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Abstract: Steel production in integrated steelworks involves the simultaneous production of various by-
products, including process off-gases that are usually exploited for generating electricity in the internal 
power plant, heat and steam. Their discontinuous production is managed through complex network, 
gasholders and torches, which must be managed with stringent operational constraints. In this paper we 
present a supervision and control system designed to optimize the economic management of the distribution 
of process off-gases that also allows minimizing the environmental impact. The system implements a digital 
twin based mainly on machine learning techniques, including Echo State Networks, and a hierarchical 
optimization system, which first level is based on an economic model predictive approach and the second 
level is based on the economic hybrid model predictive control. This system allows to effectively maximize 
the use of off-gases while minimizing the environmental impact of their use up to 97%. 
Keywords: Economic Hybrid Model Predictive Control, Artificial Intelligence, Machine Learning, 
Process off-gas distribution, Integrated Steelworks, Reservoir computing

1. INTRODUCTION 

In the race to reduce greenhouse gas emissions, the steel 
industry is making intense efforts and important investments, 
to improve the efficiency and reduce the impact of production 
processes, by also exploiting at best its own by-products in a 
circular economy perspective. Optimizing consumption and 
production of energy distributed through the process gas 
networks is part of this improvement, as it plays a key role in 
the company's economic balance, and can also reduce the 
environmental impact. Process off-gases (POGs) are a 
valuable energy source produced in the three main integrated 
steelworks processes: coke ovens (COG), blast furnaces 
(BFG) and basic oxygen furnaces (BOFG). They can satisfy a 
large portion of energy demands of the steelworks from power 
plants, furnaces and steam production. However, their 
production and their distribution to consumers is a complex 
issue. Firstly, some of these gases (e.g. BOFG) are produced 
in a discontinuous way, thus excesses and shortage must be 
managed through gasholders and torches, respectively, (and 
flaring implies waste of valuable energy resources and also 
environmental impact), and through natural gas (NG) 
purchase. Therefore, POGs distribution must be planned over 
time and must consider future trends of production and 
demand, constraints of networks, transformation equipment 
and consumers. Such task also involves production planning 
to some extent, as it affects POGs production and 
consumption. The problem of POGs optimal distribution has 
typically been tackled through real-time optimization systems 

that allow modelling the main energy and material flows, 
dynamics of plants, and equipment from a mathematical point 
of view, through the solution of Mixed Integer Linear (MILP) 
or nonlinear (MINLP) Programming formulations (Zhao et al., 
2017a; Zeng et al., 2018; Pena et al., 2019; Qiu et al., 2022). 
However, literature has often focused on POG distribution 
control system design, neglecting systems for predicting 
energy flows, which allow to enhance their usefulness and 
effectiveness. Although several works concern predictive 
models of POG (Zhao et al., 2016; Zhao et al., 2017b; Zhang 
et al., 2019), such models are not integrated into control 
systems, but rather used to give indications to operators, who 
make decisions based on experience. 

The previous analysis shows the difficulty of planning the 
distribution of process off-gases through the mentioned 
methodologies for an interval longer than 1 h, mainly due to 
the difficulty of predicting future production and consumption 
of energy within integrated steelworks. In this sense, advanced 
digital twins aimed at describing energy media flows can be a 
turning point on improving the current methodologies.  

In this work we overcome the mentioned limitations in two 
ways: (i) a detailed digital twin of energy flows has been 
developed, incorporating all equipment, plants and processes 
that contribute to POG consumption and transformation. This 
digital twin predicts the future POG internal production and 
consumption and simulates the behavior of networks and 
equipment according to calculated control trends. Among 
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large portion of energy demands of the steelworks from power 
plants, furnaces and steam production. However, their 
production and their distribution to consumers is a complex 
issue. Firstly, some of these gases (e.g. BOFG) are produced 
in a discontinuous way, thus excesses and shortage must be 
managed through gasholders and torches, respectively, (and 
flaring implies waste of valuable energy resources and also 
environmental impact), and through natural gas (NG) 
purchase. Therefore, POGs distribution must be planned over 
time and must consider future trends of production and 
demand, constraints of networks, transformation equipment 
and consumers. Such task also involves production planning 
to some extent, as it affects POGs production and 
consumption. The problem of POGs optimal distribution has 
typically been tackled through real-time optimization systems 

that allow modelling the main energy and material flows, 
dynamics of plants, and equipment from a mathematical point 
of view, through the solution of Mixed Integer Linear (MILP) 
or nonlinear (MINLP) Programming formulations (Zhao et al., 
2017a; Zeng et al., 2018; Pena et al., 2019; Qiu et al., 2022). 
However, literature has often focused on POG distribution 
control system design, neglecting systems for predicting 
energy flows, which allow to enhance their usefulness and 
effectiveness. Although several works concern predictive 
models of POG (Zhao et al., 2016; Zhao et al., 2017b; Zhang 
et al., 2019), such models are not integrated into control 
systems, but rather used to give indications to operators, who 
make decisions based on experience. 

The previous analysis shows the difficulty of planning the 
distribution of process off-gases through the mentioned 
methodologies for an interval longer than 1 h, mainly due to 
the difficulty of predicting future production and consumption 
of energy within integrated steelworks. In this sense, advanced 
digital twins aimed at describing energy media flows can be a 
turning point on improving the current methodologies.  

In this work we overcome the mentioned limitations in two 
ways: (i) a detailed digital twin of energy flows has been 
developed, incorporating all equipment, plants and processes 
that contribute to POG consumption and transformation. This 
digital twin predicts the future POG internal production and 
consumption and simulates the behavior of networks and 
equipment according to calculated control trends. Among 
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2017a; Zeng et al., 2018; Pena et al., 2019; Qiu et al., 2022). 
However, literature has often focused on POG distribution 
control system design, neglecting systems for predicting 
energy flows, which allow to enhance their usefulness and 
effectiveness. Although several works concern predictive 
models of POG (Zhao et al., 2016; Zhao et al., 2017b; Zhang 
et al., 2019), such models are not integrated into control 
systems, but rather used to give indications to operators, who 
make decisions based on experience. 

The previous analysis shows the difficulty of planning the 
distribution of process off-gases through the mentioned 
methodologies for an interval longer than 1 h, mainly due to 
the difficulty of predicting future production and consumption 
of energy within integrated steelworks. In this sense, advanced 
digital twins aimed at describing energy media flows can be a 
turning point on improving the current methodologies.  

In this work we overcome the mentioned limitations in two 
ways: (i) a detailed digital twin of energy flows has been 
developed, incorporating all equipment, plants and processes 
that contribute to POG consumption and transformation. This 
digital twin predicts the future POG internal production and 
consumption and simulates the behavior of networks and 
equipment according to calculated control trends. Among 



302 S. Dettori  et al. / IFAC PapersOnLine 55-40 (2022) 301–306

different methodologies exploited, Echo State Networks 
(ESN) have proved to be particularly effective in predicting 
the quantities involved; (ii) a multi-period hierarchical 
supervision and control system that allows optimizing the 
distribution of POGs, the environmental and economic impact 
of the use of energy within the integrated steelworks. This 
system exploits all the information provided by the digital 
twin, through an enhanced mutual interaction. 

The paper is organized as follows: Section 2 describes the 
energy flows in integrated steelworks, by reporting the specific 
study case; Section 3 presents the digital twins that aims at 
describing the integrated steelworks behavior from an energy 
point of view, and the formulation and design of the 
optimization strategy. In Section 4 the main results are 
reported. Finally, Section 5 provides some concluding remarks 
and hints for future work. 

2. ENERGY FLOWS IN INTEGRATED STEELWORKS 

In this paper we present the case study related to the 
ArcelorMittal Bremen (AMB) integrated steelworks, in which 
the main process off-gases are BOFG and BFG, since the plant 
exploit externally produced coke. The structure of the POG 
networks is schematically reported in Figure 1. The BOFG 
network is feed by two BOFs, and the off-gas excess is 
managed through a gasholder and torches. The Hot Strip Mill 
(HSM) is the main BOFG consumer, exploited within Walking 
Beam Furnaces (WBFs) that re-heat billets, blooms, and slabs 
before the rolling mill. Here, the available off-gas can be 
mixed with NG and burned in specific WBF zones. BOFG can 
also be transferred to the BFG network and mixed with BFG 
for electricity production in the power plant. The BFG is 
produced in two BFs and its excess is managed through torches 
and gasholder. The main BFG consumer are the power plant, 
the hot blast stoves and steam boilers.  

In this specific case study, it is possible to minimize both 
environmental impact by scheduling and then manipulating 
POG volume flow to WBFs, power plant, and steam boilers. 
The main objective is to avoid the use of torches, and keeping 
the level of gasholder between minimum and maximum range, 
finding the best POG distribution solution between the internal 
users in order to balance economic and environmental 
objectives. As secondary objective, a stable and smooth POG 
exploitation is needed, avoiding as much as possible abrupt 
changes of the setpoints for each subnetwork and equipment.  

3. OFF-GAS OPTIMIZATION SYSTEM 

The developed DSS core is a complex hierarchical supervision 
and control system composed of three main functional blocks: 
(i) a database exploited for collecting plant data and as a 
foundation for the communication between the several parts of 
the software and operators; (ii) a digital twin that models and 
predicts the energy flows within the integrated steelworks; (iii) 
an optimization system that optimizes the POG distribution for 
helping process operator in the management of each energy 
subnetwork (POG, NG, steam and electricity).  

3.1 The Integrated Steelworks Digital Twin 

Digital Twins have a key role in the industry digitalization, as 
they can virtually represent a physical plant which 
characterization can be adapted and constantly updated 
through its data (VanDerHorn et al., 2021). 
In this work, different methodologies have been used for 
reproducing the behavior and dynamics of energy flows and 
equipment, in function of the specific task that here, for the 
sake of synthesis, can be classified in (i) system simulation and 
(ii) energy forecasting. System simulations allow to study how 
controllable equipment and processes react to control 
strategies. The models used within optimization problems are 
essentially linear, mainly based on state space representations 
or simple linear regressions, in order to simplify as much as 
possible the control strategy and calculating it in real-time. The 
modelling errors in terms of normalized mean absolute error 
in this case are below 4%, that justifies the linear control 
approach in this case study. 
Forecasting models predict the energy production and 
consumption in the main energy-intensive processes of the 
plant. Those predictions are exploited by the optimization 
system for compensating the strong effects of disturbances on 
off-gas, steam and electricity networks. These models exploit 
the current and past data of each process and its production 
scheduling. Most of the predictions are calculated through 
various machine learning methodologies, including Deep 
Echo State Networks (Gallicchio et al., 2017), Gaussian 
Mixture Regressions and Feed Forward Neural Networks that 
allow to have an insight into the future behavior of energy 
flows for horizons from 2 to 24 hours. In some previous works 
of the authors of this paper, some of the most remarkable 
results are here reported (Colla et al., 2019; Dettori et al., 2019; 
Dettori et al., 2022a; Matino et al., 2019a; Matino et al., 
2019b). 

Figure 1: POG distribution and steam network schemes at AMB 
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produced in two BFs and its excess is managed through torches 
and gasholder. The main BFG consumer are the power plant, 
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POG volume flow to WBFs, power plant, and steam boilers. 
The main objective is to avoid the use of torches, and keeping 
the level of gasholder between minimum and maximum range, 
finding the best POG distribution solution between the internal 
users in order to balance economic and environmental 
objectives. As secondary objective, a stable and smooth POG 
exploitation is needed, avoiding as much as possible abrupt 
changes of the setpoints for each subnetwork and equipment.  

3. OFF-GAS OPTIMIZATION SYSTEM 

The developed DSS core is a complex hierarchical supervision 
and control system composed of three main functional blocks: 
(i) a database exploited for collecting plant data and as a 
foundation for the communication between the several parts of 
the software and operators; (ii) a digital twin that models and 
predicts the energy flows within the integrated steelworks; (iii) 
an optimization system that optimizes the POG distribution for 
helping process operator in the management of each energy 
subnetwork (POG, NG, steam and electricity).  

3.1 The Integrated Steelworks Digital Twin 
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they can virtually represent a physical plant which 
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through its data (VanDerHorn et al., 2021). 
In this work, different methodologies have been used for 
reproducing the behavior and dynamics of energy flows and 
equipment, in function of the specific task that here, for the 
sake of synthesis, can be classified in (i) system simulation and 
(ii) energy forecasting. System simulations allow to study how 
controllable equipment and processes react to control 
strategies. The models used within optimization problems are 
essentially linear, mainly based on state space representations 
or simple linear regressions, in order to simplify as much as 
possible the control strategy and calculating it in real-time. The 
modelling errors in terms of normalized mean absolute error 
in this case are below 4%, that justifies the linear control 
approach in this case study. 
Forecasting models predict the energy production and 
consumption in the main energy-intensive processes of the 
plant. Those predictions are exploited by the optimization 
system for compensating the strong effects of disturbances on 
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the current and past data of each process and its production 
scheduling. Most of the predictions are calculated through 
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allow to have an insight into the future behavior of energy 
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Figure 1: POG distribution and steam network schemes at AMB 

3.2 The hierarchical supervision and control system 

Maximizing POG usage, selecting the most convenient routes 
is a task that can be framed in the solution of constrained 
nonlinear optimization problems, as the behavior of energy 
networks and equipment behave in a substantially non-linear 
manner. Their optimal distribution in real-time requires a 
synergistic and coordinated action of different processes and 
equipment, a task that by nature is particularly complex to 
solve only through the sole experience of the operators of the 
various processes involved. Furthermore, due to the strong 
mutual interactions between energy networks, resulted from 
the continuous exchanges and transformations of energy, an 
effective optimization of their flows is possible only through a 
supervision and control system that can be designed to have a 
global point of view. For these reasons, we developed a 
hierarchical multiperiod real-time optimization system that 
helps process operator in taking global decision for 
minimizing the overall energy costs and environmental 
impact.  
The developed control system is divided into two layers: the 
first, solves a Linear Programming (LP) formulation for a 
prediction interval up to one day ahead, which has the main 
purpose of planning the electricity production in the internal 
power plant. This layer, from now on High-Level (HL) 
Optimization system, calculates the main setpoints for the 
distribution of energy flows and POGs for each energy 
subnetwork. These setpoints are used by the Low-Level (LL) 
Optimization System which implements an Economic Hybrid 
Model Predictive Control strategy (Dettori et al., 2022b) that 
allows optimizing the control actions on all the POG networks, 
of the electricity production and of the steam networks, for a 
prediction interval of 2 hours ahead. The LL Optimization 
System solves in real-time, every minute, a MILP that 
describes all the main dynamics of the users and equipment 
involved and all the main operational constraints, through the 
well-known Mixed Logical Dynamical System framework.  

More in details, the HL optimizer solves in real time, every 15 
minutes, a LP formulation where the objective is minimizing 
the economic cost function 𝐽𝐽𝐻𝐻𝐻𝐻(𝑡𝑡, 𝑁𝑁𝐻𝐻𝐻𝐻, 𝒖𝒖𝑯𝑯𝑯𝑯), calculated from 
the current time 𝑡𝑡 for a prediction/control horizon of 𝑁𝑁𝐻𝐻𝐻𝐻 
samples, through the manipulable variables 𝒖𝒖𝑯𝑯𝑯𝑯: 

𝐽𝐽𝐻𝐻𝐻𝐻(𝑡𝑡, 𝑁𝑁𝐻𝐻𝐻𝐻, 𝒖𝒖𝑯𝑯𝑯𝑯) = ∑ 𝛾𝛾𝑘𝑘
𝑡𝑡+𝑁𝑁𝐻𝐻𝐻𝐻

𝑘𝑘=𝑡𝑡
(𝑐𝑐𝑁𝑁𝑁𝑁𝐸𝐸𝑁𝑁𝑁𝑁(𝑘𝑘) + 𝑐𝑐𝐸𝐸𝐸𝐸(𝑘𝑘)𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) +

−𝑐𝑐𝐸𝐸𝐸𝐸(𝑘𝑘)𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) + 𝑐𝑐𝑇𝑇𝐸𝐸𝑇𝑇(𝑘𝑘) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀𝑐𝑐𝑐𝑐(𝑘𝑘) + 𝒄𝒄𝑐𝑐𝑇𝑇𝒔𝒔(𝑘𝑘)) (1)
 

where 𝛾𝛾 ∈ (0, 1] is a parameter that de-penalizes the 
modelling error in predicting the future processes behaviors, 𝑘𝑘 
is the discretized time along the prediction horizon, 𝑐𝑐𝑁𝑁𝑁𝑁  and 
𝐸𝐸𝑁𝑁𝑁𝑁  are respectively the prize and NG energy consumption 
considering only the manipulable portion,  𝑐𝑐𝐸𝐸𝐸𝐸 and 𝐸𝐸𝐸𝐸𝐸𝐸 are the 
prize and electric energy purchased from external sources,  𝑐𝑐𝐸𝐸𝐸𝐸  
and 𝐸𝐸𝐸𝐸𝐸𝐸  are the prize and the electric energy production in the 
internal power plant, 𝑐𝑐𝑇𝑇 and 𝐸𝐸𝑇𝑇 are the prize and the POG 
energy waste in the torches, 𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑀𝑀𝑐𝑐𝑐𝑐 are the prize and the 
mass of steam condensed, 𝒄𝒄𝒔𝒔 and 𝒔𝒔 are the prize and soft 
variables, useful to soften the most difficult constraints of the 
optimization problem.  

The LP formulation includes a set of constraints that describe 
the behavior of gasholders, power plant, steam boilers, and 
steam and POG networks, and their main operative limits.  The 
sampling time and control period of each energy sub-network 
in this layer is set to 15 minutes, which allows to neglect the 
dynamics of gas and steam flows in the networks, and the 
steam boiler and power plant dynamics. Furthermore, the 
following hypotheses have been made: in each point of POG 
pipelines the gas mixture is constant; POG and steam pressure 
and temperature are constant along the pipelines; gas and 
steam flows are instantly transmitted from producers to 
consumers through the pipelines. With these assumptions, the 
steam mass flow production in the 𝑗𝑗-th boiler 𝑀𝑀𝑆𝑆𝑗𝑗 is calculated 
with (2), the electric energy generated in the power plant is 
calculated with (3), the dynamics of gasholder level of the 𝑙𝑙-th 
POG 𝐿𝐿𝑁𝑁𝐻𝐻𝑙𝑙 can be predicted with (4): 

𝑀𝑀𝑆𝑆𝑗𝑗 (𝑘𝑘) = 𝑘𝑘𝐵𝐵𝑗𝑗 ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑘𝑘)𝑁𝑁𝑖𝑖
𝐵𝐵(𝑘𝑘)

𝑔𝑔𝑆𝑆𝑗𝑗

𝑖𝑖=1
+ 𝑏𝑏𝐵𝐵𝑗𝑗 (2) 

𝑀𝑀𝑆𝑆𝑗𝑗
min ≤ 𝑀𝑀𝑆𝑆𝑗𝑗 (𝑘𝑘) ≤ 𝑀𝑀𝑆𝑆𝑗𝑗

max (3) 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) = 𝑘𝑘𝐸𝐸𝐸𝐸 ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑘𝑘)𝑁𝑁𝑖𝑖
𝐸𝐸𝐸𝐸(𝑘𝑘)

𝑔𝑔𝑃𝑃𝑃𝑃

𝑖𝑖=1
+ 𝑏𝑏𝐸𝐸𝐸𝐸 (4) 

𝐸𝐸𝐸𝐸𝐸𝐸
min ≤ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) ≤ 𝐸𝐸𝐸𝐸𝐸𝐸

max (5) 

Δ𝐸𝐸𝐸𝐸𝐸𝐸
min ≤ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘 + 1) − 𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) ≤ Δ𝐸𝐸𝐸𝐸𝐸𝐸

max (6) 

𝐿𝐿𝑙𝑙
𝑁𝑁𝐻𝐻(𝑘𝑘 + 1) = 𝐿𝐿𝑙𝑙

𝑁𝑁𝐻𝐻(𝑘𝑘) + 𝑘𝑘𝑁𝑁𝐻𝐻𝑙𝑙𝑁𝑁𝑙𝑙
𝑁𝑁𝐻𝐻(𝑘𝑘) (7) 

𝐿𝐿𝑙𝑙
𝑁𝑁𝐻𝐻min ≤ 𝐿𝐿𝑙𝑙

𝑁𝑁𝐻𝐻(𝑘𝑘) ≤ 𝐿𝐿𝑙𝑙
𝑁𝑁𝐻𝐻max (8) 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑖𝑖
𝐵𝐵 are the net calorific value and the volume 

of the 𝑖𝑖-th gas burned in the boilers, 𝑁𝑁𝑖𝑖
𝐸𝐸𝐸𝐸 is the volume of the 

𝑖𝑖-th gas burned in the power plant, 𝑁𝑁𝑙𝑙
𝑁𝑁𝐻𝐻 and 𝐿𝐿𝑙𝑙

𝑁𝑁𝐻𝐻  are the excess 
volume of 𝑙𝑙-th POG filling the gasholder and the its level, 𝑘𝑘𝐵𝐵𝑗𝑗 , 
𝑏𝑏𝐵𝐵𝑗𝑗 , 𝑘𝑘𝐸𝐸𝐸𝐸, 𝑏𝑏𝐸𝐸𝐸𝐸 , and 𝑘𝑘𝑁𝑁𝐻𝐻𝑙𝑙 are the identified models parameters. 

POG distribution in the pipelines is calculated in two different 
ways. When there is no mixture between different gases, the 
balance of the 𝑙𝑙-th POG network is calculated as follows: 

𝑁𝑁𝑙𝑙
𝑝𝑝(𝑘𝑘) − 𝑁𝑁𝑙𝑙

𝑐𝑐(𝑘𝑘) − 𝑁𝑁𝑙𝑙
𝐸𝐸𝐸𝐸(𝑘𝑘) − 𝑁𝑁𝑙𝑙

𝑇𝑇(𝑘𝑘) − 𝑁𝑁𝑙𝑙
𝑁𝑁𝐻𝐻(𝑘𝑘) = 0 (9) 

otherwise, the energy balance 𝐸𝐸ℎ at the ℎ-th mixing station 
outlet is calculated as: 

∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
ℎ(𝑘𝑘)𝑁𝑁𝑖𝑖

ℎ(𝑘𝑘)
𝑔𝑔ℎ

𝑖𝑖=1
= 𝐸𝐸ℎ(𝑘𝑘) (10) 

where 𝑁𝑁𝑙𝑙
𝑝𝑝 and 𝑁𝑁𝑙𝑙

𝑐𝑐 are respectively the POG production and 
consumption volumes,  𝑁𝑁𝑙𝑙

𝐸𝐸𝐸𝐸 is the POG volume consumption 
in the power plant, 𝑁𝑁𝑙𝑙

𝑇𝑇 ∈ [0 𝑁𝑁𝑙𝑙
𝑇𝑇max] is the volume of POG 

waste in the torch, and 𝑁𝑁𝑖𝑖
ℎ ∈ [0 𝑁𝑁𝑖𝑖

ℎmax] is the volume of the 
𝑖𝑖-th gas at the mixing station inlet.  

The steam network behavior is modelled by considering only 
the steam mass flow balances: 

𝑀𝑀𝑛𝑛𝑐𝑐𝑐𝑐(𝑘𝑘) + ∑ 𝑀𝑀𝑆𝑆𝑗𝑗

𝑛𝑛𝑏𝑏

𝑗𝑗=1
− 𝑀𝑀𝑎𝑎𝑐𝑐𝑐𝑐(𝑘𝑘) − 𝑀𝑀𝑐𝑐𝑐𝑐(𝑘𝑘) = 0 (11) 
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𝑀𝑀𝑆𝑆𝑆𝑆(𝑘𝑘 + 1) = 𝑀𝑀𝑆𝑆𝑆𝑆(𝑘𝑘) + 15
60 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) (12) 

0 ≤ 𝑀𝑀𝑆𝑆𝑆𝑆(𝑘𝑘) ≤ 𝑀𝑀𝑆𝑆𝑆𝑆
𝑚𝑚𝑎𝑎𝑚𝑚 (13) 

Where 𝑀𝑀𝑛𝑛𝑎𝑎𝑛𝑛 it is a disturbance due to the excess of steam 
calculated between the producers of non-controllable steam 
(the BOF boilers) and the consumer plants, 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑀𝑀𝑆𝑆𝑆𝑆  are 
respectively the steam mass flow accumulated in the steam 
network and accumulators and the total accumulated steam. 

For the electric network, the energy conservation is calculated: 

𝐸𝐸𝑃𝑃𝑃𝑃(𝑘𝑘) + 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛(𝑘𝑘) − 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛(𝑘𝑘) + 𝐸𝐸𝐸𝐸𝑃𝑃(𝑘𝑘) − 𝐸𝐸𝐸𝐸𝑆𝑆(𝑘𝑘) = 0 (14) 

𝐸𝐸𝐸𝐸𝑃𝑃 ≥ 0, 𝐸𝐸𝐸𝐸𝑆𝑆 ≥ 0 (15) 

Where 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛  and 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛 are respectively the non-controllable 
electric energy production and consumption (disturbances 
acting on the electric system), 𝐸𝐸𝐸𝐸𝑃𝑃 is the electric energy 
purchased and 𝐸𝐸𝐸𝐸𝑆𝑆 is the electricity sold to external grid (if 
power plant is allowed to feed the external grid).  

Since the LP formulation of the HL optimizer is substantially 
"simple" to solve, and the time interval of its predictive 
horizon is not large (up to 1 day with a 15 minute sampling 
time), the computational cost is not excessive. For this reason, 
no blocking strategy has been adopted for manipulable 
variables. This layer calculates three sets of setpoint that are 
transmitted to the LL optimizer, each set calculated for the 
specific POG/steam network: (i) The reference for BFG 
volume available for steam boilers; (ii) BOFG volume 
available for WBFs and volume transferable to the BFG 
network, BOFG burnable volume in the torches; (iii) Electric 
Energy production scheduling for the Power Plant, BFG 
volume burnable in the torches.    

The LL optimizer has been developed following a Distributed 
Sequential hybrid economic MPC approach. Since in AMB 
case study the mutual interactions between the networks are 
essentially the transfer of BOFG to the BFG network and the 
use of BFG in the steam boilers, it is possible, through the 
setpoints calculated by the HL optimizer, to divide the global 
optimization problem through a distributed control approach 
in which three different MPCs deal with their own specific 
network, and sequentially solve the optimization problem in 
real-time: First, the BOFG network MPC solves its own 
optimization problem, calculating BOFG transferred to the 
BFG network (𝒗𝒗BOFG→BFn

pred ) for the overall prediction horizon. 
Secondly, the steam network controller solves its distribution 
problem by calculating the BFG volume flow consumed in the 
boilers (𝒗𝒗BFGcons

pred ). These two setpoints are exploited by the 
BFG controller that finally calculates the POG amount to be 
sent to the power plant. In integrated steelworks where the 
mutual interactions between networks are of greater entity, an 
approach different than sequential should be used. In this case, 
in order to obtain an overall optimal solution, different 
methods can be used (Trodden et al., 2017). 

More in details the LL optimizer calculates, for a prediction 
horizon of 𝑁𝑁𝐿𝐿𝐿𝐿 samples, a control strategy characterized by a 1 
minute sampling time. The chosen sampling time allows 
considering the main dynamics of each equipment and 

network, and a more detailed and stringent set of constraints. 
As mentioned before, each network controller has its specific 
formulation. The main objective of the steam controller is 
keeping the pressure of steam accumulator 𝑝𝑝𝑎𝑎 within the safety 
limits [𝑝𝑝𝑎𝑎

𝑚𝑚𝑚𝑚𝑛𝑛 𝑝𝑝𝑎𝑎
𝑚𝑚𝑎𝑎𝑚𝑚] while satisfying the steam needs of the 

users connected to the network. In particular, the steam 
network controller minimizes the economic objective function 
𝐽𝐽𝐿𝐿𝐿𝐿

𝑆𝑆 (𝑡𝑡, 𝑁𝑁LL, 𝒖𝒖LL
𝑆𝑆 ) at control instant 𝑡𝑡, by manipulating 𝒖𝒖LLS =

[𝒎𝒎𝐜𝐜𝐜𝐜 𝜹𝜹𝐵𝐵 𝒗𝒗NG𝑖𝑖 𝒗𝒗BFG𝑖𝑖]𝑻𝑻 without a blocking strategy (and a 
prediction horizon equal to the control horizon): 

𝐽𝐽𝐿𝐿𝐿𝐿
𝑆𝑆 (𝑡𝑡, 𝑁𝑁𝐿𝐿𝐿𝐿, 𝒖𝒖LL

𝑆𝑆 ) = ∑ 𝛾𝛾𝑘𝑘(𝑐𝑐𝑆𝑆𝑁𝑁𝐸𝐸𝑆𝑆𝑁𝑁
𝑆𝑆𝑆𝑆(𝑘𝑘) + 𝑐𝑐𝑎𝑎𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛(𝑘𝑘) +

𝑡𝑡+𝑆𝑆𝐿𝐿𝐿𝐿

𝑘𝑘=𝑡𝑡

−𝑐𝑐𝑝𝑝𝐶𝐶𝑝𝑝𝑎𝑎(𝑘𝑘) + 𝐶𝐶Δ𝛿𝛿𝐵𝐵(𝑘𝑘) + 𝒄𝒄𝑛𝑛𝑆𝑆𝑆𝑆𝒔𝒔𝑆𝑆𝑆𝑆(𝑘𝑘)) (16)
 

Where 𝐸𝐸𝑆𝑆𝑁𝑁
𝑆𝑆𝑆𝑆 is the total NG consumption in the steam boilers, 

𝑚𝑚𝑎𝑎𝑛𝑛 is the condensed steam mass flow,  𝑐𝑐𝑝𝑝 is a fictious cost 
that penalizes the accumulator pressure for pressure outside 
the range [�̌�𝑝𝑎𝑎 �̂�𝑝𝑎𝑎]: 

𝐶𝐶𝑝𝑝𝑎𝑎(𝑘𝑘) = max([0, �̌�𝑝𝑎𝑎 −  𝑝𝑝𝑎𝑎(𝑘𝑘)]) + max([0, 𝑝𝑝𝑎𝑎(𝑘𝑘) − �̂�𝑝𝑎𝑎]) (17) 

𝐶𝐶Δ𝛿𝛿𝐵𝐵 is a fictious cost that penalizes (by a factor 𝑐𝑐off) the 
switching of each 𝑖𝑖-th boilers 𝛿𝛿off𝑖𝑖:  

𝐶𝐶Δ𝛿𝛿𝐵𝐵(𝑘𝑘) = 𝑐𝑐off ∑|𝛿𝛿off𝑖𝑖(𝑘𝑘) − 𝛿𝛿off𝑖𝑖(𝑘𝑘 − 1)|
𝑛𝑛𝑏𝑏

𝑚𝑚=1
(18) 

Each boiler can be operated in different Boolean modalities 𝛿𝛿: 
𝛿𝛿off𝑖𝑖 when it is off, 𝛿𝛿BFG𝑖𝑖 when it exploits only BFG, and 𝛿𝛿MG𝑖𝑖 
when it exploits a mixture of BFG and NG. Each 𝑧𝑧-th modality 
𝛿𝛿𝑧𝑧𝑖𝑖 is exclusive and is characterized by different limits on the 
heating power [𝐻𝐻𝐽𝐽𝑚𝑚𝑧𝑧

min 𝐻𝐻𝐽𝐽𝑚𝑚𝑧𝑧
max]: 

𝜹𝜹𝐵𝐵 = [𝜹𝜹𝑩𝑩𝟏𝟏 ⋯ 𝜹𝜹𝑩𝑩𝒏𝒏𝒃𝒃 ], 𝛿𝛿𝐵𝐵𝑖𝑖 = [𝛿𝛿off𝑖𝑖 𝛿𝛿BFG𝑖𝑖 𝛿𝛿MG𝑖𝑖] (19) 

𝛿𝛿off𝑖𝑖 + 𝛿𝛿BFG𝑖𝑖 + 𝛿𝛿MG𝑖𝑖 = 1 (20) 

𝛿𝛿𝑚𝑚𝑧𝑧 → (𝐻𝐻𝐽𝐽𝑚𝑚𝑧𝑧
min ≤ ∑ 𝑁𝑁𝐶𝐶𝑁𝑁𝑙𝑙(𝑘𝑘)𝑣𝑣𝑙𝑙

𝐵𝐵𝑖𝑖(𝑘𝑘)
𝑔𝑔𝑆𝑆𝑗𝑗

𝑙𝑙=1
≤ 𝐻𝐻𝐽𝐽𝑚𝑚𝑖𝑖

max) (21) 

Bold characters refer to vector of variables that takes into 
account the overall control horizon.  

The problem formulation includes the steam mass 
conservation in the network calculated by (22) and the 
dynamic of the steam mass stored in the accumulator and 
network 𝑀𝑀𝑎𝑎: 

𝑚𝑚𝑛𝑛𝑎𝑎(𝑘𝑘) + ∑ 𝑚𝑚𝐵𝐵𝑖𝑖(𝑘𝑘)
𝑛𝑛𝑏𝑏

𝑚𝑚=1
− 𝑚𝑚𝐶𝐶𝑆𝑆(𝑘𝑘) − 𝑚𝑚𝑎𝑎(𝑘𝑘) = 0 (22) 

𝑀𝑀𝑎𝑎(𝑘𝑘 + 1) = 𝑀𝑀𝑎𝑎(𝑘𝑘) − 1
60 𝑚𝑚𝑎𝑎(𝑘𝑘) (23) 

Where 𝑚𝑚𝑛𝑛𝑎𝑎 is the excess of steam mass flow between non-
controllable producers (the BOF boilers) and the users that acts 
on the steam network as a disturbance, 𝑚𝑚𝐵𝐵𝑖𝑖  is the steam mass 
flow produced by boilers and 𝑚𝑚𝑎𝑎 is the mass flow stored in the 
accumulator and network. The boiler can exploit an amount of 
BFG that can exceed the BFG setpoint reserved for them by a 
quantity 𝑠𝑠BFG, penalized in the cost function:  
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𝑀𝑀𝑆𝑆𝑆𝑆(𝑘𝑘 + 1) = 𝑀𝑀𝑆𝑆𝑆𝑆(𝑘𝑘) + 15
60 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) (12) 

0 ≤ 𝑀𝑀𝑆𝑆𝑆𝑆(𝑘𝑘) ≤ 𝑀𝑀𝑆𝑆𝑆𝑆
𝑚𝑚𝑎𝑎𝑚𝑚 (13) 

Where 𝑀𝑀𝑛𝑛𝑎𝑎𝑛𝑛 it is a disturbance due to the excess of steam 
calculated between the producers of non-controllable steam 
(the BOF boilers) and the consumer plants, 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑀𝑀𝑆𝑆𝑆𝑆  are 
respectively the steam mass flow accumulated in the steam 
network and accumulators and the total accumulated steam. 

For the electric network, the energy conservation is calculated: 

𝐸𝐸𝑃𝑃𝑃𝑃(𝑘𝑘) + 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛(𝑘𝑘) − 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛(𝑘𝑘) + 𝐸𝐸𝐸𝐸𝑃𝑃(𝑘𝑘) − 𝐸𝐸𝐸𝐸𝑆𝑆(𝑘𝑘) = 0 (14) 

𝐸𝐸𝐸𝐸𝑃𝑃 ≥ 0, 𝐸𝐸𝐸𝐸𝑆𝑆 ≥ 0 (15) 

Where 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛  and 𝐸𝐸𝑛𝑛𝑎𝑎𝑛𝑛 are respectively the non-controllable 
electric energy production and consumption (disturbances 
acting on the electric system), 𝐸𝐸𝐸𝐸𝑃𝑃 is the electric energy 
purchased and 𝐸𝐸𝐸𝐸𝑆𝑆 is the electricity sold to external grid (if 
power plant is allowed to feed the external grid).  

Since the LP formulation of the HL optimizer is substantially 
"simple" to solve, and the time interval of its predictive 
horizon is not large (up to 1 day with a 15 minute sampling 
time), the computational cost is not excessive. For this reason, 
no blocking strategy has been adopted for manipulable 
variables. This layer calculates three sets of setpoint that are 
transmitted to the LL optimizer, each set calculated for the 
specific POG/steam network: (i) The reference for BFG 
volume available for steam boilers; (ii) BOFG volume 
available for WBFs and volume transferable to the BFG 
network, BOFG burnable volume in the torches; (iii) Electric 
Energy production scheduling for the Power Plant, BFG 
volume burnable in the torches.    

The LL optimizer has been developed following a Distributed 
Sequential hybrid economic MPC approach. Since in AMB 
case study the mutual interactions between the networks are 
essentially the transfer of BOFG to the BFG network and the 
use of BFG in the steam boilers, it is possible, through the 
setpoints calculated by the HL optimizer, to divide the global 
optimization problem through a distributed control approach 
in which three different MPCs deal with their own specific 
network, and sequentially solve the optimization problem in 
real-time: First, the BOFG network MPC solves its own 
optimization problem, calculating BOFG transferred to the 
BFG network (𝒗𝒗BOFG→BFn

pred ) for the overall prediction horizon. 
Secondly, the steam network controller solves its distribution 
problem by calculating the BFG volume flow consumed in the 
boilers (𝒗𝒗BFGcons

pred ). These two setpoints are exploited by the 
BFG controller that finally calculates the POG amount to be 
sent to the power plant. In integrated steelworks where the 
mutual interactions between networks are of greater entity, an 
approach different than sequential should be used. In this case, 
in order to obtain an overall optimal solution, different 
methods can be used (Trodden et al., 2017). 

More in details the LL optimizer calculates, for a prediction 
horizon of 𝑁𝑁𝐿𝐿𝐿𝐿 samples, a control strategy characterized by a 1 
minute sampling time. The chosen sampling time allows 
considering the main dynamics of each equipment and 

network, and a more detailed and stringent set of constraints. 
As mentioned before, each network controller has its specific 
formulation. The main objective of the steam controller is 
keeping the pressure of steam accumulator 𝑝𝑝𝑎𝑎 within the safety 
limits [𝑝𝑝𝑎𝑎

𝑚𝑚𝑚𝑚𝑛𝑛 𝑝𝑝𝑎𝑎
𝑚𝑚𝑎𝑎𝑚𝑚] while satisfying the steam needs of the 

users connected to the network. In particular, the steam 
network controller minimizes the economic objective function 
𝐽𝐽𝐿𝐿𝐿𝐿

𝑆𝑆 (𝑡𝑡, 𝑁𝑁LL, 𝒖𝒖LL
𝑆𝑆 ) at control instant 𝑡𝑡, by manipulating 𝒖𝒖LLS =

[𝒎𝒎𝐜𝐜𝐜𝐜 𝜹𝜹𝐵𝐵 𝒗𝒗NG𝑖𝑖 𝒗𝒗BFG𝑖𝑖]𝑻𝑻 without a blocking strategy (and a 
prediction horizon equal to the control horizon): 

𝐽𝐽𝐿𝐿𝐿𝐿
𝑆𝑆 (𝑡𝑡, 𝑁𝑁𝐿𝐿𝐿𝐿, 𝒖𝒖LL

𝑆𝑆 ) = ∑ 𝛾𝛾𝑘𝑘(𝑐𝑐𝑆𝑆𝑁𝑁𝐸𝐸𝑆𝑆𝑁𝑁
𝑆𝑆𝑆𝑆(𝑘𝑘) + 𝑐𝑐𝑎𝑎𝑛𝑛𝑚𝑚𝑎𝑎𝑛𝑛(𝑘𝑘) +

𝑡𝑡+𝑆𝑆𝐿𝐿𝐿𝐿

𝑘𝑘=𝑡𝑡

−𝑐𝑐𝑝𝑝𝐶𝐶𝑝𝑝𝑎𝑎(𝑘𝑘) + 𝐶𝐶Δ𝛿𝛿𝐵𝐵(𝑘𝑘) + 𝒄𝒄𝑛𝑛𝑆𝑆𝑆𝑆𝒔𝒔𝑆𝑆𝑆𝑆(𝑘𝑘)) (16)
 

Where 𝐸𝐸𝑆𝑆𝑁𝑁
𝑆𝑆𝑆𝑆 is the total NG consumption in the steam boilers, 

𝑚𝑚𝑎𝑎𝑛𝑛 is the condensed steam mass flow,  𝑐𝑐𝑝𝑝 is a fictious cost 
that penalizes the accumulator pressure for pressure outside 
the range [�̌�𝑝𝑎𝑎 �̂�𝑝𝑎𝑎]: 

𝐶𝐶𝑝𝑝𝑎𝑎(𝑘𝑘) = max([0, �̌�𝑝𝑎𝑎 −  𝑝𝑝𝑎𝑎(𝑘𝑘)]) + max([0, 𝑝𝑝𝑎𝑎(𝑘𝑘) − �̂�𝑝𝑎𝑎]) (17) 

𝐶𝐶Δ𝛿𝛿𝐵𝐵 is a fictious cost that penalizes (by a factor 𝑐𝑐off) the 
switching of each 𝑖𝑖-th boilers 𝛿𝛿off𝑖𝑖:  

𝐶𝐶Δ𝛿𝛿𝐵𝐵(𝑘𝑘) = 𝑐𝑐off ∑|𝛿𝛿off𝑖𝑖(𝑘𝑘) − 𝛿𝛿off𝑖𝑖(𝑘𝑘 − 1)|
𝑛𝑛𝑏𝑏

𝑚𝑚=1
(18) 

Each boiler can be operated in different Boolean modalities 𝛿𝛿: 
𝛿𝛿off𝑖𝑖 when it is off, 𝛿𝛿BFG𝑖𝑖 when it exploits only BFG, and 𝛿𝛿MG𝑖𝑖 
when it exploits a mixture of BFG and NG. Each 𝑧𝑧-th modality 
𝛿𝛿𝑧𝑧𝑖𝑖 is exclusive and is characterized by different limits on the 
heating power [𝐻𝐻𝐽𝐽𝑚𝑚𝑧𝑧

min 𝐻𝐻𝐽𝐽𝑚𝑚𝑧𝑧
max]: 

𝜹𝜹𝐵𝐵 = [𝜹𝜹𝑩𝑩𝟏𝟏 ⋯ 𝜹𝜹𝑩𝑩𝒏𝒏𝒃𝒃 ], 𝛿𝛿𝐵𝐵𝑖𝑖 = [𝛿𝛿off𝑖𝑖 𝛿𝛿BFG𝑖𝑖 𝛿𝛿MG𝑖𝑖] (19) 

𝛿𝛿off𝑖𝑖 + 𝛿𝛿BFG𝑖𝑖 + 𝛿𝛿MG𝑖𝑖 = 1 (20) 

𝛿𝛿𝑚𝑚𝑧𝑧 → (𝐻𝐻𝐽𝐽𝑚𝑚𝑧𝑧
min ≤ ∑ 𝑁𝑁𝐶𝐶𝑁𝑁𝑙𝑙(𝑘𝑘)𝑣𝑣𝑙𝑙

𝐵𝐵𝑖𝑖(𝑘𝑘)
𝑔𝑔𝑆𝑆𝑗𝑗

𝑙𝑙=1
≤ 𝐻𝐻𝐽𝐽𝑚𝑚𝑖𝑖

max) (21) 

Bold characters refer to vector of variables that takes into 
account the overall control horizon.  

The problem formulation includes the steam mass 
conservation in the network calculated by (22) and the 
dynamic of the steam mass stored in the accumulator and 
network 𝑀𝑀𝑎𝑎: 

𝑚𝑚𝑛𝑛𝑎𝑎(𝑘𝑘) + ∑ 𝑚𝑚𝐵𝐵𝑖𝑖(𝑘𝑘)
𝑛𝑛𝑏𝑏

𝑚𝑚=1
− 𝑚𝑚𝐶𝐶𝑆𝑆(𝑘𝑘) − 𝑚𝑚𝑎𝑎(𝑘𝑘) = 0 (22) 

𝑀𝑀𝑎𝑎(𝑘𝑘 + 1) = 𝑀𝑀𝑎𝑎(𝑘𝑘) − 1
60 𝑚𝑚𝑎𝑎(𝑘𝑘) (23) 

Where 𝑚𝑚𝑛𝑛𝑎𝑎 is the excess of steam mass flow between non-
controllable producers (the BOF boilers) and the users that acts 
on the steam network as a disturbance, 𝑚𝑚𝐵𝐵𝑖𝑖  is the steam mass 
flow produced by boilers and 𝑚𝑚𝑎𝑎 is the mass flow stored in the 
accumulator and network. The boiler can exploit an amount of 
BFG that can exceed the BFG setpoint reserved for them by a 
quantity 𝑠𝑠BFG, penalized in the cost function:  

∑ 𝑣𝑣BFG𝑖𝑖(𝑘𝑘)
𝑛𝑛𝑏𝑏

𝑖𝑖=1
≤ 𝒗𝒗BFGcons

pred (𝑘𝑘) + 𝑠𝑠BFG(𝑘𝑘) (24) 

The dynamics of the produced steam mass flow 𝑚𝑚𝐵𝐵𝑖𝑖  is 
modelled by a state space model, whose parameter are 
identified through real field data.  In the same way, the 
dynamics of the accumulator pressure is modelled through a 
specific state space model excited by the excess of steam mass 
flow that is stored within.  

The BOFG and BFG controllers minimize their specific 
economic cost functions. BOFG controller implementation is 
widely described in the work (Wolff et al., 2019), where all the 
technical details and some simulation results are reported. For 
the AMB case study, the BFG controller implements a simpler 
formulation, in which the optimization routines minimize the 
following cost function: 

𝐽𝐽LL
BFG(𝑡𝑡, 𝑁𝑁LL, 𝒖𝒖LL

BFG) = ∑ 𝛾𝛾𝑘𝑘(𝑐𝑐𝐸𝐸𝐸𝐸(𝑘𝑘)𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) − 𝑐𝑐𝐸𝐸𝐸𝐸(𝑘𝑘)𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)
𝑡𝑡+𝑁𝑁LL

𝑘𝑘=𝑡𝑡

+𝐶𝐶BFG
GH (𝑘𝑘) + 𝑐𝑐𝑇𝑇𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵

𝑇𝑇 (𝑘𝑘) + 𝐶𝐶Δ𝐸𝐸𝑃𝑃𝑃𝑃(𝑘𝑘) + 𝒄𝒄𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵𝒔𝒔𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘)) (25)
 

Where the term 𝐶𝐶BFG
GH  penalizes the level of gasholder when it 

is outside the range [�̌�𝐿 �̂�𝐿], 𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵
𝑇𝑇  is the BFG waste in the 

torches, 𝐶𝐶Δ𝐸𝐸𝑃𝑃𝑃𝑃 penalizes the variation of produced electric 
energy in the power plant, 𝒔𝒔𝐵𝐵𝐵𝐵𝐵𝐵  and 𝒄𝒄𝑠𝑠

𝐵𝐵𝐵𝐵𝐵𝐵  are respectively the 
soften variables of the most difficult constraints and their 
penalization price. 

𝐶𝐶BFG
GH (𝑘𝑘) = max([0, �̌�𝐿 − 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵

𝐵𝐵𝐺𝐺 (𝑘𝑘)]) + max([0, 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐺𝐺 (𝑘𝑘) − �̂�𝐿]) (26) 

𝐶𝐶Δ𝐸𝐸𝑃𝑃𝑃𝑃(𝑘𝑘) = 𝑐𝑐Δ𝐸𝐸|𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘 + 1) − 𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘)| (27) 

The electric network balance is calculated with equation (14), 
enhanced with three indicator constraints, where 𝛿𝛿𝑆𝑆 and 𝛿𝛿𝐸𝐸 are 
Boolean variables that respectively indicates when the electric 
energy is sold to the external grid or is purchased: 

0 ≤ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑘𝑘) ≤ 𝛿𝛿𝐸𝐸(𝑘𝑘)𝐸𝐸𝐸𝐸𝐸𝐸
𝑚𝑚𝑚𝑚𝑚𝑚 (28) 

0 ≤ 𝐸𝐸𝐸𝐸𝑆𝑆(𝑘𝑘) ≤ 𝛿𝛿𝑆𝑆(𝑘𝑘)𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 (29) 

𝛿𝛿𝑆𝑆(𝑘𝑘) + 𝛿𝛿𝐸𝐸(𝑘𝑘) = 1 (30) 

The BFG flows are modelled through: 

𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵
𝑝𝑝 (𝑘𝑘) − 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

𝑐𝑐 (𝑘𝑘) − 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵
𝐸𝐸𝐸𝐸 (𝑘𝑘) − 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

𝑇𝑇 (𝑘𝑘) − 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐺𝐺𝑖𝑖𝑖𝑖(𝑘𝑘) = 0 (31) 

where 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵
𝑝𝑝  and 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

𝑐𝑐  are respectively the BFG production and 
consumption (disturbances acting on the system),  𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

𝐸𝐸𝐸𝐸  is the 
BFG consumption in the power plant, 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

𝑇𝑇  is the BFG volume 
flow waste in the torches, 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

𝐵𝐵𝐺𝐺𝑖𝑖𝑖𝑖 is the BFG excess 
accumulated in the gasholder. In particular, 𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵

𝐵𝐵𝐺𝐺𝑖𝑖𝑖𝑖(𝑘𝑘) excites 
the level dynamics of the gasholder, simulated through an ad-
hoc identified state space model.   

The described supervision and control system has been 
prototyped in Matlab environment, through YALMIP 
(Lofberg, 2004) and GUROBI, respectively an optimization 
language and an optimization library, and the translated in C++ 
through Google Or-Tools and the optimization library SCIP. 
Each MPC solves in real-time the MILP formulation. The 
optimization routines must find a solution within a dedicated 

time slot in order to deliver the control trends to the operators 
that apply them through dedicated Human Machine Interfaces. 

4. NUMERICAL RESULTS 

The validity of the control approach has been assessed through 
a wide test campaign, by exploiting real past field data of the 
AMB integrated steelworks. Several scenarios have been 
simulated, which take into account both periods of more 
continuous steel production and periods of discontinuous 
production, during which POGs are produced in strictly 
proportional quantities. Here we summarized and reported the 
main achieved results. With the aim of verifying the behavior 
of each steam, POG and electricity network and assessing the 
achievable performances, and the gains in terms of economic 
costs and environmental impact, the supervision and control 
system was tested in closed loop through accurate models of 
each plant, equipment and network. Closing the loop through 
the models allows us to estimate the improvements that can be 
obtained if operators promptly applied the calculated control 
trends. Figures 2-3 summarize the results. All the figures and 
performances are normalized with respect to the maximum 
values for confidentiality reasons.  More in details, figure 2 in 
blue and yellow respectively shows the economic costs for the 
optimized simulation (CTRL) and the real non-optimized data 
(Real). In particular, the figure presents only the fraction of 
energy costs that can be controlled through a proper POG 
distribution, and they do not take into account the overall 
energy expense of the integrated steelworks. The costs 
presented are the Total energy costs (including electricity, NG, 
and environmental impact). Figure 3 shows some results 
related to the energy distribution in the integrated steelworks:  
the BOFG distribution to the main users in the optimized and 
real cases (BOFG volumes are normalized with respect to its 
total produced volume); the environmental impact in terms of 
the total POG wasted in the torches; the amount of condensed 
steam in the condenser, exploited to control accumulator and 
network pressures.  

 
Figure 2: Costs distribution of the controllable fraction of energy 

media. 

 
Figure 3: Energy distribution. 

In general, the optimization system allows to synchronize all 
the energy flows, minimizing the exploitation of external 
resources such as natural gas and electricity. The controllers, 
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thanks through the prediction calculated by the digital twin, 
maximize the electricity production through POGs, and 
distribute the POG flows to the plants, ensuring their energy 
needs but also considering economic aspects in function of the 
prices of natural gas and electricity.  For the steam network, 
condenser and steam boilers are better synchronized with 
respect to the real case, allowing from a hand to decrease the 
energy losses in the condensed steam and decreasing the steam 
production in the boilers, with an improvement in the 
efficiency of the steam network management.  

5. CONCLUSIONS 

This paper presents a supervision and control system aimed at 
optimizing process off-gas distribution to satisfy the energy 
needs of integrated steelworks. The implemented system is the 
core of a Decision Support System that is going to be installed 
and tested by ArcelorMittal Bremen in their plant, improving 
the current energy management system. The control system 
takes advantage of an ad-hoc developed digital twin that 
models the integrated steelworks from and energy point of 
view, through standard linear modelling techniques and 
advanced machine learning methodologies. All the models 
have been developed and validated through real field data, and 
the optimization and control system has been extensively 
tested through simulation campaigns to verify its effectiveness 
and validate the approach followed. The system allows 
reducing the process off-gases flaring in the torches by up to 
97% and significantly the purchase of electricity and natural 
gas from external sources, with a considerable reduction on the 
economic costs but also environmental impact. Future works 
will investigate mixed integer quadratic programming 
formulations for the low level controller, in order to implement 
a tracking MPC and study the possible improvements. 
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