields are considered: the full order fields, XFOM, the projected fields, Xr,
which are obtained by the L2-projection of the snapshots onto the POD bases and the
prediction fields obtained by solving the ROM, XROM. For every time instance, tn, the
basis projection error, ‖ê‖L2(Ω), is given by

‖ê‖L2(Ω)(tn)=
‖XFOM(tn)−Xr(tn)‖L2(Ω)

‖XFOM(tn)‖L2(Ω)
, (3.12)
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and the prediction error ‖e‖L2 , is determined by

‖e‖L2(Ω)(tn)=
‖XFOM(tn)−XROM(tn)‖L2(Ω)

‖XFOM(tn)‖L2(Ω)
, (3.13)

where X is either representing the velocity or pressure fields.

4 Non-homogeneous (time-dependent) Dirichlet boundary

conditions of the incompressible Navier–Stokes equations

In a POD-based ROM, the non-homogeneous BCs are, in general, not satisfied by the
ROM, as the basis functions, and in the same way their BCs, are a linear combination of
the snapshots. Furthermore, the BCs are not explicitly present in the reduced system and
therefore they cannot be controlled directly [14]. Two common approaches are presented
in this section for handling the BCs: the lifting function and the penalty method [15]. The
aim of the lifting function method is to have homogeneous POD modes and to enforce
the BCs by means of a properly chosen lifting function in the ROM. On the other side, the
penalty method enforces the BCs in the ROM with a penalty factor. In this work only the
velocity BCs are controlled with the two methods.

4.1 The lifting function method

The lifting function method for the non-homogeneous boundary conditions is often used
in the continuous Galerkin finite-element setting to reformulate a boundary control prob-
lem into a distributed one [42–44]. The method imposes the non-homogeneous (Dirichlet)
conditions to the problem through lifting. This is done by subtracting the lifting function
from the unknown variable in the original PDE problem, solving for the modified vari-
able and adding the lifting function to the solution [45].

In a similar way, this method is used to impose non-homogeneous (Dirichlet) bound-
ary conditions in reduced order models for which the lifted fields are projected onto the
reduced bases spanned by the POD modes [46].

In this work, the velocity snapshots are made homogeneous by subtracting suitable
lifting functions from all of them on which then the POD is performed. The result is a
set of velocity modes that individually fulfill the homogeneous BCs as they are linear
combinations of the modified velocity snapshots. The lifting functions, which fulfill the
original non-homogeneous boundary conditions, are then added to a linear combination
of POD basis functions. As a result, the non-homogeneous Dirichlet boundary condi-
tions are included in the reduced basis space spanned by the POD modes and the lifting
functions.

This lifting function method is also known as the ”control function method” in litera-
ture [15,22,47] for PDE problems whose Dirichlet conditions can be parametrized with a
single time-dependent coefficient [45]. This is the type of problem that is presented in this
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work. The method is generalized in [48] for generic functions with multiple parameters
at distinct boundary sections.

The functions to be chosen are system-specific and they have to satisfy the divergence
free constraint in order to retain the divergence-free property of the snapshots [17].

One way to generate a lifting function, ζ̃c(x), is by solving a problem as close as pos-
sible to the full order problem, where the boundary of interest is set to its value and
everywhere else to a homogeneous BC. There are several other ways to compute the lift-
ing function. For instance, the snapshot average can be used, although this does not
always lead to a discretely divergence-free function. Alternatively, the solution of the
stationary version of the considered problem can be computed [49]. Two other common
approaches are solving a non-homogeneous Stokes problem [46, 50, 51] or solving a po-
tential flow problem [52, 53].

As one of the characteristics of the POD modes is that they are orthonormal, the lifting
functions are normalized as follows

ζc(x)=
ζ̃c(x)

‖ζ̃c(x)‖L2(Ω)

, (4.1)

before subtracting them from all snapshots and applying POD. The snapshots are then
modified accordingly

u′(x,t)=u(x,t)−
NBC

∑
j=1

ζcj
(x)uBCj

(), (4.2)

where NBC is the number of non-homogeneous BCs, ζc(x) the normalized lifting func-
tions and uBC is the normalized value of the corresponding Dirichlet boundary condition.

The POD modes, ϕ′
i, that satisfy the homogeneous boundary conditions are obtained

by solving an eigenvalue problem similar to Eq. (3.3) on the homogenized snapshots
u′(x,t). The control functions are then added as additional modes to the reduced velocity
basis

E′
u =

[

ζc1
,··· ,ζcNBC

,ϕ′
1,··· ,ϕ′

Nu
r

]

. (4.3)

Consequently, the velocity field at time tn is approximated by

ur(x,tn)=
NBC

∑
j=1

ζcj
(x)uBCj

(tn)+
Nu

r

∑
i=1

ϕ′
i(x)ai(tn), (4.4)

which satisfies the boundary conditions of the problem. uBC can be time-dependent. The
Dirichlet boundary condition can be parametrized by assigning a new value to uBC in
Eqs. (4.3) and (4.4). In other words, the lifting functions can be scaled by a factor.

For more details on the lifting function the reader is referred to [17, 37]. The overall
algorithm for the lifting function method is given by Algorithm 1.
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Algorithm 1: lifting function method

OFFLINE PHASE

Solve full order model:

(1) Generate snapshots over a time period [0,T] by solving the full order problem of
Eq. (2.1);
Obtain the lifting functions:

(2) Generate the lifting functions by solving a flow problem:
for i=1 to NBC do

for j=1 to NBC do

if i= j then

u|ΓDj
=1

else

u|ΓDj
=0

end for

Solve a flow problem for ζ̃ci

end for;
(3) Normalize the lifting functions to obtain ζc as in Eq. (4.1);
(4) Subtract the normalized lifting functions from the velocity snapshots as in Eq. (4.2);
Perform POD:

(5) Retrieve the correlation matrix C from the solution snapshots;
(6) Solve the eigenvalue problem of Eq. (3.3) to obtain the POD modes using Eq. (3.4);
(7) Add the normalized lifting functions, ζc, as additional modes to the set of velocity
POD modes ϕ according to Eq. (4.3);
Projection:

(8) Project the discretized full order system onto the obtained reduced bases as done
in Eq. (3.5)-(3.10);

ONLINE PHASE

Solve reduced order model:

(9) Project the initial fields for the parametrized BC onto the POD bases to get the
initial condition/guesses for the ROM according to Eq. (3.11);
(10) Solve the reduced order problem of Eq. (3.5) with the reduced Poisson equation,
Eq. (3.9), for pressure in the time period [t1, tonline];
(11) Reconstruct the full order fields from the obtained coefficients using Eq. (4.4);

4.2 The iterative penalty method

The penalty method was originally proposed in the context of finite element methods [54,
55]. The method transforms a strong non-homogeneous Dirichlet boundary condition
into a weak Neumann boundary condition by the means of a small parameter whose
inverse is called the penalty factor [56]. Thus, the method uses a penalty parameter to
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weakly impose the boundary conditions. In the POD-Galerkin reduced order modeling
setting, the penalty method has been first introduced by Sirisup and Karniadakis [18] for
the enforcement of boundary conditions. For the penalty method, no modification of the
snapshots is needed as the velocity Dirichlet BCs are directly enforced as constraints in
the reduced system in the following way:

Mr ȧ−νBra+aTCra+Krb+
NBC

∑
l=1

τl (uBCl
(t)P1l−P2la)=0, (4.5)

where τ is the penalty factor [18] and the additional terms with respect to Eq. (3.5) are
projected on the boundary as follows

P1li =(ϕi,φ)L2(Γl)
for l=1,··· ,NBC and i=1,··· ,Nu

r ,

P2lij =
(

ϕi,ϕj

)

L2(Γl)
for l=1,··· ,NBC and i, j=1,··· ,Nu

r ,
(4.6)

where φ is a unit field. This minimization problem is formulated at reduced order level
and, therefore, the penalty method does not depend on the full order snapshots.

In order to have an asymptotically stable solution, the penalty factors τ should be
larger than 0. If τ → ∞ the solution generally converges to a true optimal solution of
the original unpenalized problem [57]. Nevertheless, a strong imposition would be ap-
proached and the ROM becomes ill-conditioned [14, 58]. Therefore, the penalty factor
needs to be chosen above a threshold value for which the method is stable and con-
verges [58, 59]. On the other hand, it is important to find a penalty factor as small as
possible to obtain a numerical stable solution. This is usually done by numerical experi-
mentation [14–16, 60].

Several techniques exist in literature to optimize the numerical experimentation. Kel-
ley [61, page 214] used a simple iteration scheme to optimize the trial-and-error process
of the numerical experimentation. With this scheme the penalty value is adjusted each
iteration by using the absolute value of the ratio between the constraint violation and
a preassigned tolerance as a factor to increase or decrease the values at the end of each
iteration. Basically, the idea is that the penalty factor obtained by the iteration scheme
is optimal in the sense that it perturbs the original problem by a minimum for the given
tolerance [62].

In this work the experimentation is optimized using a first-order iterative optimiza-
tion scheme [63] to determine the factors that is based on the iteration scheme described
in the previous paragraph. The penalty factors, τ, are updated each iteration k, as follows

τk+1
l (tn)=τk

l (tn)

∣

∣rk
l (tn)

∣

∣

ǫ
=τk

l (tn)

∣

∣

∣
ũk

BCl
(tn)−uBCl

(tn)
∣

∣

∣

ǫ
for l=1,··· ,NBC, (4.7)

with rk(tn) the residual between ũk
BC, the value of a certain boundary at the kth iteration,

and uBC, the enforced boundary condition, at an evaluated time tn. ũk
BC is obtained during
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Algorithm 2: Iterative penalty method

OFFLINE PHASE

Solve full order model:

(1) Generate snapshots over a time period [0, T] by solving the full order problem of
Eq. (2.1);
Perform POD:

(2) Retrieve the correlation matrix C from the solutions;
(3) Solve the eigenvalue problem of Eq. (3.3) to obtain the POD modes using Eq. (3.4);
Impose BCs with penalty method:

(4) Project the modes on the reduced basis at the boundary of the domain to determine
P1 and P2 for each non-homogeneous Dirichlet boundary condition as in Eq. (4.6);
(5) Solve iteratively for the penalty factor using Eq. (4.7):

for i=1 to Nτ do

while
∣

∣

∣
ũk

BCl
(ti)−uBCl

(ti)
∣

∣

∣
>ǫ do

τk+1
l (ti)=τk

l (ti)

∣

∣

∣
ũk

BCl
(ti)−uBCl

(ti)
∣

∣

∣

ǫ
end while

end for;
Projection:

(6) Project the discretized full order system onto the obtained reduced bases as done
in Eqs. (3.5)-(3.10);

ONLINE PHASE

Solve reduced order model:

(7) Project the initial fields for the parametrized BC onto the POD bases to get the
initial condition/guesses for the ROM using Eq. (3.11);
(8) Solve the reduced order problem of Eq. (3.5) with the reduced Poisson equation,
Eq. (3.9), for pressure in the time period [t1, tonline];
(9) Reconstruct the full order fields from the obtained coefficients using Eq. (3.1);

the online phase by reconstructing the boundary. ǫ>0 is the given error tolerance for the
residual which has to be set. There is no single approach that can be considered the best
for choosing ǫ, as the preferred tolerance depends on the problem and on both physical
and geometrical parameters. The eigenvalue truncation error of the POD modes gives a
good indication for the value of ǫ. The penalty method is therefore no longer based on
an arbitrary value for the penalty factor.

As long as
∣

∣ũk
BCl

(tn)−uBCl
(tn)

∣

∣>ǫ the penalty factors grow every update and converge
to the smallest penalty factors that satisfy the required tolerance. Thus, if the initial guess
for the factor is below the minimum value for τ for which the boundary condition is
enforced in the ROM, the factor is approached from below using this method. For a time-
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dependent problem it is not needed to determine a penalty factor for all time steps Nt.
Often the factor determined after the first couple of time steps, Nτ , can be used for the
whole ROM solution.

The step-by-step demonstration of the iterative function method is given by Algo-
rithm 2.

It is important to note that the penalty factor can affect the number of iterations
needed to solve the reduced system and therefore the convergence and cost of the re-
duced order model [64].

5 Numerical simulation tests

In this section the set-up of two cases are described for which the boundary control meth-
ods, the lifting function method and the iterative penalty method, are tested. The first one
test case is the classical lid driven cavity benchmark problem and the second one is a Y-
junction with two inlets and one outlet channel whose time-dependent inlet boundary
conditions are controlled.

5.1 Lid-driven cavity flow problem

The first test case consists of a lid driven cavity problem. The simulation is carried out on
a two-dimensional square domain of length L= 0.1 m on which a (200×200) structured
mesh with quadrilateral cells is constructed. The boundary is subdivided into two dif-
ferent parts Γ= ΓLID∪Γw and the boundary conditions for velocity and pressure are set
according to Fig. 1. The pressure reference value is set to 0 Pa at coordinate (0,0). At the
top of the cavity a constant uniform and horizontal velocity equal to u=(ULID,0)=(1,0)
m/s is prescribed. A no slip BC is applied at the walls, Γw. The kinematic viscosity is
equal to ν=1·10−4 m2/s and the corresponding Reynolds number is 1000, meaning that
the flow is considered laminar.

The unsteady full order equations are iteratively solved by the FV method with the
pimpleFoam solver of the open source C++ library OpenFOAM 6 [65]. The PIMPLE algo-
rithm is used for the pressure-velocity coupling [30]. For the full order simulations, the
spatial discretization of all terms is performed with a central differencing scheme (lin-
ear). The temporal discretization is treated using a second order backward differencing
scheme (BDF2). A constant time step of ∆t=5·10−4 s has been applied and the total sim-
ulation time is 10 s. Snapshots of the velocity and pressure fields are collected every 0.01
s, resulting in a total of 1001 snapshots (including 1 for the initial condition). The initial
condition field with ULID =1 m/s is used as a lifting function.

For this test case the same boundary conditions are applied in the ROM as in the
FOM for which the snapshots are collected. The temporal discretization of the ROM is
performed with a first order Newton’s method.

POD, projection of the full order solution on the reduced subspace and the reduced
order simulations are all carried out with ITHACA-FV, a C++ library based on the Fi-
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Figure 1: Sketch of the geometry of the 2D square cavity with moving top lid including boundary conditions.

nite Volume solver OpenFOAM. For more details on the ITHACA-FV code, the reader is
referred to [17, 25, 66].

5.2 Y-junction flow problem

Junctions are often used for the combination or separation of fluid flows and can be found
in all types of engineering applications from gas transport in pipes till micro flow reac-
tors. As a second test case a Y-junction with one outlet channel and two inlet channels is
modeled. The angle between each inlet and the horizontal axis is 60 degrees, as shown in
Fig. 2 on the left [67]. The length of the channels is 2 m.

The 2D geometry is split in 6 zones as depicted in Fig. 2 on the left. On the three
rectangular zones a mesh with quadrilateral cells is constructed. The remaining three
zones are meshed with hexagonal cells. The different meshes are depicted in Fig. 2 on the
right. The total number of cells is 13046.

The boundary is subdivided into four different parts Γ= Γi1∪Γi2∪Γo∪Γw. The two
inlets, Γi1 and Γi2, have a width of 0.5 m, while the outlet, Γo, has a width of 1 m. The
kinematic viscosity is equal to ν = 1·10−2 m2/s meaning that the Reynolds number at
the inlet is 50 and the flow is considered laminar. The uniform inlet velocities are time-
dependent and the velocity magnitude of the flow at the inlets is set according to Fig. 3.

A homogeneous Neumann boundary condition is applied for pressure at the inlet
and wall boundaries. At the outlet, Γo, p=0 Pa together with a homogeneous Neumann
BC for velocity. A no slip BC is applied at the walls, Γw.

As initial conditions the steady state solution, obtained with the simpleFoam solver,
for a velocity magnitude of 1 m/s at both inlets is chosen. The other boundary conditions
are the same as for the unsteady simulation described above.
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Figure 2: (Left) Sketch of the geometry and mesh of Y-junction test case including boundary conditions. (Right)
close up of the mesh in different zones.

As done previously for the lid driven cavity case, the unsteady governing equations
are iteratively solved by the FV method with the pimpleFoam solver of OpenFOAM 6 [65].
For the full order simulations, the discretization in space is performed with a central
differencing scheme for the diffusive term and a combination of a second order central-
differencing and upwind schemes for the convective term. The temporal discretization
is treated using a second order backward differencing scheme (BDF2). A constant time
step of ∆t=5·10−4 s has been applied and the total full order simulation time is 12 s for
which snapshots of the velocity and pressure fields are collected every 0.03 s, resulting
in a total of 401 snapshots (including 1 for the initial condition). The inlet velocity BCs
are time-dependent and the velocity magnitude of, alternately, inlet 1 or 2 is increased or
decreased linearly between 1 m/s to 0.5 m/s as shown in Fig. 3 on the left.

In that way, the ROM is trained for all possible combinations of inlet velocities within
the specified range. The inlet boundary conditions of the ROM are then controlled ac-
cording to Fig. 3 on the right, where the inlet velocity magnitude is increased or decreased
linearly over time between the maximum of 1 m/s and minimum of 0.5 m/s. The mag-
nitude of the inlet velocities of the ROM decreases and increases faster or slower over
time compared to the training run. Also the ROM is tested for a longer time period, 18 s,
compared to the full order simulation of 12 s. In that way, the ROM performance can be
tested on the long term.
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Figure 3: Boundary conditions for the Y-junction test case. (Left) inlet velocity BCs for the FOM. (Right) inlet
velocity BCs for ROM.

The temporal discretization of the ROM is performed with a first order Newton’s
method.

Both the iterative penalty method and lifting function method are tested. The lifting
functions are determined by solving for a potential flow field problem given by







































































∇·u=0 in Ω,

∇2p=0 in Ω,

(p(x)I)n=0 on Γo,

(∇p(x,t))n=0 on Γ 6∋Γo,

(∇u(x))n=0 on Γo,

(∇u(x))n=0 on Γw,

u(x)= g1(x) on Γi1,

u(x)= g2(x) on Γi2,

(5.1)

with the magnitude of the inlet velocity at inlet 1, Γi1, set to 1 m/s while inlet 2, Γi2, is
kept at 0 m/s as shown in Fig. 4 for the first lifting function. To obtain the second lifting
function ‖u‖=0 at Γi1 and 1 m/s at Γi2. Both lifting functions are shown in Fig. 4.

The test case of a Y-junction is more complicated than the lid driven cavity case as
not only one, but two boundaries need to be controlled, which are also time dependent.
Furthermore, as the channel inlets are placed under an angle, one needs to take into
account that the inlet velocity can be decomposed in an x- and a y-direction. Therefore,
the vectorial lifting functions are split into their components before normalization. Also
in the case of the penalty method, four penalty factors are determined; one for each inlet
and each direction. This will be further discussed in Section 7.
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Figure 4: The lifting functions for velocity for the Y-junction.

6 Results and analysis

6.1 Lid driven cavity flow problem

First the full order simulation for the lid driven cavity test case is performed and 1001
velocity and pressure snapshots are collected, including the initial conditions, which are
then used to create the POD basis functions. Stabile and Rozza [25] concluded in their
research that 10 velocity and pressure modes are enough to retain 99.99% of the energy
contained in the snapshots. Therefore, the same number of modes for the reduced basis
creation are used in this work.

Reduced order models are constructed with both the lifting function and penalty
method and compared with a ROM without boundary enforcement. With the use of the
iterative procedure a penalty factor of 0.058 is determined within 2 iterations by evaluat-
ing only the first five time steps with a maximum error tolerance, ǫ, of 10−5 for the value
of the boundary condition of the ROM and starting from an initial guess of 10−6. For a
similar study of the lid driven cavity benchmark problem, Lorenzi et al. [14] had found
a factor between 10−5 and 102 using numerical experimentation. The value found here
using the iterative method is thus within the same range. A higher value for the penalty
factor can be used, but it is then more likely that the ROM becomes ill-conditioned.

The obtained ROMs are tested for the same initial and boundary conditions as the
high fidelity simulation. The evolution in time of the relative L2-error between the re-
constructed fields and the full order solutions is plotted in Fig. 5 together with the basis
projection.
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Figure 5: Relative L2-error of velocity (left) and pressure (right) between the FOM and ROM with lifting
function and with penalty method.

In case no boundary enforcement method is used the flow field remains zero through-
out the simulation and therefore the relative error is 1. When either the lifting function or
penalty method is used the relative L2-error for both the velocity and pressure fields are
about the order of 10−1 due to the relatively low number of snapshots acquired during
the initial part of the transient. The snapshots are equally distributed in time, while this
time span exhibits the most non-linear behavior. Therefore one should concentrate the
snapshots in this time span to enhance the performance of the ROM [25]. After about
2 seconds of simulation time, for both boundary control methods, the velocity relative
error drops till about the order of 10−3. At the final time of the simulation the penalty
method is performing slightly better than the lifting function method, but the order is the
same.

Contrary to velocity, the relative error for pressure stays about 4·10−1 after 2 s of sim-
ulation time, while the projection error drops till about 10−3. This has been previously
acclaimed by Stabile et al. in [17]. The PPE stabilization method is less accurate concern-
ing pressure compared to the supremizer enrichment method. This has also been found
by Kean and Schneier [68] in the finite element-based ROM setting. Furthermore, the
absolute error between the FOM and the ROMs is shown in Figs. 7 and 8 for velocity
magnitude and pressure, respectively.

It is observed that both methods lead, for velocity, to an absolute error between
the FOM and the ROM of the order 10−2 at the beginning of the simulation and about
10−3 once the flow has reached its steady state solution. Furthermore, the velocity error
slightly increases between 5 and 10 s of simulation time. This can also be observed in
the L2-error analysis over time in Fig. 5. For pressure, the error is largest near the top
corners of the cavity and are of the order 10−3. Note that the scale does not show the
whole range of absolute errors. This is done to better visualize the error. The maximum
error for pressure is about 5·10−2 Pa at the top right corner. As the pressure relative to its
reference point at (0,0) plotted in Fig. 8 is always less than 1 Pa, the relative error plotted
in Fig. 5 is greater than the absolute error plotted in Fig. 8. Furthermore, the error distri-
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Figure 6: Kinetic energy relative L2-error for the ROM with lifting function and with penalty method.

bution, for both the velocity and pressure fields, is similar all over the domain, meaning
the methods are performing the same, as previously confirmed by the L2-error analysis
over time in Fig. 5.

The relative error for the total kinetic energy is determined and plotted in Fig. 6. The
order is more or less the same for both boundary control methods. From time to time the
penalty method is performing slightly better and the other way around and the relative
velocity error is less than 10−2 for the vast part of the simulation.

Finally, the computational times for performing the full order simulation (Eq. (2.1)),
calculating the POD modes (Eqs. (3.1)-(3.4)), the reduced matrices (Eqs. (3.6), (3.7)
and (3.10)) and performing the simulation at reduced level (Eq. (3.5) (lifting function
method) or Eq. (4.5) (penalty method) & Eq. (3.9)) are all listed in Table 1. Calculating the
POD modes, reduced matrices and the ROM solutions takes more time in the case of the
lifting function method as the reduced basis space consists of an additional mode, namely
the normalized lifting function for the boundary with the lid, compared to the penalty
method. Determining the penalty factor with the iterative method takes only 0.11 s. The
speedup ratio between the ROM and the FOM is about 270 times for the lifting method
and 308 times for the penalty method.

Table 1: Computational time (clock time) for the FOM simulation, POD, calculating reduced matrices offline
(Matrices), determining penalty factor with iterative method (Penalty factor) and ROM simulation.

Method FOM POD Matrices Penalty factor ROM

Lifting 37 min. 50 s 8.2 s - 8.2 s

Penalty 37 min. 45 s 6.8 s 0.11 s 7.2 s
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Figure 7: Comparison of the full order velocity magnitude fields (1st column), the ROM fields obtained with the
lifting function method (2nd column) and penalty method (4th column) and the difference between the FOM
and ROM fields obtained with the lifting function method (3rd column) and penalty method (5th column) at
t=0.2, 1, 5 and 10 s (from top to bottom) for the lid driven cavity problem.

6.2 Y-junction flow problem

A full order simulation is performed for the Y-junction test case with varying inlet ve-
locities (magnitude) according to Fig. 3 on the left. In total 401 velocity and pressure
snapshots are collected, which are then used to created the POD basis functions. To de-
termine the number of basis functions necessary for the creation of the reduced subspace,
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Figure 8: Comparison of the full order pressure fields (1st column), the ROM fields obtained with the lifting
function method (2nd column) and penalty method (4th column) and the difference between the FOM and
ROM fields obtained with the lifting function method (3rd column) and penalty method (5th column) at t=0.2,
1, 5 and 10 s (from top to bottom) for the lid driven cavity problem.

the cumulative eigenvalues (based on the first 20 most energetic POD modes) are listed
in Table 2.

5 velocity and pressure modes are sufficient to retain 99.99% of the energy contained
in the snapshots. These first five (homogenized) velocity and pressure modes are plotted
in Fig. 9. The first velocity magnitude mode has a symmetric pattern and is close to
the time-averaged solution when it has non-homogeneous BCs and looks more like a
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Table 2: The cumulative eigenvalues for the Y-junction test case. The second and third columns report the
cumulative eigenvalues (total of the first 20 modes) for the velocity and pressure fields, respectively.

N modes u p

1 0.976478 0.967073

2 0.998492 0.989840

3 0.999724 0.998781

4 0.999859 0.999741

5 0.999924 0.999933

6 0.999967 0.999975

7 0.999989 0.999995

10 0.999999 0.999999

Figure 9: First 5 POD modes for (top) velocity, (middle) velocity with homogeneous BCs and (bottom) pressure
for the Y-junction flow problem.
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Figure 10: The time-averaged L2-error per number of (left) velocity modes (Umodes) and (right) pressure
modes (Pmodes) for the Y-junction test case.

fluctuation around the mean when it has homogeneous BCs. From the third mode and
higher, the modes are more or less alike, whether the modes have homogeneous BCs or
not.

In Fig. 10 for each number of modes the time-averaged relative L2-error between the
FOM and the basis projection is plotted, on the left for velocity and on the right for pres-
sure. For velocity this is repeated with a set of homogenized snapshots. As there are two
inlet boundary conditions, the first two modes are the normalized lifting functions and
all sequential modes are then the homogeneous basis functions obtained with the POD
method. Therefore the average L2-error is still above the order 10−1 as these modes do
not contain any information about the full order solution. The figure shows that 11 veloc-
ity basis functions and 10 pressure basis functions are required to have a truncation error
less than 10−3. Taking also into account previous observation, these number of modes
are used for calculating the ROM matrices.

After applying the Galerkin projection with the obtained modes, the penalty factors
are determined using the iterative procedure. Starting from an initial guess of 10−6 the
penalty factors found are 5.9·10−8 and 88.3 for inlet 1 and 1.1·10−7 and 125 for inlet 2
in the x-direction and y-direction, respectively. The factors are determined within 41
iterations for an error tolerance of 10−5 and only the first five time steps are evaluated.
However, it took only 15 iterations to have an error of 1.00009·10−5 with penalty factors
0.0327, 88.3, 0.048, 124.5. So one could relax the criteria for the error a bit for a faster
convergence.

Thereafter, three ROMs are obtained; one without boundary enforcement method,
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Figure 11: Relative L2-error of velocity (left) and pressure (right) between the FOM and ROM with lifting
function and with penalty method for the Y-junction flow problem.
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Figure 12: Kinetic energy relative L2-error for the ROM with lifting function and with penalty method for the
Y-junction flow problem.

one with the lifting function method and one with the penalty method. These are then
consecutively tested for the time-dependent boundary conditions of Fig. 4. The evolution
in time of the L2 relative error between the reconstructed fields is plotted in Fig. 11.

In case no boundary enforcement method is used, the relative error for both velocity
and pressure is of the order 1 and larger for the vast part of the simulation.

The relative error is more or less the same for both boundary control methods, as also
was observed previously for the lid driven cavity test case, except around 9 s of simu-
lation time. Then the difference in relative error for pressure between the two methods
is the largest; the penalty method is about 2·10−1 larger than the error obtained with the
lifting function method. However, on the long term the penalty method performs slightly
better. This can also be concluded by having a look at the kinetic energy relative error
in Fig. 12. Other than that, the relative velocity error is of the order 10−2 and for pres-
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Figure 13: Comparison of the full order velocity magnitude fields (1st column), the ROM fields obtained with
the lifting function method (2nd column) and penalty method (4th column) and the difference between the
FOM and ROM fields obtained with the lifting function method (3rd column) and penalty method (5th column)
at t=3, 9 and 18 s (from top to bottom) for the Y-junction flow problem.

sure 10−1. A possible source for the larger pressure error is that the PIMPLE algorithm,
consisting of predictor and correction steps for pressure and velocity, is used at full order
level, while the coupled (pressure-velocity) system at reduced order level is solved with
Newton’s iterative method. This is causing a discrepancy between the full order and re-
duced order model formulation. Nevertheless, the difference between the minimum and
maximum relative error for both variables is about one order.

Furthermore, the absolute error between the FOM and the ROMs is shown in Figs. 13
and 14 for velocity magnitude and pressure, respectively. For velocity the absolute error
between the FOM and the ROM is of the order 10−2 for all plotted simulation times and
the absolute error for pressure is of the order 10−1. For pressure, the error is indeed
larger in the case of the penalty method compared to the lifting function method at 9 s of
simulation time, as previously observed in Fig. 11, but in general, the error distribution,
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Figure 14: Comparison of the full order pressure fields (1st column), the ROM fields obtained with the lifting
function method (2nd column) and penalty method (4th column) and the difference between the FOM and
ROM fields obtained with the lifting function method (3rd column) and penalty method (5th column) at t=3,
9 and 18 s (from top to bottom) for the Y-junction flow problem.

for both the velocity and pressure fields, is similarly distributed over the domain, and
thus the methods are performing the same.

Finally, the computational times for performing the full order simulation (Eq. (2.1)),
calculating the POD modes (Eqs. (3.1)-(3.4)), the reduced matrices (Eqs. (3.6), (3.7)
and (3.10)) and performing the simulation at reduced level (Eq. (3.5) (lifting function
method) or Eq. (4.5) (penalty method) & Eq. (3.9)) are listed in Table 3. Calculating the
reduced matrices and the ROM solutions takes more time in the case of the lifting func-
tion method as the reduced basis space consists of four additional modes, namely the
normalized lifting functions, compared to the penalty method. Determining the penalty
factor with the iterative method takes 1.4 s. The speedup ratio between the ROM and
the FOM is about 13 times for the lifting method and 24 times for the iterative penalty
method.
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Table 3: Computational time (clock time) for the FOM simulation, POD modes, calculating reduced matrices
offline (Matrices), determining penalty factor with iterative method (Penalty factor) and ROM simulation.

Method FOM POD Matrices Penalty factor ROM

Lifting 13 min. 7.6 s 9.2 s - 59 s

Penalty 13 min. 7.9 s 4.7 s 1.4 s 33 s

7 Discussion

The results have shown that the lifting function method and penalty method perform
equally and lead to similar results. However, they have their own advantages and draw-
backs. A disadvantage of the penalty methods is that the penalty factor cannot be deter-
mined a priori [15]. The implementation of an iterative solver to determine the penalty
factor does however save time compared to performing numerical experimentation man-
ually. On the other hand, even though a lifting function(s) can be determined beforehand,
it may be hard to find a function that will lead to an accurate ROM and therefore exten-
sive testing of ROMs for different functions can be needed. In this work, the lifting func-
tions are obtained by solving a potential flow problem and are thus physics-based unlike
the penalty factor, which is an arbitrary value. Moreover, this value needs to be chosen
above a certain threshold to enforce the BCs in the ROM, but can lead to an inaccurate
ROM solution if it is too high [18]. In that case, the penalty method fails for that specific
problem.

Finally, an advantage of the penalty method stated in literature [14] is that long-time
integration and initial condition issues are less of a problem compared to a lifting function
method. Here the ROMs have not been tested for long-term integration, so further re-
search is needed in order to confirm this statement. However, as tested for the Y-junction
test case, the ROM is accurate and does not exhibit instabilities even outside the time
domain in which snapshots were collected.

For both cases tested in this study, only one full order simulation has been per-
formed for collecting the snapshots. However, in case the BCs of the Y-junction are not
time-dependent, snapshots from at least two different offline solves are required for the
penalty method. The reason for this is that the boundary conditions are a linear combi-
nation of snapshots and the boundary conditions can therefore only be scaled and not be
set to any arbitrary value in case only snapshots from one full order simulation are used
for the POD. When several sets of snapshots for different boundary values are required,
one can optimize the POD procedure by using a nested POD approach [37].

It is important to note that the penalty factor is determined during the online phase
and does not depend on high-fidelity data. Therefore, no modification are needed in the
case of parametric problems that, for example, use the viscosity as the physical parameter.

In the case of the Y-junction test case, the penalty method can be used to adjust the
direction of the inlet flow in the ROM. One penalty factor is enforcing the x-direction and
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another the y-direction. Nevertheless, new snapshots for different inlet angles are re-
quired as the current POD bases do not contain this information. For the lifting function
method, it is often problematic to determine suitable lifting functions that are physical.
Ideally, the lifting functions are orthogonal to each other as in the work of Hijazi et al. [53]
who studied a flow past an airfoil with parameterized angle of attack and inflow veloc-
ity. They used two lifting functions with orthogonal inflow conditions: ζc1

= (0,1) and
ζc2

=(1,0) on Γi, respectively. These lifting functions are obtained by solving two linear
potential flow problems. In that way, it is possible to adjust the direction of the flow at a
inlet by scaling the associate lifting functions accordingly. However, specifying a purely
tangential velocity at the inlets of the Y-junction would result in unphysical lifting func-
tions. Thus, this approach is only suitable for a few problems and will not always lead to
physical results.

In the case of non-physical lifting functions, the ROM gets unstable or the ROM solu-
tions are polluted with noise. This strongly depends on the chosen lifting functions.

Moreover, both methods can, in theory, also be used for controlling pressure bound-
ary conditions, but this is not studied in this work.

In this study, the exploitation of a pressure Poisson equation has been incorporated in
the ROM as a stabilization method. Even though the ROMs are indeed stable, the relative
error for pressure is about an order higher than for velocity. Alternatively, the supremizer
enrichment of the velocity space technique could be used to stabilize the ROM, which
may lead to more accurate pressure fields [25, 68, 69].

Furthermore, the ROMs can be improved by using a second order backward method
for the time discretization of the ROM as the FOMs are treated using a second order
backward differencing scheme.

Finally, for the Y-junction test case, the full order snapshots and the ROM solutions
all have inlet velocities between an identical maximum and minimum value. The ROM
could become less stable and accurate in case it is tested for values outside this range.
Therefore it is recommended to collect snapshots for the same range as for which the
ROM boundary needs to be controlled.

8 Conclusions and perspectives

Two boundary control methods are tested: the lifting function method and the itera-
tive penalty method for controlling the velocity boundary conditions of FV-based POD-
Galerkin ROMs. The penalty method has been improved by using an iterative solver for
the determination of the penalty factors, rather than using numerical experimentation.
The factors are determined by the iterative solver in about a second for both test cases.
The results of the reconstructed velocity and pressure fields show that both methods are
performing equally. Moreover, the reduced order model of which the boundary condi-
tions are controlled with the iterative penalty method is about two times faster compared
to the lifting function method for the Y-junction flow case.
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A pressure Poisson equation approach is applied for the reconstruction of the pressure
field and to stabilize the ROM. For time-dependent boundary problems, an additional
term is added to the ROM formulation.

Finally, a speedup factor, the ratio between the FOM and ROM simulation time, of 308
is obtained with the iterative penalty method and of 270 with the lifting function method
for the lid driven cavity test case. The speedup factors are 24 and 13, respectively, for the
Y-junction test case.

For further development, the model will be extended for turbulent flows, which will
be essential to simulate industrial flow problems. Furthermore, the control of the pres-
sure boundary conditions needs to be investigated, which may be required when cou-
pling 3D CFD problems with 1D system codes. Also, the accuracy of the reconstructed
pressure fields can be improved by using a supremizer enrichment approach rather than
solving the Pressure Poisson Equation. The effect of supremizer enrichment of the veloc-
ity space on the boundary control methods will have to be investigated.
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