
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.XXX.XXXXXXX

A 2-phase Strategy For Intelligent Cloud
Operations

GIACOMO LANCIANO 1,2, REMO ANDREOLI 2, TOMMASO CUCINOTTA 2, DAVIDE

BACCIU 3, and ANDREA PASSARELLA 4

1 Scuola Normale Superiore, Pisa, Italy (e-mail: giacomo.lanciano@sns.it)
2 Scuola Superiore Sant’Anna, Pisa, Italy (e-mail: firstname.lastname@santannapisa.it)
3 University of Pisa, Italy (e-mail: davide.bacciu@unipi.it)
4 National Research Council, Pisa, Italy (e-mail: andrea.passarella@iit.cnr.it)

Corresponding author: Tommaso Cucinotta (e-mail: tommaso.cucinotta@santannapisa.it).

ABSTRACT When operating large cloud computing infrastructures, ensuring healthiness of physical

resources and software components is of paramount importance to meet the demanding service levels

expected by customers. This is only possible using automations that can detect anomalies and alert the on-call

personnel, or trigger healing procedures. In production-grade deployments, such automations are generally

based on static thresholds or predefined pattern-matching rules, checked against relevant metrics and logs.

Defining and maintaining them is cumbersome and, as the infrastructure grows, they need continuous

adjustments. To tackle this problem, we propose an intelligent automation system for cloud operations that

learns, from what operators have done in the past, what actions should be applied in response to the observed

anomalies. Such system is designed to operate elastic groups of cloud instances realizing typical (replicated)

cloud services. The mechanism is based on a 2-phase machine learning pipeline, composed of: a first, lighter,

model that automatically detects anomalous patterns, based on past observations of the normal behavior,

causing activation of the second, more involved, model; this is a model that recommends specific corrective

actions, based on historical operational data reporting the actions applied to heal the faulty components.

The approach was validated on an OpenStack deployment, where we deployed both a synthetic application

and a multi-node Cassandra NoSQL data-store, and injected different types of anomalies while these systems

were exercised using synthetic workloads. For both applications, we obtained a remarkable accuracy (mostly

beyond 90%, and also going beyond 95% in some cases), for the anomaly detection and corrective action

recommendation tasks, by applying the models on the respective test sets. This allows us to conclude that

the presented mechanism constitutes an efficient and effective technique to help operating cloud services in

presence of a number of faults, albeit the types and heterogeneity of faulty conditions might be expanded

in future evolutions of the framework. The implementation and the material needed to reproduce our results

are available under an open-source license.

INDEX TERMS Cloud operations, Fault management, Machine learning, Monitoring, OpenStack

I. INTRODUCTION

C
LOUD computing has become an essential technology

in the modern distributed computing landscape [1].

Many diverse application domains [2], [3] leverage on ser-

vices deployed in either public or private clouds, like smart

cities, industrial factories, healthcare, e-Commerce, or even

telecommunications, with the increasing adoption of Net-

work Function Virtualization (NFV) [4]. Cloud infrastruc-

tures and services have rapidly evolved [5] from the initial

infrastructure-as-a-service (IaaS) provisioning model to the

platform-as-a-service (PaaS) one, that is the most widespread

nowadays. PaaS enables development and deployment of

modern cloud-native applications [6], deeply integrated with

a plethora of APIs and services, such as: reliable relational

and NoSQL databases, advanced and secure networking,

load-balancing (LB) and auto-scaling, serverless computing,

integrated machine learning (ML) frameworks for training

and operating large models, etc. Correspondingly, cloud in-

frastructures have significantly grown in size and complexity,

having to deal with an ever-growing software stack on top of

which such a wide variety of services can be made available.

Guaranteeing high reliability and availability is only possible

thanks to effective operations teams, that work 24/7 to keep

such systems up, running and responsive.

VOLUME 11, 2023 1

https://orcid.org/0000-0002-7431-8041
https://orcid.org/0000-0002-3268-4289
https://orcid.org/0000-0002-0362-0657
https://orcid.org/0000-0001-5213-2468
https://orcid.org/0000-0002-1694-612X


Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

The problem of operating big and complex distributed

infrastructures is far from trivial. Industrial practices rely

on monitoring metrics collected from physical and virtual

elements of the infrastructure, e.g.: physical hosts, virtual

machines (VMs), containers, networking appliances, and oth-

ers. Metrics are persisted such that they can be visually, or

analytically [7], inspected by operators. Also, they are typi-

cally automatically checked against a number of predefined,

usually threshold-based, rules that possibly identify problems

and trigger appropriate corrective actions. A classical ex-

ample is a LB with self-healing capabilities, that adds new

instances to an elastic compute group whenever the num-

ber of healthy instances goes below a configured amount.

Other mechanisms are instead based on predefined pattern-

matching rules to be checked against logs [8]. In a large-

scale cloud operations scenario, there are thousands of active

automation rules. However, as new scenarios occur, such rules

need continuous adjustments to keep on being effective. Also,

in response to an issue being identified, an operator typically

starts a (non-trivial) root-cause analysis [9], [10], to under-

stand what caused it, and ultimately what is the right fix. One

of the greatest challenge for cloud providers is to sustainably

deal with the ever-increasing size of the physical infrastruc-

ture. Ideally, without having to correspondingly increase the

number of operators that continuously watch dashboards, and

troubleshoot and fix infrastructure problems. In other words,

they should aim at that ‘‘rapid provisioning with nearly zero

human interaction’’, originally predicated by NIST [11].

Therefore, cloud providers are increasingly investing in

developing intelligent techniques to support humans oper-

ators in their tasks, such as anomaly detection (AD) [12],

resource allocation and capacity planning. Given the abun-

dance of operational data, it is natural to seek for data-driven

approaches like ML, that can augment the capabilities of

operators to ‘‘navigate’’ the zillions of available time-series

and logs. For instance, considering the AD problem, many

works in the literature leverage on either supervised [13],

[14] or unsupervised [15]–[17] ML algorithms to detect early

symptoms of anomalous conditions at different levels of a

cloud infrastructure. Similarly, many recent works [18]–[20]

propose time-series forecasting techniques to anticipate the

evolution of workloads and scale compute resources (e.g.,

VMs or containers) accordingly. However, effectively using

such approaches in production is not straightforward. Indeed,

there are many characteristics of the monitored system to

take into account, like the topology of the physical infrastruc-

ture [21], the design patterns used to realize the individual

applications [22], [23], or the in-place QoS requirements [24].

A. CONTRIBUTIONS

In this paper, we tackle the problem of automated operations

for elastically deployed cloud services, proposing a strategy

for intelligent anomaly detection and correction suggestion

that consists of two phases: (i) detecting anomalous opera-

tional conditions of an application made of an elastic group of

cloud instances; (ii) identifying the faulty component within

the group, and proposing the best corrective action to restore

it. Both phases rely onMLmodels to learn from the appropri-

ate operational data to detect early symptoms of anomalous

conditions and to identify the proper corrective actions to

apply, without explicitly coding static rules. This work aims

at closing the cloud operations loop in a totally automated

fashion, envisioning a system with the ability to learn from

the corrective actions applied by operators in similar previous

cases. We validated the proposed approach by deploying a

synthetic application and a Cassandra NoSQL cluster on an

OpenStack testbed. We trained and tested the ML models

on system-level monitoring data gathered while injecting

different types of anomalies on the mentioned applications,

including exogenous workload interferences, sudden failure

of a cluster member, and saturation of CPU capacity and

disk I/O bandwidth. For (i), we trained an AD model such

that it could generalize to variable-sized groups of instances.

On the respective test sets, for the synthetic application, we

obtained a ROC-AUC of 97% and an accuracy of 90.34%,

while, for Cassandra, we obtained a ROC-AUC of 94% and an

accuracy of 87.50%. For (ii), we trained a supervised multi-

label classification model, such that it could associate correc-

tive actions to instances individually. On the respective test

sets, for the synthetic application, we obtained an accuracy

of 96.15%, while, for Cassandra, we obtained an accuracy of

98.75%. See Section IV for more details on the performed

experimentation. The implementation of our approach and the

material needed to reproduce our results are available under

an open-source license.

B. PAPER OVERVIEW

After a brief recall of related research in Section II, in

Section III we present our architecture for intelligent cloud

operations. Our approach was prototyped and validated on

an OpenStack test-bed, as shown by the results reported in

Section IV. Our results allow for drawing a few conclusions,

reported in Section V, alongside possible ideas for future

research on the topic.

II. RELATED WORK

Recently, ML-based approaches have been increasingly pro-

posed as effective solutions to a diverse set of resource man-

agement tasks [25] for both public and private cloud infras-

tructures. In this section, we provide an overview of related

research works on the topic.

In [19], the authors propose a time-series forecasting

framework that enhances the monitoring capability of the

Monasca service for OpenStack. Such framework enables

proactive operations approaches, like defining predictive

auto-scaling policies that are able to anticipate load peaks.

Similarly, in [20], the authors propose an analogous proac-

tive auto-scaling approach tailored for edge computing ap-

plications on Kubernetes. In addition, they also provide an

automatic model retrain mechanism to counteract concept

drift. In [23], the authors propose the RScale framework,

based on Gaussian Process (GP) regression, to predict the

2 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

tail-latency of distributed DAG-alike topologies of micro-

services. In [21], the authors propose a time-series forecast-

ing approach that boosts its accuracy by also incorporating

topology information, leveraging on graph neural networks

(GNNs). In [18], the authors describe a simple predictive

scaling strategy that exploits the estimation of a percentile

of the resource demand, and a probabilistic cost function for

over-/under-provisioning the cluster. Remarkably, the authors

evaluate their technique on data coming from ~40K real AWS

auto-scaling groups. In [22], the authors use supervised learn-

ing methods to implement proactive auto-scaling policies for

multi-tier elastic applications, taking into account unstable

performance of individual components. Specifically, they use

linear regression to predict the short-term request arrival rates

and the evolution of the response times. The predictions are

then mapped to the appropriate elasticity configurations with

a Random Forest (RF). In [26], the authors propose a neural

network-based model to predict the resources utilization and

execution time of continuous integration tasks by analyzing

open data from a Travis system. In [24], the authors pro-

pose a successful Reinforcement Learning-based approach to

service-chains deployment in NFV, that jointly minimizes op-

eration costs and maximizes requests throughput, also taking

into account different QoS requirements.

In [14], the authors evaluate several supervised learning

approaches for Anomaly Detection (AD) by injecting faults

in a Kubernetes cluster. Similarly, in [13], the authors also

evaluate supervised learning techniques for off-line AD in

an NFV environment. The authors train their models on

host monitoring data collected while injecting anomalies in

a test-based running the ClearWater IMS system on top of

OpenStack. Also, the authors of [12] provide a thorough

survey where they discuss the risks, in terms of anomalous

behaviors, correlated to switching to a NFV/cloud model.

For instance, incurring in temporal interferences generated

by virtualization and resource over-commitment. In [15], the

authors propose a real-time unsupervisedAD technique based

on Hierarchical Temporal Memory (HTM). In [16], the au-

thors propose a mechanism based on Self-Organizing Maps

(SOMs) to address AD in the context of NFV data centers.

They use a multi-variate clustering method to group similar

daily patterns of VMs in one or more service components,

such that group changes are regarded as a possible anomaly.

In [10], the authors describe a root-cause analysis (RCA)

approach for NFV anomalies, based on a digital twin. They

frame the problem as a dynamic set-covering, and propose a

scalable solution based on hidden Markov models. In [27], a

variational autoencoder based on RNNs is proposed for AD

in cloud scenarios, where the autoencoder trained on nor-

mal/healthy conditions, is expected to produce larger errors

under anomalous/unhealthy conditions. This is followed by a

one-dimensional CNN classifier used to identify the anomaly

as being either a case of process death, CPU stress, network

delay or packet loss.

Compared to the above research, the work proposed in

the present paper tries to bridge the gap between detecting

a possible issue within a cloud system or component, identi-

fying the exact affected element within the infrastructure, and

deciding what corrective action to apply in order to return

the system to a normal behavior. This work aims at closing

this loop in a totally automated fashion, and with the ability

to learn from the corrective actions applied by humans in

similar previous cases. Most ML-based approaches focus on

specific operations aspects, like auto-scaling. Instead, our

scope includes a wider range of operations problems. Unlike

most related works, we framed the problem of deciding a cor-

rective action as a multi-label classification task. Typically,

operations teams cater collections of procedures known to be

effective at recovering their systems from (recurrent) error

conditions. Also, when responding to an issue, the same teams

are required to log their actions, in a ticketing system. Such

information can be correlated with system-/app-level data,

to learn ‘‘intelligent’’ operations models. For instance, the

approach described in [27] brings an interesting resemblance

with our approach, in that both include an unsupervised

layer for AD, followed by an anomaly classifier. However,

the previous work analyzes metrics from a single instance

at a time only, and it does not consider the common case

of horizontally-scalable elastic clusters. Furthermore, in our

work we aim at letting the system learn what corrective action

to apply to the anomaly being analyzed, imitating what was

made with prior manual interventions.

III. PROPOSED APPROACH

In this section, we present an overview of the proposed archi-

tecture, discussing some important implementation details.

A. GENERAL ARCHITECTURE

Traditional approaches to cloud operations ensure healthiness

of applications through (often complex) automations that

are, hopefully, able to detect possible abnormal conditions,

send appropriate alerts and possibly trigger recovery actions.

However, such mechanisms are still typically based on static

rules and thresholds, that are often very easy to interpret,

but quickly become cumbersome to maintain as the scale of

the system grows. Using ML to solve the kind of problems

mentioned above is strongly supported by the abundance of

(very diverse) operational data that are produced in cloud en-

vironments. Either the infrastructure components themselves,

or the on-call personnel that work around the clock to make

sure that everything runs smoothly, continuously generate

useful information. Such information can be leveraged upon

to devise intelligent automations, that adapt as they observe

more diverse operational conditions.

Figure 1 shows how our approach enhances the control

loop of a cloud infrastructure, by: ingesting the operational

data coming from two important data sources, i.e., the mon-

itoring system providing metrics related to the monitored in-

stances, and the information on actions applied by human op-

erators to the system; analyzing these data using our proposed

Intelligent Operations method (IntOps, in the figure), capable

of identifying anomalies, and outputting recommendations of

VOLUME 11, 2023 3



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

Data Sources IntOps SystemCluster

VM1
Monitoring

System

VMn

Action
Classifier

Cluster
Metrics

Anomaly
Detector

Corrective Actions

Operational
Data

Human
Operators

FIGURE 1: Architectural diagram of the proposed intelligent

operations approach.

the action needed to restore a healthy service. In such settings,

it is possible, e.g., to anticipate the occurrence of system out-

ages, by analyzing the historical data describing the relevant

system- and application-level metrics during past outages. Or,

e.g., to identify their likely root-cause, and the most effective

corrective actions to be applied, by looking for similarities

in logs and reports associated with past incidents. At the

moment, our approach allows for: detecting performance

degradation due to workload co-located on the same physical

hosts, recommending a relocation on healthier host; detecting

faulty members of load-balanced groups of instances, that

stop taking their share of the load, recommending to reboot

the offending instance; detecting the shortage of allocated

resources due to dynamic workload changes and its expected

evolution in the short-term, recommending an elastic scaling

action, to prevent serious performance degradation.

A number of other anomalous scenarios are planned to be

integrated into the framework, including transient failures and

hardware degradation (i.e., not entire failures, but faults im-

pairing seriously the performance of disks, memory modules,

network interface cards, etc.). Remarkably, when the set of

observed anomalous scenarios to consider grows, ML-based

approaches like ours scale significantly better than traditional

static rules and thresholds. Indeed, such approaches require

continuousmanual tuning to capture new, unforeseen, anoma-

lous behavior, and possibly to develop a separate criterion

for each possible case. Instead, for ML models, it is often

sufficient to add the new observed behavior to the training set,

and restart the training procedure, without explicitly coding

new rules. Furthermore, provided that the resultingMLmodel

exhibits a satisfactory generalization power, re-training might

not even be necessary.

B. IMPLEMENTATION DETAILS

To demonstrate the effectiveness of our approach, we im-

plemented it to work with data exported from OpenStack,

for each instance 

Elastic Application

Anomaly Detector
(MADI - NSRF)

Actions Classifier
(XGBoost)

Spatial Aggregations

1. CPU avg.
2. CPU std. dev.
3. Disk I/O avg.
4. Disk I/O std. dev.

Tim
e

1

Fine-grained Data

1. CPU (instance)
2. Disk I/O (instance)
3. CPU avg. (others)
4. Disk I/O avg. (others)
5. CPU std. dev. (others)
6. Disk I/O std. dev. (others)

Anomaly
Detected

4

2 5

3

Tim
e

Recommended
Actions6

FIGURE 2: Implementation details of the proposed intelli-

gent operations approach.

one of the most used open-source cloud orchestration frame-

works [28]. For simplicity, in our validation (see Section IV)

we only considered the CPU and disk I/O activity measure-

ments generated by the runs of our test application. However,

our approach can handle a variable number of system- or

application-level metrics. Then, we manually labelled such

raw data to distinguish among different operational condi-

tions, also taking into account the related response times

measurements, collected client-side, as a general indication of

the QoS. In other words, we emulated the information that is

typically produced by operations teams after a system outage

occur (e.g., post-mortem documents). Notice that, while the

test application was running on a horizontally-scalable group

of VMs, our approach is agnostic with respect to the used

virtualization technology. For both steps, we preferred to use

ML models that are sufficiently lightweight to train and use,

yet they achieve the right levels of accuracy in AD tasks.

This allows us to possibly scale our proposed solution to

the analysis of several elastic groups composed of many

instances. Furthermore, we seeked models that guarantee

a sufficient level of interpretability, as cloud automations

should be highly dependable and auditable, thus we prefer

not to use heavyweight models based on DNNs. However,

explainability analysis goes beyond the scope of this paper

and will be addressed in future works.

Figure 2 summarizes the main implementation details of

our approach. The AD model (i.e., step (i)) continuously

monitors the status of a specific elastic cloud application

by considering coarse-grained (aggregated) data. Then, as

soon as an anomalous condition is detected, the classification

model (i.e., step (ii)) is triggered to analyze fine-grained data,

considering the underlying instances individually, to possibly

recommend a corrective action for each of them.

For step (i), we trained an AD model on spatial aggregates

4 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

of such data, so that the model can generalize to elastic groups

of instances. Also, as it is continuously executed, this step acts

as a low-cost filter that prevents the system from running the

(more expensive) step (ii) on higher-resolution data when it

is not necessary. In these settings, it is impractical to assume

the availability of large amounts of labelled data. We opted

for MADI [17], an unsupervised AD approach that leverages

on negative sampling to cope with labelled data shortage.

MADI works spectacularly well with high-dimensional data

that capture complex multi-modal behaviors, assuming that

the presence of anomalous behavior is scarce. It assumes all

provided training data to be positive examples, and computes

a negative space to sample from, assuming that every behav-

ior that significantly differ from the positive examples is to be

considered anomalous. As there are now two distinct classes

of examples, it is possible to use any supervised classification

algorithm. We used the Negative Sampling Random Forest

(NSRF) provided by MADI, setting the hyper-parameters

as specified in the paper. We trained NSRF on a dataset

containing multiple traces of positive-only examples of ex-

pected CPU and disk I/O activity patterns. Such data were

preprocessed by calculating spatial aggregations, i.e., mean

(µ) and standard deviation (σ), to make the model agnostic

to the actual number of instances in the cluster. After that,

we applied standard scaling (i.e., subtracting to a signal its

µ and dividing by its σ) and built the set of training samples

by applying a rolling window of 5 observations, shifted by 1

observation at a time. Each sample consisted in a 2D vector

with dimensions 5× 4, i.e., a 5-minutes time-frame, partially

overlapping with adjacent samples, containing 2 spatial ag-

gregations of 2 distinct metrics. However, given that NSRF

is not designed to natively work with multi-variate time-

series, we reshaped each training sample to a 1D vector with

dimension 20, such that the rows of the original 2D vector

are stacked horizontally, and the contributions of the different

signals are interleaved.

For step (ii), we developed ourselves a simple, yet effec-

tive, supervised multi-label classification model using XG-

Boost [29], a powerful framework that offers performant

implementations of gradient-boosted trees (GBT) [30]. The

job of this model is to learn to distinguish among differ-

ent classes of anomalous conditions patterns, such that they

can be associated with the appropriate corrective actions.

This model is designed to run only when triggered by the

AD model, that continuously analyze new observations as

soon as they become available, and flags them if the cor-

responding application operates outside the expected condi-

tions. Therefore, as it is supposed to run infrequently, we

designed the model to work on instances’ raw data, in an

attempt to enhance its classification capabilities. Indeed, such

model is designed to compare the behavior of an individual

instance with the rest of the group (i.e., the other instances

that implement the same application), by taking as inputs

a combination of spatially-aggregated and raw data, under

the assumption that all instances in the same group behave

consistently. Given a flagged group of instances, that could

even be fairly large, the classifier is applied to each one

separately, to output a (possible) recommended corrective

action for each of them. Notice that this strategy potentially

allows for identifying both the root-cause and the appropriate

counter-measure even when an anomaly is caused bymultiple

instances at once. We trained the model on data collected

while injecting anomalies during runs of our test application

(see Section IV). We applied a preprocessing similar to the

one used for AD, such that each training sample consisted in

a 2D vector representing a 5-minutes window on the raw data.

However, for eachwindow, we generated a number of training

samples equal to the number of instances in the group. Each

sample consisted in a 5×6 vector, where the columns contain

the following information: 1) CPU utilization of the specific

instance; 2) Disk I/O activity of the specific instance; 3) µ of

the CPU utilization of the other instances; 4) µ of the disk I/O

activity of the other instances; 5) σ of the CPU utilization

of the other instances; 6) σ of the disk I/O activity of the

other instances. Also in this case, given that XGBoost is not

designed to natively work with multi-variate time-series, we

reshaped each training sample to a 1D vector with dimension

30, such that the rows of the original 2D vector are stacked

horizontally, and the contributions of the different signals are

interleaved. We used the metadata of our runs to label each

sample according to the corresponding type of behavior that,

in turn, is associated with a specific corrective action. If a

given sample was related to an injected instance, and at least

3 observations had been collected during the injection, then

the sample was labelled accordingly: 1 for stress, 2 for fault,

and 3 for saturation (0 otherwise).

IV. EXPERIMENTS

This section presents the results of an empirical validation of

the approach described in Section III, conducted by deploying

both a synthetic application and the Cassandra NoSQL data

store on OpenStack. We used data from such deployments to

train the underlying ML models, and assess their accuracy.

A. EXPERIMENTAL SET-UP

We carried out our experiments on an OpenStack installation

(Yoga release), that was deployed using Kolla [31], a tool for

automated deployment of OpenStack services using Docker

containers. OpenStack was hosted on 3 physical hosts:

1) A Dell R630 server, equipped with: 2 Intel Xeon E5-

2640 v4 CPUs (20 hyper-threads each) running at 2.40

GHz; 64 GB of RAM; a 3.3 TB Dell PERC H330 Mini

hard disk; Ubuntu 22.04 LTS; Linux kernel 5.15.0. This

host was used as controller and compute node.

2) A Dell R740xd server, equipped with: 2 Intel Xeon Gold

6238R CPUs (56 hyper-threads each) running at 2.20

GHz; 128GB of RAM; a 2.2 TBDell PERCH740PMini

hard disk; Ubuntu 20.04 LTS; Linux kernel 5.4.0. This

host was used as compute node.

3) A workstation, equipped with: an Intel Core i7-4790K

quad-core CPU (8 hyper-threads) running at 4.00 GHz;

16GB of RAM; a 500 GB Samsung 850 SSD; Ubuntu

VOLUME 11, 2023 5



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

22.04 LTS; Linux kernel 5.15.0. This host was used as

compute node.

These were all connected to the same switch using a 1 Gb

link cable. We deployed a test application leveraging on the

following services: (i)Heat [32], to orchestrate a horizontally-

scalable cluster of Nova [33] instances; (ii) Octavia [34],

for load-balancing; (iii) Monasca [35], for telemetry. The

application cluster was configured to have 3 instances, each

one deployed on a different physical host, such that we could

better control the experiments that involved monitoring the

disk I/O activity, by reducing interferences. Each instance

was provided with 1 vCPU and 2 GB of RAM, and with

Ubuntu 20.04 server cloud image. To better control our ex-

periments, we disabled both the elasticity and the self-healing

capabilities of the cluster, andwemade sure that each instance

was pinned to a different physical CPU core, that remained

unchanged for the entire duration of the experiments. The

instances were reachable through an Octavia load-balancer

(LB), that was configured with a least-connections strategy.

Monasca was configured to collect new CPU and disk I/O

activity measurements every minute.

B. SYNTHETIC WORKLOAD GENERATOR

We used the open-source distwalk [36] tool to generate traf-

fic on our deployment, consisting of: a server component,

that accepts connections from clients via TCP/IP; a client

component, sending requests to the server, asking to perform

different kinds of tasks (e.g., stressing the CPU, moving data

to/from the disk, networking activities, etc.). One can tune the

amount of resources to be consumed in a given time frame,

by specifying the way in which requests are submitted, with

distributed inter-arrival times, payload sizes, or I/O transfer

sizes. A client can also be configured to spawn multiple

threads (submitting traffic in parallel) and/or to break their

execution in multiple sessions, by closing and re-establishing

their TCP/IP connections with the server. We set the client

such that the CPU and disk I/O activity of the instances

followed a set of dynamic workload profiles. The client was

configured to spawn 2 threads per instance, each one provided

with a trace specifying the operation rates (i.e., requests per

second), to be maintained for 1 minute each. Each thread was

also configured to create a total of 5000 sessions over each

run, such that a new target instance could be selected by the

load-balancer at each new session establishment.

C. APACHE CASSANDRA

Beside the aforementioned synthetic application, we also

used Apache Cassandra, a widely known open-source

NoSQL data store, to also test our approach in more realistic

scenarios. Based on the design principles of Dynamo [37],

Cassandra is a distributed data store characterized by a scal-

able and fault-tolerant peer-to-peer architecture, able to han-

dle large amounts of data by spreading the load across the

cluster. In practice, this is done by partitioning the key-space

of a table primary key, spreading its shares over the peers.

Cassandra offers the possibility to tune the level of write/read

consistency, and the replication strategy. Such features make

it a great cloud storage solution for critical big-data applica-

tions that require high scalability and availability, or for high-

throughput use cases with less stringent consistency require-

ments. We deployed Cassandra on our OpenStack test-bed,

with each peer hosted in a VM on a different physical host,

and the keyspace replicated across the whole cluster to avoid

data loss in case of anomalies. The traffic is generated using

YCSB [38], a well-known open-source benchmarking tool for

NoSQL data stores, which allows for configuring: the proba-

bility distribution of requests across the key-space; the num-

ber of pre-inserted records; the proportion of read, update,

scan and insert operations to issue; and other performance-

related parameters. In our case, to avoid saturating the avail-

able disk space, YCSB was configured to load into the cluster

a pre-fixed amount of records (1 million, 1 KB each). Also,

the traffic throughout each run included update operations

only (3 millions in total, at a rate of 1000 ops/sec), such

that the cluster could still perform write operations without

increasing the total number of records. The cluster was also

set with a replication level equal to 3, and a consistency level

varying between 1 and 2.

D. ANOMALY INJECTION

To train and evaluate the ML models underlying our ap-

proach, we needed examples of anomalous conditions to

associate with the typical corrective actions described in

Section III. For simplicity, we considered only three of the

most common anomaly types in cloud environments: (i)

interferences generated by external load co-located on the

same physical hosts; (ii) faulty members of load-balanced

groups of instances that stop picking their traffic share; and

(iii) saturation of the current resource capacity. To generate

data describing such anomalous conditions, we artificially

injected them during the execution of our runs. Specifically,

for (i), we used stress-ng [39] to simulate the interference

of external processes that end up being scheduled on the

same physical host of an instance. For (ii), it was sufficient

to kill the application process running on a specific instance

to make it stop responding to requests. Whereas, for (iii),

we just made sure to send a workload that could not be

properly handled by the currently allocated resources. We

also augmented the diversity of the anomalous behaviors to

be observed by our ML models by generating and enforcing

schedules of randomly distributed anomalies. However, to

better control our experiments, we made sure we had only

one, randomly selected, unhealthy instance at a time. Also,

once an instance was injected with an anomaly, we made

sure it remained unhealthy for an extended period (e.g., 5-10

minutes), automatically recovering afterwards.

A few examples of the data extracted from our experimen-

tal runs with the distwalk application are depicted in Figures 3

to 5. These report the observed resource-consumption levels

(on the Y axis for subfigures (a) and (b)) and experienced

client-side response times (on the Y axis for subfigures (c)),

over time (ont the X axis), during runs of distwalk using

6 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

FIGURE 3: Interferences generated by stress-ng on distwalk.

the same workload profile as input. The system-level met-

rics cpu.utilization_perc and io.write_ops_-

secwere collected by using theMonascamonitoring system,

while the client-side response times were extracted from the

distwalk client logs. Figures 3 and 5 present results in the

case of performance degradation due to co-located stress

workload, and saturation of the available resources, respec-

tively, while Figure 4 refers to a scenario with an instance

completely failing.

Note that, due to how the system components and the

distwalk client are configured, if anomalies are not injected,

then the LB continues to equally distribute the load among the

available instances. In such case, the disk I/O activity level

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

FIGURE 4: Faults due to killing an instance of distwalk.

should be more or less the same for all instances. However,

due to the different processors the available physical hosts

are equipped with, we can observe differences in terms of

CPU utilization levels, even though the workloads follow the

same profile during the run. A clear example of this scenario

is depicted in Figures 5a and 5b where, during the first 10

minutes of the run, the available resources were sufficient to

handle the workload. In this case, instance 2 was (randomly)

scheduled on the physical host equipped with the most power-

ful processor (see Section IV-A), and exhibited a lower CPU

utilization with respect to the other instances, while the disk

I/O activity was more or less equivalent. Furthermore, in such

normal cases, we can also observe particularly low client-

VOLUME 11, 2023 7



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

(a) CPU usage

(b) Disk I/O activity

(c) Client-side response times

FIGURE 5: Saturation of the disk bandwidth for distwalk.

side response times. In Figure 5c (and similar) we can indeed

appreciate how the distribution of the response times evolve

during a run, in terms of 50th, 90th and 99th percentiles. Each

point in the plot refers to a specific statistic calculated over

a 1-minute interval. For instance, a point at 0 refers to all

the response times registered during the first minute of the

run, and so on. Whenever the system did not saturate (e.g.,

during the first 10 minutes of the run), we generally observed

a p90 below 35 ms. Therefore, we took this value as a rough

indication of a good QoS.

Workload degradation

When using stress-ng to simulate interferences from co-

located, I/O-intensive, external workloads, we observed the

CPU and disk I/O activity of the affected instances signifi-

cantly dropping and staying around relatively low values. For

instance, in Figure 3, when the stress was injected around

minutes 7-12 on instance 0, such instance exhibited a CPU

utilization around ~10% (see Figure 3a) and a disk I/O activity

around ~20 ops/sec (see Figure 3b), compared to the reference

values, ~28% and ~62 ops/sec, respectively, exhibited by

instance 2 during the first peak of the workload. The effect of

the stress injection is even more significant around minutes

18-24, where instance 0, randomly picked again, exhibited

similar resource utilization values, but this time with ref-

erence values being ~46% and ~108 ops/sec, respectively,

during the third peak of the workload. The stress injection

also significantly affects the response latency perceived by the

client. Indeed, in Figure 3c, we can observe peaks of ~600 ms

in the p90 curve, corresponding to the injection intervals. Due

to how distwalk is designed, while an instance experiences in-

terferences, but is still barely able to send responses, the client

accumulates delay by waiting for responses, before triggering

the subsequent requests. This is the reason why, during stress-

injected runs, we typically observe longer ‘‘tails’’ of delayed

requests that keep on being sent at the last rate specified in

the workload schedule (e.g., around minutes 30-50).

Complete instance failure

We simulated an instance complete failure killing one of the

distwalk servers processing the requests. When doing so, we

observed the disk I/O activity of the affected instance drop-

ping to 0, and its CPU usage stabilizing around 2-3% (i.e., the

standard load generated by the OS background processes). On

the other hand, the activity on the other instances increased

accordingly, due to the LB redirecting the extra load on them.

For instance, in Figure 4, when the fault was injected around

minutes 6-13 on instance 2, we can see that the disk I/O

activity of the other instances reached ~100 ops/sec during

the first peak of the workload (Figure 4b). As we know a-

priori that the workload should have closely followed an ideal

sinusoidal pattern, we can definitely tell that it increased

significantly with respect to the expectations. The effect of

the fault injection, this time on instance 0, is even more

significant around minutes 20-26, with instance 1 reaching

~170 ops/sec and instance 2 reaching ~150 ops/sec. Simi-

lar behaviors can be observed for the CPU usage, although

it is less evident for the instances scheduled on the most

powerful physical processor (see Figure 4a). Obviously, the

fault injection also significantly affects the response latency

perceived by the client. Indeed, in Figure 4c, we can observe

peaks of ~100 ms in the p90 curve, corresponding to the

injection intervals. However, overall, the impact on the QoS

is significantly smaller than what we observed for the stress

injection. This happens because, eventually, the LB detects

the injected instance to be unhealthy and interrupts the current

connections to redirect the load on the others. When the

8 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

connection is closed, the distwalk client ignores the remaining

requests planned for the corresponding session and moves to

the next, partially compensating the accumulated delay.

Disk bandwidth saturation

The disk bandwidth constitutes one of the critical bottlenecks

in resource saturation scenarios. When an instance receives

an unexpectedly high volume of requests, the distwalk server

process starts falling behind the expected schedules, the re-

quests pile-up in the queue, and the response times start

increasing. For instance, in Figure 5, we can see such a phe-

nomenon occurring around minutes 14-16 and 23-26, during

the second and third peaks of the workload, respectively. By

looking at the system-level metrics in Figures 5a and 5b, we

can typically observe that, in such cases, theworkload profiles

of the different instances do not closely follow the expected

sinusoidal pattern, and start diverging. However, considering

only such metrics, and assuming not to have any a-priori

knowledge of the expected workload, we cannot exclude that

such deviations are just noise. Furthermore, it is even trickier

to infer that a saturation phenomenon is occurring when the

workload is mainly I/O-intensive, rather than CPU-intensive,

since the actual bandwidth of traditional, rotational, hard

drives depends on multiple factors, and it is not guaranteed

to be always consistent. Therefore, the most effective way

to detect that a saturation phenomenon is occurring, is by

looking at the IOWait metrics if available, or just the client-

side response times. Indeed, in Figure 5c, we can observe

peaks of ~80 ms in the p90 curve, during the aforementioned

workload peaks. Similarly to the fault injection scenario, the

impact of the disk saturation on the QoS is significantly

smaller than what we observed for the stress injection.

Similarly to the distwalk application, also the Cassandra

cluster was injected with anomalies during our experimental

runs. For instance, Figure 6 shows themeasurements recorded

during one of such runs, where we used stress-ng to generate

interference, while the cluster, with replication level set to 3

and consistency level set to 2, was serving the load generated

by YCSB, as explained in Section IV-C. In the figure, we

highlighted: the LOAD phase, when YCSB loads the cluster

with 1 million keys and their associated 1 KB values; the

RUN phase, when YCSB imposes a constant target update

throughput of 1000 ops/s; and the STRESS phase, when one

of the Cassandra replicas undergoes heavy disk I/O inter-

ference from stress-ng. As in Figure 3, we can appreciate

that, during the STRESS phase, the disk I/O activity of the

affected instance drops significantly, with respect to the other

members of the cluster. However, the effect of the interference

on the CPU utilization is less evident. During the same phase,

we can also observe the latency perceived by the YCSB client

increasing consistently.

E. RESULTS

After conducting several runs under different conditions, both

with distwalk and Cassandra, we collected the corresponding

CPU and disk I/O activitymeasurements and trained ourmod-

0 500 1000 1500 2000
Time (s)

0

25

50

75

100

125

150

175

200

Ut
il.

 (%
)

LOAD RUN

STRESS

CPU
VM0
VM1
VM2

0 500 1000 1500 2000
Time (s)

0

500

1000

1500

2000

2500

W
rit

e 
op

s/
s

LOAD RUN

STRESS

DISK I/O
VM0
VM1
VM2

800 1000 1200 1400 1600 1800 2000
Time (s)

100

101

102

103

La
te

nc
y 

(m
s)

RUN

STRESS

YCSB Latency
Avg
P99
P999

FIGURE 6: Interferences caused by stress-ng on Cassandra.

TABLE 1: Performance metrics of the AD model, for each

class of samples, computed on the distwalk test set (0 =

anomalous; 1 = normal).

Class Precision Recall F1 score

0 0.923 0.901 0.912
1 0.881 0.907 0.894

els for the AD and classification steps. For both applications’

datasets, separately, we held out the same portions of data to

be used as training and test sets for the models. However,

the two models were trained on different views of the same

information (details in Section III). This way, the AD step

can act as a filter and let the system trigger the (more costly)

classification step only when it is deemed useful. This work

is accompanied by an open-source repository [40] including

all the material required to reproduce the presented results.

Synthetic Application - Anomaly Detection. As explained

in Section III, we decided to implement this step with

MADI [17], using the NSRF variant. By preprocessing the

collected data, we obtained a training set of 1087 and a test

set of 528 input vectors, with shape 5 × 4 (as explained in

VOLUME 11, 2023 9



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

NSRF (AUC = 0.97)

(a) ROC-AUC

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.9 0.099

0.093 0.91

(b) Confusion matrix

FIGURE 7: AD performance, computed on the distwalk test

set (0 = anomalous; 1 = normal).

TABLE 2: Performance metrics of the classifier, for each

class of samples, computed on the distwalk test set (0 =

normal; 1 = stress; 2 = fault; 3 = saturation).

Class Accuracy Precision Recall F1 score

0 0.961 0.988 0.962 0.975
1 0.989 0.904 0.945 0.924
2 0.995 0.926 1.000 0.962
3 0.977 0.816 0.939 0.873

Section III-B). Such training and test sets contain a fraction

of positive (normal) examples equal to 42.59% and 44.70%,

respectively, while the rest is constituted by anomalous exam-

ples. Therefore, since NSRF is an unsupervised approach that

assumes the input data to consist in mainly positive behavior,

we trained it only on the 463 positive examples from the

training set. After training NSRF, that typically takes just a

few seconds on the CPU of our first physical host (see Sec-

tion IV-A), without any specific acceleration settings, we ran

the obtained model on the test set, this time using both pos-

itive and negative examples. Thanks to its negative sampling

strategy, NSRF solves a binary classification task, and outputs

the probability of an input belonging to the positive class.

Such feature allowed us to produce the Receiver Operating

Characteristic (ROC) curve [41] shown in Figure 7a, corre-

sponding to an Area Under Curve (AUC) of 97%. The ROC

curve is a technique to visualize the evolutions of the True-

Positive Rate (TPR) and False-Positive Rate (FPR) of the

model, considering a variable classification threshold over the

output probability of the model. This way, we could select a

sensible value for the threshold tp, to be applied on the output

to determine the class of a given input, such that the FPR was

below 10%, and the TPR was above 85% (i.e., corresponding

to the upper-left region of Figure 7a). By setting tp = 0.594,

we obtained an accuracy of 90.34%, corresponding to the

confusion matrix [41] shown in Figure 7b. In Table 1, we also

report other per-class performance measures.

Synthetic Application - Classification.As explained in Sec-

tion III, we decided to address this step, consisting in a

multi-label classification task, by implemented our model

using XGBoost [29]. By preprocessing the collected data, we

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

0 (AUC = 0.99)
1 (AUC = 1.00)
2 (AUC = 1.00)
3 (AUC = 0.99)

(a) ‘‘One-vs-rest’’ ROC-AUC

0 1 2 3
Predicted label

0

1

2

3

Tr
ue

 la
be

l

0.96 0.0089 0.0064 0.023

0.055 0.95 0 0

0 0 1 0

0.061 0 0 0.94

(b) Confusion matrix

FIGURE 8: Classifier performance, computed on the distwalk

test set (0 = normal; 1 = stress; 2 = fault; 3 = saturation).

obtained a training set of 3261 and a test set of 1584 input

vectors, with shape 5×6 (as explained in Section III-B). Note

that the preprocessing employed for this model produces a

dataset 3 times bigger than the one used for the AD model.

This is due to the fact that, for each 5-minutes window on

the raw data, such preprocessing produces a number of input

samples equal to the number of active instances in the consid-

ered application (3, for our runs). Also, such preprocessing

produces an inherently imbalanced dataset, due to the fact

that, for each 5-minutes window, only one sample is marked

as anomalous, given that we made sure not to inject multiple

anomalies at once. Indeed, the training set is composed for

the 78.44% by normal, for the 8.40% by stress-injected, for

the 5.24% by fault-injected, and for the 7.91% by saturation

examples. Similarly, the test set is composed for the 78.41%

by normal, for the 6.94% by stress-injected, for the 6.31%

by fault-injected, and for the 8.33% by saturation examples.

However, XGBoost offers the capability to easily specify

weights for each class, such that each one proportionally

contributes to the gradient updates. After training the clas-

sifier, that typically takes less than 10 seconds on the CPU

of our first physical host (see Section IV-A), without any

specific acceleration settings, we used the test set to evaluate

its performance. Given that XGBoost can be set to output the

distribution of the probability of an input to belong to each of

the available classes, also in this case we were able to produce

a ROC curve, shown in Figure 8a. However, for the multi-

label classification task, ROC curves can only be produced in

a ‘‘one-vs-rest’’ fashion, i.e., each time considering a specific

class against all the others (as they were a single one). Re-

markably, all the generated ROC curves correspond to AUC

values of nearly 100%. Then, we applied the model on the

test set and obtained an accuracy of 96.15%, corresponding

to the confusion matrix in Figure 8b. Table 2 reports other

per-class performance measures. Note that, in this case, also

the accuracy can be computed in a ‘‘one-vs-rest’’ fashion.

Cassandra - Anomaly Detection. Similarly to the synthetic

application, by preprocessing the data collected during Cas-

sandra runs, we obtained a training set of 224 and a test

set of 80 input vectors. Such training and test sets contain a

10 VOLUME 11, 2023



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve

 R
at
e

NSRF (AUC = 0.94)

(a) ROC-AUC

0 1
Predicted label

0

1

Tr
ue

 la
be

l

0.94 0.062

0.17 0.83

(b) Confusion matrix

FIGURE 9: AD performance, computed on the Cassandra test

set (0 = anomalous; 1 = normal).

TABLE 3: Performance metrics of the AD model, for each

class of samples, computed on the Cassandra test set (0 =

anomalous; 1 = normal).

Class Precision Recall F1 score

0 0.789 0.938 0.857
1 0.952 0.833 0.889

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

0 (AUC = 1.00)
1 (AUC = 1.00)
2 (AUC = 1.00)

(a) ‘‘One-vs-rest’’ ROC-AUC

0 1 2
Predicted label

0

1

2

Tr
ue

 la
be

l

0.99 0.014 0

0 1 0

0 0 1

(b) Confusion matrix

FIGURE 10: Classifier performance, computed on the Cas-

sandra test set (0 = normal; 1 = stress; 2 = fault).

TABLE 4: Performance metrics of the classifier, for each

class of samples, computed on the Cassandra test set (0 =

normal; 1 = stress; 2 = fault).

Class Accuracy Precision Recall F1 score

0 0.988 1.000 0.986 0.993
1 0.988 0.824 1.000 0.903
2 1.000 1.000 1.000 1.000

fraction of positive (normal) examples equal to 57.14% and

60%, respectively, while the rest is constituted by anomalous

examples. After training NSRF on positive samples only, we

validated the model on the test set, and obtained the ROC

curve shown in Figure 9a, corresponding to an AUC of 94%.

By setting tp = 0.616, we obtained an accuracy of 87.50%,

corresponding to the confusion matrix shown in Figure 9b. In

Table 3, we also report other per-class performance measures.

Cassandra - Classification. Similarly to the synthetic appli-

cation, by preprocessing the data collected during Cassandra

runs, we obtained a training set of 672 and a test set of 240

input vectors. The training set is composed for the 85.71% by

normal, for the 6.25% by stress-injected, and for the 8.04%

by fault-injected examples. Instead, the test set is composed

for the 86.67% by normal, for the 5.83% by stress-injected,

and for the 6.31% by fault-injected examples. After training

the classifier, we validated it on the test set, and obtained the

‘‘one-vs-rest’’ ROC curve shown in Figure 10a. We also ob-

tained an accuracy of 98.75%, corresponding to the confusion

matrix shown in Figure 10b. Table 4 reports other per-class

performancemeasures, computed in a ‘‘one-vs-rest’’ fashion.

V. CONCLUSIONS

We proposed anML-based strategy for intelligent cloud oper-

ations that consists of: (i) detecting anomalous conditions of

a cloud application and (ii) identifying the corrective actions

to be applied to faulty components. Both steps rely on ML

models trained on operational data. Step (i) acts as a filter

that allows the system to run the more expensive step (ii)

on higher-resolution data only when needed. Our approach

was validated using data exported from anOpenStack deploy-

ment. We used a workload generator sending traffic to a load-

balanced group of Nova instances, resulting in CPU and disk

I/O activity on the instances, and injected different types of

anomalies that we could recover from, by applying precise

corrective actions. For (i), we trained an anomaly detection

model (specifically, MADI [17]) on aggregated cluster data,

such that it could even generalize to variable-sized groups

of instances. On the respective test sets, for the synthetic

application, we obtained a ROC-AUCof 97% and an accuracy

of 90.34%, while, for Cassandra, we obtained a ROC-AUC

of 94% and an accuracy of 87.50%. For (ii), we trained

a supervised classification model, based on XGBoost [29],

on a combination of spatially-aggregated and raw instances

data, such that it could better compare the behavior of an

individual instance with respect to its group, and associate a

corrective action to instances separately. On the respective test

sets, for the synthetic application, we obtained an accuracy

of 96.15%, while, for Cassandra, we obtained an accuracy of

98.75%. To implement our approach, we decided to use rather

simple, yet very effective, ML models. Such a design choice

allows for our approach to be highly dependable, especially

because it is relatively easy to interpret and troubleshoot

the output of this kind of models, possibly leveraging on

automated explainability techniques. We plan to conduct a

more thorough study to better (quantitatively) compare our

approach to existing alternatives. In this research area, such an

activity is rendered particularly difficult by the general lack

of open-source implementations readily integrated within a

framework like OpenStack. For the classification, we opted

for supervised-learning. However, it would be interesting to

apply unsupervised or weakly-supervised approaches to our

problem, to possiblyweaken our dependency on labelled data.

On a related note, even though we have already shown that

our approach is able to deal with multivariate data, it would

VOLUME 11, 2023 11



Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

be interesting to also extend our experimental validation by

considering additional metrics, to properly assess how the

approach scales with respect to the number of considered fea-

tures. Also, we plan to integrate automatic model retraining,

to counteract the disastrous effects of distribution drifts, and

model explainability techniques in the end-to-end pipeline.

Indeed, guaranteeing a sufficient level of robustness to fluc-

tuations and interpretability is of utmost importance, as cloud

operations are a scenariowhere any type of automation should

be highly dependable and auditable. Finally, we plan to prop-

erly package our approach as an OpenStack service, to offer

a reliable, open solution for intelligent cloud operations to a

wide audience.

REFERENCES

[1] B. Marr, ‘‘The 5 Biggest Cloud Computing Trends In 2022,’’

https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-

cloud-computing-trends-in-2022/, 2021.

[2] A. Kannan, J. LaRiviere, and R. P. McAfee, ‘‘Characterizing the usage

intensity of public cloud,’’ ACM Trans. Econ. Comput., vol. 9, no. 3, 2021.

[3] M. Attaran and J. Woods, ‘‘Cloud computing technology: improving small

business performance using the internet,’’ Journal of Small Business &

Entrepreneurship, vol. 31, no. 6, pp. 495–519, 2019.

[4] M. Chiosi, D. Clarke, P. Willis et al., ‘‘Network Functions Virtualisation -

Introductory White Paper,’’ Tech. Rep., 2012.

[5] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Computing Principles

and Paradigms. Wiley Publishing, 2011.

[6] E. A. Brewer, ‘‘Kubernetes and the path to cloud native,’’ in Proceedings

of the Sixth ACM Symposium on Cloud Computing. Association for

Computing Machinery, 2015, p. 167.

[7] R. Buyya, K. Ramamohanarao, C. Leckie, R. N. Calheiros, A. V. Dastjerdi,

and S. Versteeg, ‘‘Big Data Analytics-Enhanced Cloud Computing: Chal-

lenges, Architectural Elements, and Future Directions,’’ in 2015 IEEE 21st

International Conference on Parallel and Distributed Systems (ICPADS),

2015, pp. 75–84.

[8] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, ‘‘Metric selection

and anomaly detection for cloud operations using log andmetric correlation

analysis,’’ Journal of Systems and Software, vol. 137, pp. 531–549, 2018.

[9] J. Soldani andA. Brogi, ‘‘Anomaly detection and failure root cause analysis

in (micro) service-based cloud applications: A survey,’’ ACM Comput.

Surv., vol. 55, no. 3, 2022.

[10] W. Wang, L. Tang, C. Wang, and Q. Chen, ‘‘Real-Time Analysis of

Multiple Root Causes for Anomalies assisted by Digital Twin in NFV

Environment,’’ IEEE Transactions on Network and Service Management,

pp. 1–1, 2022.

[11] P. Mell and T. Grance, ‘‘The NIST Definition of Cloud Computing. SP

800–145,’’ 2011. [Online]. Available: https://csrc.nist.gov/publications/

detail/sp/800-145/final

[12] M. Zoure, T. Ahmed, and L. Réveillére, ‘‘Network Services Anomalies in

NFV: Survey, Taxonomy, and Verification Methods,’’ IEEE Transactions

on Network and Service Management, pp. 1–1, 2022.

[13] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao, and F. Liu, ‘‘Evaluating

machine learning algorithms for anomaly detection in clouds,’’ in IEEE

International Conference on Big Data (Big Data), 2016, pp. 2716–2721.

[14] Q. Du, Y. He, T. Xie, K. Yin, and J. Qiu, ‘‘An approach of collecting

performance anomaly dataset for nfv infrastructure,’’ in Algorithms and

Architectures for Parallel Processing, J. Vaidya and J. Li, Eds. Springer

International Publishing, 2018, pp. 59–71.

[15] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, ‘‘Unsupervised real-time

anomaly detection for streaming data,’’ Neurocomputing, vol. 262, pp.

134–147, 2017.

[16] T. Cucinotta, G. Lanciano, A. Ritacco, M. Vannucci, A. Artale, J. Barata,

E. Sposato, and B. Luca, ‘‘Behavioral analysis for Virtualized Network

Functions: a SOM-based approach,’’ in Proceedings of the 10th Interna-

tional Conference on Cloud Computing and Services Science (CLOSER

2020), 2020.

[17] J. Sipple, ‘‘Interpretable, Multidimensional, Multimodal Anomaly Detec-

tion with Negative Sampling for Detection of Device Failure,’’ in Proceed-

ings of the 37th International Conference on Machine Learning. PMLR,

2020, pp. 9016–9025.

[18] Q. Rebjock, V. Flunkert, T. Januschowski, L. Callot, and J. Castellon, ‘‘A

Simple and Effective Predictive Resource Scaling Heuristic for Large-scale

Cloud Applications,’’ in 2nd International Workshop on Applied AI for

Database Systems and Applications, 2020.

[19] G. Lanciano, F. Galli, T. Cucinotta, D. Bacciu, and A. Passarella, ‘‘Predic-

tive Auto-scaling with OpenStack Monasca,’’ in IEEE/ACM 14th Interna-

tional Conference on Utility and Cloud Computing, 2021.

[20] L. Ju, P. Singh, and S. Toor, ‘‘Proactive Autoscaling for Edge Computing

Systems with Kubernetes,’’ in 10th International Workshop on Cloud and

Edge Computing and Applications Management, 2021.

[21] R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,

‘‘Topology-Aware Prediction of Virtual Network Function Resource Re-

quirements,’’ IEEE Transactions on Network and Service Management,

vol. 14, no. 1, pp. 106–120, 2017.

[22] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, ‘‘Predictive Auto-

scaling of Multi-tier Applications Using Performance Varying Cloud Re-

sources,’’ IEEE Transactions on Cloud Computing, pp. 1–1, 2019.

[23] P. Kang and P. Lama, ‘‘Robust resource scaling of containerized microser-

vices with probabilistic machine learning,’’ in IEEE/ACM 13th Interna-

tional Conference on Utility and Cloud Computing, 2020, pp. 122–131.

[24] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,

‘‘NFVdeep: Adaptive online service function chain deployment with deep

reinforcement learning,’’ in Proceedings of the International Symposium

on Quality of Service, vol. 19, 2019, pp. 1–10.

[25] S. Ilager, R. Muralidhar, and R. Buyya, ‘‘Artificial Intelligence (AI)-

Centric Management of Resources in Modern Distributed Computing Sys-

tems,’’ in IEEE Cloud Summit, 2020, pp. 1–10.

[26] M. Borkowski, S. Schulte, and C. Hochreiner, ‘‘Predicting cloud resource

utilization,’’ in IEEE/ACM 9th International Conference on Utility and

Cloud Computing, 2016, pp. 37–42.

[27] S. Nedelkoski, J. Cardoso, and O. Kao, ‘‘Anomaly detection and classifica-

tion using distributed tracing and deep learning,’’ in 2019 19th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CC-

GRID), 2019, pp. 241–250.

[28] ‘‘2022 User Survey Report – OpenStack is More Alive Than Ever with

40 Million Cores in Production,’’ https://www.openstack.org/user-survey/

2022-user-survey-report.

[29] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’

in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2016, pp. 785–794.

[30] J. H. Friedman, ‘‘Greedy Function Approximation: A Gradient Boosting

Machine,’’ The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[31] OpenStack, ‘‘Kolla Documentation,’’ 2023. [Online]. Available: https:

//docs.openstack.org/kolla

[32] ——, ‘‘Heat Documentation,’’ 2023. [Online]. Available: https://docs.

openstack.org/heat

[33] ——, ‘‘Nova Documentation,’’ 2023. [Online]. Available: https://docs.

openstack.org/nova

[34] ——, ‘‘Octavia Documentation,’’ 2023. [Online]. Available: https:

//docs.openstack.org/octavia

[35] ——, ‘‘Monasca Documentation,’’ 2023. [Online]. Available: https:

//docs.openstack.org/monasca

[36] ‘‘Distwalk - distributed processing emulation tool for linux,’’ 2023.

[Online]. Available: https://github.com/tomcucinotta/distwalk

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ‘‘Dynamo:

Amazon’s highly available key-value store,’’ ACM SIGOPS operating

systems review, vol. 41, no. 6, pp. 205–220, 2007.

[38] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

‘‘Benchmarking cloud serving systems with ycsb,’’ in Proceedings of the

1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[39] C. I. King, ‘‘stress-ng,’’ 2023. [Online]. Available: https://github.com/

ColinIanKing/stress-ng

[40] G. Lanciano, R. Andreoli, T. Cucinotta, D. Bacciu, and

A. Passarella, ‘‘Companion repo of the paper "A 2-phase Strategy

For Intelligent Cloud Operations",’’ 2023. [Online]. Available:

https://github.com/giacomolanciano/intelligent-cloud-operations

[41] T. Fawcett, ‘‘An introduction to ROC analysis,’’ Pattern Recognition Let-

ters, vol. 27, no. 8, pp. 861–874, 2006.

12 VOLUME 11, 2023

https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-cloud-computing-trends-in-2022/
https://www.forbes.com/sites/bernardmarr/2021/10/25/the-5-biggest-cloud-computing-trends-in-2022/
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://www.openstack.org/user-survey/2022-user-survey-report
https://www.openstack.org/user-survey/2022-user-survey-report
https://docs.openstack.org/kolla
https://docs.openstack.org/kolla
https://docs.openstack.org/heat
https://docs.openstack.org/heat
https://docs.openstack.org/nova
https://docs.openstack.org/nova
https://docs.openstack.org/octavia
https://docs.openstack.org/octavia
https://docs.openstack.org/monasca
https://docs.openstack.org/monasca
https://github.com/tomcucinotta/distwalk
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://github.com/giacomolanciano/intelligent-cloud-operations


Lanciano et al.: A 2-phase Strategy For Intelligent Cloud Operations

GIACOMO LANCIANO holds a Ph.D. in Data

Science from Scuola Normale Superiore, Pisa,

Italy. He also holds aM.Sc. in Engineering in Com-

puter Science from Sapienza University of Rome,

Italy. His research interests lie at the intersection

of cloud computing and data science, with a focus

on data-driven methods for data center operations

support. He was also a research intern at Nokia

Bell Labs in Stuttgart, Germany, working on large

language models for deployment code analysis.

REMO ANDREOLI is a PhD candidate at

Sant’Anna School of Advanced Studies (SSSA).

He holds a MSc with honors in Computer Science

from University of Pisa. He previously worked

on differentiated performance mechanisms for

NoSQL databases, earning the best student paper

award at CLOSER 2021. He is currently investi-

gating on resource management optimization tech-

niques for cloud infrastructures.

TOMMASO CUCINOTTA has a MSc in Computer

Engineering from University of Pisa (Italy), and

a PhD in Computer Engineering from Scuola Su-

periore Sant’Anna (SSSA) in Pisa, where he has

been investigating on real-time scheduling for soft

real-time and multimedia applications, and pre-

dictability in infrastructures for cloud computing

and NFV. He has been MTS in Bell Labs in Dublin

(Ireland), investigating on security and real-time

performance of cloud services. He has been a

software engineer in Amazon Web Services in Dublin (Ireland), where he

worked on improving the performance and scalability of DynamoDB. He

is Associate Professor at SSSA since 2016, and head of the Real-Time

Systems Lab (RETIS) since 2019. He has coauthored 120+ research papers

on international conferences and journals, and 8 international patent grants.

He is a Senior IEEE Member.

DAVIDE BACCIU is Associate Professor at the

University of Pisa, where he heads the PervasiveAI

Lab. Previously, he was a visiting researcher at the

Neural Computation Research Group, LJMU, and

at the Cognitive Robotic Systems laboratory, Ore-

bro University. He holds a Ph.D. in Computer Sci-

ence and Engineering from IMT Lucca for which

he received the 2009 E.R. Caianiello prize. He has

co-authored over 140 research works on neural

networks, generative learning, Bayesian models,

learning for graphs, continual learning, and distributed and embedded learn-

ing systems. He is the coordinator of the H2020 TEACHING project. He

has been secretary and board member of the Italian Association for AI, a

Senior Member of the IEEE and a member of the IEEE CIS Neural Networks

Technical Committee. He is Associate Editor of the IEEE Transactions on

Neural Networks and Learning Systems and he chairs the IEEE CIS Task

Force on Learning for Structured Data.

ANDREA PASSARELLA (PhD 2005) is a Re-

search Director at the Institute for Informatics

and Telematics (IIT) of the National Research

Council of Italy (CNR). Prior to join IIT he was

with the Computer Laboratory of the University

of Cambridge, UK. He has published 170+ pa-

pers on human-centric data management for self-

organising networks, decentralised AI, Next Gen-

eration Internet, Online and Mobile social net-

works, opportunistic, ad hoc and sensor networks.

He received four best paper awards, including at IFIP Networking 2011 and

IEEE WoWMoM 2013. He is General Chair of IEEE PerCom 2022. He is

the founding Associate EiC of the Elsevier journal Online Social Networks

and Media (OSNEM). He is co-author of the book "Online Social Networks:

Human Cognitive Constraints in Facebook and Twitter Personal Graphs"

(Elsevier, 2015). He is the PI of the EUCHIST-ERA SAI (Social Explainable

AI) project.

VOLUME 11, 2023 13


	Introduction
	Contributions
	Paper Overview

	Related Work
	Proposed Approach
	General Architecture
	Implementation Details

	Experiments
	Experimental Set-up
	Synthetic Workload Generator
	Apache Cassandra
	Anomaly Injection
	Results

	Conclusions

