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Abstract: This paper highlights the benefits of data augmentation in enhancing the ac-
curacy and reducing the complexity of neural networks used for failure identification in
optical networks. The obtained results demonstrate significant improvement. © 2023 The
Author(s)

1. Introduction

Machine learning (ML) is being investigated in optical networks for various applications [1–4]. Failure man-
agement is one of them, where ML can process monitoring data for identification, localization, or prediction of
failures. The imbalance in datasets used for training of ML models is common in failure identification, as differ-
ent types of failures occur with different probabilities [5, 6]. This leads to limited ML performance, as the model
struggles to learn from the imbalanced data.

This paper shows the potential of data augmentation in the context of failure identification. Data augmentation
can strongly improve failure identification accuracy and reduce the complexity of the adopted ML model.

2. Data distribution and augmentation

Data augmentation can leverage a variational autoencoder (VAE) [6]. As illustrated in Fig. 1, encoder of VAE first
finds the latent distributions by compressing the input data (x) and then the decoder generates synthetic data (x′)
based on the identified distributions. The Synthetic Samples Selector selects data within (x′) that minimize the
Euclidean distance from the mean of (x) of each minority class and selects required number of samples achieving
class balance. The augmented dataset (xA) is formed by the union of the original and selected synthetic data, with
reduced or no class imbalance.
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Fig. 1. Data augmentation based on VAE

To evaluate the potential of the proposed data
augmentation technique, we used experimental
data from a testbed including a 100G commercial
coherent transponder, four amplified spans of
80km, and a wavelength selective switch (WSS)
placed before the second amplifier. The WSS is
exploited to introduce physical layer degrada-
tion, thus generating soft failures. In normal op-
eration, the transponder is set to transmit a sig-
nal at 192.3 THz, switched in 37.5 GHz. Then,
five soft failures are generated through WSS: 1)
filter tightening; 2) attenuation; 3) filter tighten-
ing plus attenuation; 4) filter tightening plus filter
shift; 5) filter shift. We have collected the end-
to-end bit error rate (BER) and the optical signal
to noise ratio (OSNR) as input data from each
scenario. The representation of each failure class
within data is shown in Table. 1. It should be
noted that the classes are not separable with hard
thresholds on BER or OSNR. Data augmentation
is then exploited to balance the different classes
so that each failure class can have equal repre-
sentation in this case.



Table 1. Failures distribution within original data (x)

Filter tightening + Filter shift Filter tightening + Filter tightening Attenuation
Attenuation Filter shift

50% 16.7% 13.2% 11.5% 7.8%

3. Failure identification performance and conclusions

Two dense neural networks are exploited for failure identification by leveraging data from the experimental testbed
described in the previous section: NNHC with size 2×20×10×5 and the comparatively lower complexity NNLC
with size 2×15×5. As in [6], the complexity of these NNs is quantified analytically in terms of number of bit
operations. For bit-length of 16, the number of bit operations required to be performed by NNHC and NNLC for a
given input are 84592 and 30564, respectively. Both NNHC and NNLC are trained with original unmodified data
(UD) and augmented data (AD). Then, the performance is tested on validation and test datasets, which are not
augmented. Fig. 2(a) shows the validation accuracy versus training time. First, we observe that data augmentation
significantly increases the accuracy i.e., by at least 6% in this case. The same plot also shows that data augmen-
tation can be exploited also to reduce the complexity of NN: NNLC trained with augmented data achieves the
similar accuracy as NNHC trained with original data. Fig. 2(b) shows the F1-Score on the test set for the two NNs.
F1-score increases for both NNs with augmented training data, demonstrating again a significant improvement.

Fig. 2. (a) Accuracy on validation dataset; (b) F1 score on test dataset
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