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Abstract— The traumatic loss of a hand is usually followed by 

significant psychological, functional and rehabilitation 

challenges. Even though much progress has been reached in the 

past decades, the prosthetic challenge of restoring the human 

hand functionality is still far from being achieved. Autonomous 

prosthetic hands showed promising results and wide potential 

benefit, a benefit that must be still explored and deployed. Here, 

we hypothesized that a combination of a radar sensor and a low-

resolution time-of-flight camera can be sufficient for object 

recognition in both static and dynamic scenarios. To test this 

hypothesis, we analyzed via deep learning algorithms HANDdata, 

a human-object interaction dataset with particular focus on 

reach-to-grasp actions. Inference testing was also performed on 

unseen data purposely acquired. The analyses reported here, 

broken down to gradually increasing levels of complexity, showed 

a great potential of using such proximity sensors as alternative or 

complementary solution to standard camera-based systems. In 

particular, integrated and low-power radar can be a potential 

key technology for next generation intelligent and autonomous 

prostheses. 
 
Index Terms—autonomous, computer vision, deep learning, 

grasping, hand prosthesis, inertial, prosthetics, proximity, 

sensors.  

 

I. INTRODUCTION 

HE traumatic loss of a hand is usually followed by 

significant psychological, functional and rehabilitation 

challenges. Engineers and researchers have, for a long 

time, made efforts to restore the functionality of a lost 

limb by developing prosthetic hands. The prosthetic hands 

currently available can be electrically powered and operated 

via myoelectric signals, or body-powered and operated via 

shoulder movements on the contralateral limb [1]. For those 

myoelectrically operated, the human-machine interface (HMI) 

relies on myoelectric (or electromyographic) sensors placed on 

the surface of the residual limb. Signals picked up from these 
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sensors can be used to drive the prosthesis in a one-muscle-

one-movement simplistic approach (e.g., flex biceps to close 

the hand). Despite several major and well-known challenges 

related to surface myoelectric signal acquisition (noise, motion 

artifacts, interface impedance changes due to humidity, 

temperature and pressure) [2], [3] whose inconsistencies make 

the grasp of an object hardly reliable and repeatable, this 

simple control approach proved to be somehow functional 

with basic prosthetic grippers, but failed to translate efficiently 

when modern multi-articulated (or multi-grasp) prosthetic 

hands reached the market (e.g., iLimb Ultra, Össur, Iceland 

and BeBionic, Ottobock, Germany). When operating multi-

articulated prostheses, muscular contraction patterns are often 

used as the switching mechanism between different hand 

grasps (e.g., flex wrist three times to enable pinch grasp), 

killing the intuitiveness of the control. That is why in the past 

decades, researchers spent extensive efforts trying to relieve 

the amputee users from the burden of a non-intuitive HMI, 

moving the learning to the machine instead via artificial 

intelligence algorithms [4]–[11]. Thanks to those efforts, it is 

now widely accepted that machine learning algorithms applied 

to myoelectric signals can indeed facilitate the user when 

operating prosthetic hands with more than one degree-of-

freedom, and this is confirmed also by the commercial 

interests behind this solution (e.g., Complete Control, 

COAPT, USA, and Myo Plus, Ottobock, Germany). However, 

the aforementioned challenges related to surface myoelectric 

signal acquisition still remain, latently contributing to disrupt 

the control experience.  

Even though acceptance rate surveys surely need a more 

frequent update, they seem to unanimously capture strong 

trends of prosthesis rejection, sometimes as high as 40% [12], 

[13]. Obviously, the prosthetic challenge of restoring the 

human hand functionality and dexterity is still far from being 

achieved. Arguably, this is in part due to major challenges 

related to the acquisition of myoelectric signals from the 

surface of the skin, or to the total lack of tactile sensory 

feedback, challenges that coming-soon implanted solutions are 

successfully overcoming [14]–[16]. However, these implanted 

solutions are still under clinical investigation and will not 

reach the mass before a decade, and most importantly, they 

cannot provide a full answer to the complex problem of 

restoring the human hand functionality. Such articulated 

problem must be addressed in parallel from different 

directions: more intelligent hardware must be developed for 

the HMI as much as for the robotic prostheses. Unfortunately, 

the efforts spent so far on more intelligent and autonomous 

robotic hardware are far from being satisfactory, both from an 

engineering and a clinical perspective. The idea of semi-

autonomous prosthetic hands was proposed decades ago and 
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previous work already attempted to address this need [17], 

[18]. Shape recognition for automatic grasp adaptation via 

cameras and image processing techniques was proven possible 

for industrial automation [19] and prosthetic purposes [20]–

[22]. Došen et Al. explored object size and shape recognition 

via an RGB camera and a laser depth sensor located on a 

prosthetic hand [23]. Markovic, Mouchoux, et Al. explored 

similar purpose (i.e., object recognition for the identification 

of the most adequate prosthetic grasp) as well as automatic 

wrist orientation, via augmented reality glasses, depth and 

inertial sensors [24]–[26]. Automatic grasp selection, pre-

shaping and wrist orientation was also recently pursued by 

Nobre Castro and Došen via an infrared depth camera placed 

on the dorsal side of a prosthetic hand [27]. Lastly, Starke et 

Al. recently presented a semi-autonomous control strategy for 

object recognition and grasp selection via RGB camera, 

inertial and distance sensors, directly interfaced with the user 

via a display and a single myoelectric channel, completely 

self-contained within the KIT robotic hand [28], [29]. 

Unfortunately, despite the promising results none of the 

proposed prosthetics solutions still has reached any clinical 

implementation. Arguably, this might be due to the difficult 

portability of computer vision solutions into a self-contained 

wearable system (i.e., too demanding hardware and data 

processing) and into the uncertainties of unconstrained 

environments. Therefore, it still remains a wide potential 

benefit in exploring other integrating and concurrent solutions 

pushing towards prosthetic hands which are semi (or 

potentially even completely) autonomous from the 

conventional myoelectric HMI. To this goal, a variety of 

proximity sensors can be further explored [30]–[32]. For 

instance, radars proved high potential for an accurate 

recognition of materials and body parts [33], and they are 

progressively becoming essential in fields such as automotive 

[34], civil engineering [35], contactless vital sign monitoring 

systems [36], [37] and novel human-machine interfaces [38], 

[39].  

Here, in an attempt to contribute to the field, we 

hypothesized that a combination of a radar sensor and a low-

resolution time-of-flight camera can provide sufficient data for 

autonomous control approaches, in particular for shapes and 

materials recognition in both static and dynamic scenarios. To 

test this hypothesis, we analyzed via deep learning algorithms 

a human-object interaction dataset (HANDdata [40]) 

comprising of first-person data recorded from a variety of 

sensors, including proximity (i.e., state-of-the-art radar and 

time-of-flight sensors), inertial, load cells and fingers stretch. 

This dataset includes almost 6000 human-object interactions 

focused on the reach-to-grasp action performed by 29 different 

able-bodied individuals, with 10 standardized objects of 5 

different shapes and 2 kinds of materials. Moreover, further 

inference testing was performed on unseen data that was 

purposely collected following HANDdata original protocol. 

The analyses reported here, broken down to gradually 

increasing levels of complexity, showed a great potential of 

using such proximity sensors as alternative or complementary 

solution to standard camera-based systems. In particular, 

integrated and low-power radar can be a potential key 

technology for next generation intelligent and autonomous 

prostheses, and perhaps even for other applications in 

healthcare, social (e.g., mobile servant) and industrial (e.g., 

warehouse robots) robotics. 

II. MATERIALS AND METHODS 

This study aims to investigate the feasibility of using state-

of-the-art proximity sensors, such as a radar and a time-of-

flight camera, for object recognition in the context of 

autonomous prosthetic hands. To this aim, a dataset of human-

object interactions was analyzed via deep learning. In order to 

investigate which sensor can be better suited for the aimed 

goal of recognizing the target object, all analyses were 

performed in 3 conditions: 1) radar data alone (RAD), 2) time-

of-flight data alone (TOF), and 3) a combination of radar and 

time-of-flight data (RADTOF). Additionally, to further 

investigate the grasping scenarios, a fourth data condition was 

defined with the addition of the inertial sensor 

(RADTOFIMU). This last condition was deemed helpful to 

explore effects of fusion of data from both the environment 

and the participant’s behavior. 

A. Human-object interactions dataset 

Most of the analyses reported in the following were 

performed on the HANDdata dataset [40], a data collection 

specifically tailored for autonomous grasping of a robotic 

hand and with particular attention to the reaching phase. This 

dataset included almost 6000 human-object interactions 

recorded via radar and time-of-flight sensors mounted on the 

forearm of able-bodied participants. These interactions 

focused on one of the most representative actions of daily life 

object manipulation, namely the reach to grasp. All details 

about the dataset are included in its dedicated report, but we 

briefly summarize the most important ones here for readers’ 

convenience. 

29 healthy adults participated to the data collection. 

Participants were asked to reach-grasp-lift-and-replace 

different objects while wearing an instrumented glove (Figure 

1, left). The glove was instrumented so to track fingers 

stretching, kinematics of the forearm, and proximity 

measurements of the target objects. Forearm kinematics was 

tracked via 3-axes accelerometer and gyroscope of the 

BMI160 (Bosch, Germany) inertial sensor acquiring at 120 

samples per second. The proximity sensors used were a pulsed 

coherent radar (A121, Acconeer, Sweden) and time-of-flight 

sensor (VL53L5CX, STmicroelectronics, France-Italy). The 

A121 radar was set to emit trains of 60 GHz pulses with 

known starting phase in pulsing/silent cycles alternating at 13 

MHz. Knowing the velocity of the emitted pulses, the radar 

then tried to reconstruct reflections at certain discrete 

distances by analyzing the time taken to receive the echoes. In 

the configuration used in this study, the radar received pulses 

at times related to the distances of 35 range points, equally 

distributed from 6 cm to 41 cm (i.e., each range point is 

separated by 1 cm). Then, a complete reading of all range 

points, also defined as a sweep, was repeated 40 times with a 

rate of 800 Hz. Lastly, these 40 sweeps were collected in 

frames (i.e., frame size 40x35) and acquired with a rate of 15 

frames per second. The radar field of view covered a 3D 

region of approximately 65x53 degrees at 50% of beam 
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power. The VL53L5CX time-of-flight sensor tried to estimate 

target’s distance by illuminating the region of interest with 

940 nm photons (i.e., invisible light). It was set for 64 pixels 

resolution at 15 frames per second (i.e., frame size 8x8). Its 

field of view covered a 3D region of approximately 45x45 

degrees at 75% of beam power. 

Ten different target objects were used in the data collection 

protocol and each object was meant to trigger a certain grasp 

pattern (Figure 1, right). Specifically, abstract objects like a 

sphere, a cylinder, a triangular prism, a cuboid with a thin 

rectangular prism ‘handle’ and a thin rectangular prism were 

meant to trigger the spherical, power, tri-digit, lateral and 

pinch grip pattern, respectively. Each object was available in 

two materials, wood or aluminium. Objects dimensions, 

materials and weights are standardized within the 

Southampton Hand Assessment Procedure [41], a clinically 

validated functional assessment, well-established in the field 

of prosthetics.  

The dataset included human-object interactions from four 

different scenarios with gradually increasing complexity (for 

explicative figures and further details check HANDdata 

dedicated publication [40]), namely: 

1) Bench-static, ideal scenario in which the proximity 

sensors were fixed in a clamp and steadily facing the 

target objects at a fixed distance and position.  

2) User-static, static scenario in which the participants 

were steadily standing in front of the target objects with 

the proximity sensors partially facing the targets. 

3) Pick-and-Lift, dynamic scenario in which the 

participants were reaching the target, to pick it, lift it 

about 10 cm, and then reposition it on the same start-

area.  

4) Pick-Lift-and-Move, dynamic scenario in which 

participants were reaching the target, to pick it, lift it 

about 10 cm while transporting it to a land-area 

different from the start-area, 40 cm away. Start- and 

land-area were alternated at each trial ultimately 

providing data for pick-and-lift from two different 

approach directions.  

For user-static and grasping scenarios, the participants were 

asked to start and end each trial with the arm in rest position. 

The rest position was defined as the upper arm adjacent to the 

body trunk, with the elbow joint bent at 90 degrees, and with 

the hand palm perpendicular to the floor. Moreover, the 

subject’s alignment in respect to the target object changed 

depending on the scenario. For the user-static and pick-and-lift 

scenarios, the subject’s arm in rest position was aligned on the 

single area of interest where the target objects were located 

(i.e., left instrumented platform). Instead, for the pick-lift-and-

move scenario, the subject’s arm in rest position was aligned 

with the center of the two start and land areas (i.e., in between 

the left and right instrumented platforms) causing the target 

objects to be poorly or not in view at movement start. 

All target objects were acquired in all scenarios. Moreover, 

“no-object” acquisitions were included for the static scenarios. 

These were achieved for the bench-static scenario by having 

no target under the proximity sensors, and for the user-static 

by having no hit within 1 meter range. Unfortunately, 

HANDdata did not include “reaching to no target” trials for 

the grasping scenarios. 

B. Deep Learning models 

Deep learning models were trained and tested so to assess 

the feasibility of shapes and materials recognition via 

proximity sensors. The models consisted of a convolutional 

neural network (CNN) for the RAD and TOF conditions, and a 

mixed-input neural network for the RADTOF condition. All 

models were implemented with TensorFlow framework, 

trained and tested via GPU (T4, Nvidia, USA). The models’ 

architectures and hyperparameters were found via preliminary 

testing which involved also two steps random search via Keras 

tuner for number of layers and units, for dropout, activations, 

and learning rate, over 100 trials with 3 executions each. 

 
Figure 1. Instrumented glove (left) and target objects (right). The dataset analyzed in this study includes human-object interaction data 

acquired from 29 participants manipulating 10 different objects while wearing an instrumented glove. The instrumented glove (left) was 

based on a CyberGlove to which proximity and inertial sensors were added via a custom circuit board mounted on a customizable wrist 

band. Ten different target objects were used (right), each linked to a particular hand grasp. Abstract objects like a sphere, a cylinder, a 

triangular prism, a cuboid with a thin rectangular prism ‘handle’ and a thin rectangular prism were meant to trigger the spherical, power, 

tri-digit, lateral and pinch grip pattern, respectively. 
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CNN 

The CNNs consisted of sequential CPR blocks (Figure 2) 

including four layers (convolution 3x3 kernel + max-pooling + 

batch-normalization + leaky-ReLU activation). A 

regularization dropout layer with rate 0.25 was attached after 

the activation function in each CPR block. The number of 

CPR blocks was defined as three for the RAD condition and 

two for the TOF condition. For the RAD condition, the CNN’s 

input was defined as 64x35 2-channels images composed of 

real and imaginary parts of the 64-points Fast Fourier 

Transform of each radar’s frame along the sweeps dimension 

(i.e., doppler map). For the TOF condition, the CNN’s input 

was defined as 8x8 1-channel images composed of the 

sensor’s raw frame. For the CNNs output, a final dense layer 

allowed to adapt each model to each particular classification 

problem.  

Mixed-Input NN 

For the RADTOF condition (i.e., the combination of radar 

and time-of-flight data), a mixed-input neural network was 

used (Figure 2) composed by two CNN input branches, 

respectively for RAD and TOF data, defined as above, 

followed by four linear layers with leaky-ReLU activation 

functions. Two dropout layers with rate 0.5 were attached to 

the second and to the fourth linear layer. For the output, a final 

dense layer allowed to adapt the model to each particular 

classification problem. 

In order to further investigate the grasping scenarios, 

another data condition was defined with the addition of the 

inertial sensor. For this condition, namely RADTOFIMU, a 

third branch was added to the mixed-input neural network 

(Figure 2) composed by two linear layers with leaky-ReLU 

activation functions and dropout layers with rate 0.1. The 

input of this branch was defined as 6x1 (3-axes accelerometer 

and gyroscope) and fed with samples of the inertial sensor 

which were closest in time to the radar and time-of-flight 

frames. 

C. Training and offline testing 

For each of the deep learning model, a similar procedure 

was followed for the training and testing. Each dataset was 

shuffled and split between train, validation and test data sets 

taking respectively 80%, 10% and 10% of the data, ensuring 

balance among the different classes’ samples. Networks were 

trained with the Adam stochastic optimizer up to 200 epochs, 

with batch size of 32 and learning rate 0.001. Then, at the end 

of the training epochs the network was further tested on the 

test_set data, from which the accuracy was computed. Test 

accuracy is reported as raw, thus no post-classification 

filtering was applied.  

The data considered for the training and offline testing was: 

- All available frames for bench- and user-static 

scenarios, 

- frames relevant to the reaching motion for pick-and-lift 

grasping scenario, thus all frames included in the time 

range from -0.6 to -0.2 seconds before contact with the 

object (i.e., from -9 to -3 frames).  

Importantly, no data from the pick-lift-and-move scenario was 

used for networks training nor for offline testing. We deemed 

more relevant to the explorative narrative of this study to leave 

that scenario for the inference testing part to showcase 

performances at worst case. 

The instant of contact with the object was approximated 

from the inertial sensor data as the time instant of the first 

maxima in the z-axis (i.e., the axis parallel to the reaching 

direction), thus the instant of zero in the acceleration towards 

the target object. A simple sanity check was performed on 

pick-and-lift data discarding trials that were too fast (1.6% 

discarded data, 45 out of 2900 trials). 

For the user-static and grasping scenarios, the training and 

testing was performed considering:  

- aggregated data, thus from the 29 participants together, 

 

Figure 2. Illustration of the architecture of the mixed-input neural network used for the combination of radar (RAD), time-of-flight (TOF) 

and inertial sensors (i.e., RADTOFIMU). The single RAD and TOF CNNs are depicted in their respective branch of the mixed-input net. 
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- individual data, thus only relevant to each participant. 

Individual results are reported with the format 

MED:IQR (median: interquartile-range). 

Even though aggregating the participants’ data was our main 

strategy (see inference testing), we intended to include here 

also subject-specific explorations so to provide an interesting 

glance on alternative approaches tailored on each end-user. 

The classification problems were defined according to the 

scenario of interest so to showcase the potential for 

recognizing different objects and object properties in static 

situations or even during the reaching motion (TABLE 1). 

TABLE 1.  

CLASSIFICATION PROBLEMS DEFINED  

FOR TRAINING, OFFLINE AND INFERENCE TESTING 

Scenario Problem 
 #  

classes 

No-object 

class? 

Only 

metal? 

Bench-static 

Which 

object? 
 11 Yes No 

Which 

shape? 
 6 Yes No 

Which 

material? 
 3 Yes No 

User-static 

Which 

object? 
 11 Yes No 

Which 

shape? 
 6 Yes Yes 

Which 

grasp? 
 3 Yes Yes 

Pick-and-Lift 

Pick-Lift-and-Move 

Which 

object? 
 10 No No 

Which 

shape? 
 5 No Yes 

Which 

grasp? 
 2 No Yes 

 

Materials recognition was explicitly defined only for 

bench-static, however it was implicitly reported also for the 

other scenarios by the “which object?” classification 

problems. We considered more relevant to the explorative 

narrative to provide results about this worst-case. It is 

important to note that some explorations (i.e., “which grasp?” 

classification problems) ultimately aimed to demonstrate 

potential for the autonomous selection of the most adequate 

hand prosthesis grasp for manipulating a certain object. To 

this aim, we intended to keep these explorations tied to a 

realistic scenario of a modern multi-functional prosthetic hand 

with a limited selection of grasps, namely power and pinch 

grasps, a common clinical setup for prosthesis users. 

A last “no-object” class was always added to classification 

problems related to the static scenarios of bench- and user-

static, aiming to explore the capability to recognize the no-

target situation in static conditions. Such ability could 

arguably stabilize the autonomous control and avoid 

misclassifications before any reaching motion would take 

place. Moreover, considering the preliminary investigation 

and demonstrative purposes of this study, some analyses 

regarding the user-static and grasping scenarios were 

performed considering only the objects made of metal (TABLE 

1). This was deemed necessary due to the limited permittivity 

of the wood (i.e., high transparency to the radar) so to limit 

inherent obvious advantages between different data conditions 

and focus the exploration on object recognition during motion. 

D. Inference: testing with new collected data 

All models trained with the aggregated data from all 29 

participants were further explored via inference testing, thus 

by measuring classification accuracy on unseen data not part 

of the original dataset. For this, new data was collected 

according to the particular scenario of interest trying to 

replicate as close as possible the original data acquisition 

protocol [40]. In particular, for inference testing on the bench-

static scenario, new data was acquired for each object for two 

different orientations (1st and 2nd from the bench-static 

protocol), for about 6 seconds each. Then, for inference testing 

on user-static, grasping pick-and-lift and pick-lift-and-move 

scenarios, a new data collection was performed with a 

participant that was already part of the original dataset. 

However, CyberGlove and platforms data were not acquired 

as in the original protocol.  

The participant signed informed consent for data and media 

acquisition and public release. The ethical approval was 

provided by Ethical Committee of the Scuola Superiore 

Sant’Anna (ref. 12/2022). 

The actual inference testing was performed on Matlab 

(Mathworks, USA) by evaluating the TensorFlow nets 

exported in *.h5 format on the freshly acquired data. 

Specifically, the data considered for the inference testing was: 

- Last 60 acquired frames (about 4 seconds) for each 

object for bench- and user-static scenarios,  

- All frames included in the time range from -0.6 to -0.2 

seconds before contact with the object (i.e., from -9 to -

3 frames) for pick-and-lift and pick-lift-and-move 

grasping scenarios. 

The classification problems were as defined in TABLE 1. 

Only for the grasping pick-and-lift and pick-lift-and-move 

scenarios a mode post-classification filter was applied, 

therefore considering as final prediction the most frequent 

predicted class from the analyzed frames related to each 

different trial.  

E. Statistical analysis 

A correlation analysis was performed between participants’ 

height and resulting accuracies in static-user scenario 

(corrcoef function available on Matlab). No further statistical 

analysis was performed on the data.   

III. RESULTS 

A. Offline analysis 

Bench-static: can we recognize the object on the bench? 

An illustrative sample of the proximity sensors images 

provided to the CNNs for the bench-static scenario is shown in 

Figure 3. 
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Results from the bench-static scenario (Figure 4) showed 

perfect accuracies for all objects (100%), shapes (100%) and 

materials (100%) recognition with the radar data. Accuracies 

were lower with the TOF data for all objects (81.92%), shapes 

(69.43%) and materials (92.86%) recognition. Interestingly, 

the combination of radar and TOF data allowed top accuracies 

as the ones achieved with the radar data, resulting in 100% 

accuracy for all objects, shapes and materials recognition. 

User-static: can we recognize the object from the user? 

High recognition accuracies were found also in the user-

static scenario when considering all participants together and 

RAD and RADTOF conditions (Figure 4). Indeed, when using 

radar data alone the offline accuracies were 95.42%, 98.62% 

and 97.34% for all objects, shapes and grasps recognition, 

respectively. For RADTOF, accuracies were 95.12%, 99.17% 

and 99.36% for objects, shapes and grasps. Lastly for TOF, 

accuracies were 59.05%, 75.41% and 90.22% for all objects, 

shapes and grasps recognition, respectively. 

For the individual analysis, thus when considering data 

only relevant to each participant, RAD condition clearly 

outperformed the other two conditions. Indeed, average 

accuracies with radar data alone were 86.67:43.08%, 

100:0.16% and 97.26:31.66% for all objects, shapes and 

grasps recognition, respectively. For TOF condition, 

accuracies were 66.67:43.97%, 75.00:35.42% and 

91.30:15.88% for objects, shapes and grasps. Lastly, when 

combining the data from radar and time-of-flight sensors (i.e., 

RADTOF), offline accuracies were 65.52:39.69%, 

85.42:50.00% and 92.11:45.01% for all objects, shapes and 

grasps recognition, respectively. 

In general, the TOF sensor proved to be more sensitive to 

the less optimal centering of the object in its field of view, 

demonstrated also by the significant negative correlation 

between participants’ height and resulting accuracies (p=0.03).  

Pick-and-Lift: can we recognize the object while moving 

towards it? 

Accuracies certainly dropped when analyzing the dynamic 

scenario of the user reaching to grasp the object. Even though 

results presented quite some variability, they show a trend of 

TOF outperforming the other data conditions in both 

aggregated and individual analyses (Figure 4). Specifically 

about the aggregated analysis, when using time-of-flight data 

alone the accuracies were 74.81%, 92.10% and 96.97% for all 

objects, shapes and grasps recognition, respectively. When 

using radar data alone the accuracies were considerably lower, 

to 36.21%, 62.58% and 66.67% for all objects, shapes and 

grasps. Recognition accuracies benefitted from considering 

more sensors together. Indeed, for RADTOF accuracies were 

77.14%, 62.15% and 92.90% for all objects, shapes and 

 
Figure 3. Images from the proximity sensors data. Visualization 

of the data acquired from the radar and time-of-flight sensors 

while steadily facing the different target objects. For illustration 

purposes, radar images were plotted as RGB images with blue 

channel set to zero, and time-of-flight images were plotted as 

pseudo-colour images with “viridis” colour mapping. Lastly, all 

images were smoothed via Gaussian interpolation. 

 
Figure 4. Offline test accuracies for the different scenarios, data conditions and classification problems. The data conditions were defined 

as RAD when considering radar data alone, as TOF when considering time-of-flight data alone, as RADTOF when considering a 

combination of radar and time-of-flight, and as RADTOFIMU when considering also the inertial sensor. The scenarios were bench-static 

(top-left), user-static (top-right) and pick-and-lift (bottom). The different classification problems are explained in the spiderplots legend. 
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grasps. Lastly, the addition of inertial sensor data (i.e., 

RADTOFIMU) allowed accuracies of 57.87%, 81.91% and 

95.84%. 

Similar findings were reached also for the individual 

analysis, with TOF overall leading the recognition 

performances, with RAD quite unreliable, and with the 

accuracies from all data conditions converging to high values 

when considering a simple 2-classes problem of power grasp 

versus precision pinch grasp. Specifically, for TOF average 

accuracies were 86.76:9.04%, 93.55:14.71% and 

91.89:10.91% for all objects, shapes and grasps recognition, 

respectively. For RAD data condition, accuracies were 

41.18:33.17%, 63.64:52.59% and 71.79:20.99% for objects, 

shapes and grasps. When it comes to the mixed-input neural 

networks, RADTOF accuracies were 82.81:15.80%, 

45.71:47.22% and 91.43:27.68%, while RADTOFIMU 

accuracies were 85.48:18.01%, 57.58:34.44% and 

85.37:14.74% for all objects, shapes and grasps recognition, 

respectively. 

B. Inference analysis on new data 

All models trained with the aggregated data from all 29 

participants were further explored via inference testing, thus 

by measuring classification accuracy on unseen data not part 

of the original dataset. Results for all data condition, scenario 

and classification problem are reported in TABLE 2. A 

summary of the most promising results for each scenario and 

classification problem is depicted in Figure 5. via confusion 

matrices. As expected, the bench-static scenario proved to be 

the easiest to solve with RADTOF being the condition which 

closest followed the accuracies seen during offline testing. 

Here, beside showing misclassifications between the wooden 

sphere and cylinder and between the wooden prisms, resulting 

accuracies were relatively high even when dealing with all 

objects available placed with different orientations (Video 1). 

Instead, user-static proved to be the most challenging scenario 

in which a poorly controlled alignment with the target object 

can considerably deteriorate recognition. Indeed, 

classifications were quite random when trying to recognize all 

objects, and misclassifications were mostly related to the small 

prisms and the large cuboid and sphere when trying to 

recognize the shapes. Nevertheless, the RAD condition 

allowed discrete performances when the classification 

problem was simplified in choosing among only two hand 

grasps, power or precision grasp. The inference accuracies for 

the grasping pick-and-lift scenario were quite unexpected. 

Here, results showed promising performance for the 

recognition of shapes and grasps even when sensors were 

moving towards the target, reaching classification accuracies 

as high as 94% with RADTOF condition on the 2-classes 

problem. The inclusion of inertial sensor data proved to be 

beneficial when matching the classification problem to the 

number of different reaching trajectories of each shape, with 

misclassifications mostly related to the small prisms. 

Pick-Lift-and-Move: what happens if we include more 

directions of approach? 

The pick-lift-and-move trials included an increasing level 

of complexity, namely a different and more disadvantageous 

starting position as well as two more directions of approach 

towards the target object, rightwards with the target poorly in 

view at start and leftwards with the target not in view at start. 

The same models trained with the aggregated data from all 29 

participants were further inference tested on this unseen and 

diverse data. Results are reported in TABLE 3. Overall and as 

expected, accuracies dropped from the pick-and-lift inference 

tests, particularly for all neural networks which depended on 

time-of-flight sensor data. Highest accuracy was 68% and 

reached by RAD CNN in the 2-classes problem. Moreover, 

solving the recognition problem for ten different objects with 

two shapes and two materials seemed just unfeasible for all 

data conditions.  

TABLE 3.  

INFERENCE ACCURACIES (%) FOR PICK-LIFT-AND-MOVE  
 Pick-Lift-and-Move 

 Which object? Which shape? Which grasp? 

RAD 21.00 34.00 68.00 

TOF 11.00 12.00 48.00 

RADTOF 26.00 20.00 62.00 

RADTOFIMU 22.00 48.00 52.00 

TABLE 2.  

INFERENCE ACCURACIES (%) 

 

Bench-static User-static Pick-and-Lift 

Which 

Object? 

Which 

shape? 

Which 

material? 

Which 

object? 

Which 

shape? 

Which 

grasp? 

Which 

object? 

Which 

shape? 

Which 

grasp? 

RAD 66.67 68.18 99.85 27.58 59.72 82.22 37.00 58.00 92.00 

TOF 49.55 51.21 71.52 24.39 13.06 16.39 17.00 60.00 72.00 

RADTOF 86.21 93.79 99.85 27.27 55.83 66.67 50.00 24.00 94.00 

RADTOFIMU / / / / / / 34.00 76.00 82.00 
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IV. DISCUSSION 

The feasibility analyses reported in this study seem to 

confirm the original hypothesis of state-of-the-art proximity 

sensors being a possible alternative for shapes and materials 

recognition of objects. Indeed, data from a modern integrated 

radar and a time-of-flight 8x8 pixels camera proved to be 

sufficient for the reliable and repeatable recognition of ten 

different objects in an ideal static scenario (Video 1), thus with 

the targets steady and located within the sensors’ field of view. 

Moreover, it was investigated how gradually increasing the 

complexity of this ideal scenario would change the recognition 

accuracy. Specifically, promising results were found also in a 

less ideal but still static scenario of subjects standing in front 

of the target object with limited control on the sensors’ field of 

view centring and alignment in respect to the targets. Here, 

data from a single radar sensor was sufficient to achieve 

discrete performances in recognising the most indicated hand 

grasp to use before starting the reaching motion towards the 

object. Against expectations, such radar sensor (and its 

combination with other sensors) proved also promising results 

when facing dynamic scenarios, thus showing the potential to 

recognize the target object even during reaching motion. 

Interestingly, the bench-static setup unveiled the potential 

of using a radar sensor for the recognition of materials. Even if 

assessed briefly and with two very different materials, these 

results are in harmony with previous literature [33], showing a 

great potential for radar sensor to characterize complex objects 

based on their permittivity. Such considerations are to be 

taken into account for the design of modern intelligent 

prosthetic hands, likely based on a mixed-sensors system 

where, hypothetically, materials can be recognized in a later 

stage of the grasping action so to allow minor grip adjustments 

and prevent object slippage. 

As seen in the inference tests, the trained networks 

responded differently to unseen data in different scenarios and 

    

Figure 5. Confusion matrices of the most promising results from the inference test. The matrices visualize classifications for the three 

scenarios (columns) and for the different classification problems (rows). The different problems are indicated with different colours 

(legend as in Fig.4), while classes are indicated with initials. For the shapes, sphere = S, cylinder = C, triangular prism = T, cuboid with a 

thin rectangular prism ‘handle’ = B, thin rectangular prism = W, no-object = NO. For the different materials, metal = M and wood = W. 

Lastly, for the grasps, power = PO, precision pinch = PI. 
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classification problems. Due to the limited testing is it 

therefore hard to make any claim on the data generalizability. 

While aggregating the data from multiple participants seems 

to be the way to go, it might be also beneficial, for an actual 

clinical translation point of view, to better tailor the data 

collection and network training to the individual 

characteristics of the participant of interest (i.e., the end-user), 

probably also including different object reaching directions. 

The negative correlation found between participants’ height 

and resulting accuracies would suggest that further sanity 

checks on the data might be needed in order to reduce 

unhelpful data variability.  

This study intended to compare two state-of-the-art 

proximity sensors, so to understand their different potentials 

for the given problem. Moreover, we intended also to verify 

the original hypothesis that a combination of these sensors can 

be of value for the given problem. Overall, the data from the 

radar sensor was better suited for the different problems in all 

scenarios, sometimes even outperforming the combination 

with inertial and TOF sensors. However, combining radar and 

time-of-flight data proved to be successful for an ideal bench-

static setup. Oppositely, the time-of-flight sensor heavily 

suffered from misalignments with the target objects, in line 

with its reduced field-of-view compared to the radar (45x45° 

vs 65x53°), but its data became more and more relevant as the 

sensor progressed towards the target. Additionally, the radar 

performance might be improved with different data 

acquisitions (e.g., different range points and sweeps settings 

for the radar) and different processing (e.g., alternative to 

common doppler maps, advanced background removal 

techniques). Nevertheless, a combination of the two proximity 

sensors might still be the way to go, perhaps optimizing the 

deep learning models so to reduce the impact of a sensor in the 

final prediction accordingly to the scenario of interest.  

While it is clear that introducing a less controlled alignment 

within the sensors’ field of view as well as diverse data from 

dynamic situations (like reaching and grasping the objects 

from different directions) can have considerable effects on the 

final accuracy, the results are still remarkable considering the 

simplicity of these sensors compared to those normally 

operated in similar research, such as RGB-D cameras. Such 

considerations can have implications in the development of 

future autonomous robotic grippers, especially prosthetic 

hands. At first, proximity sensors can be a valid alternative to 

more power and computation demanding camera-based 

systems for the recognition of objects or their basic 

characteristics relevant to the grasp. Moreover, such 

recognition seems feasible either before and after starting the 

approach movement towards the target, provided that the 

objects are somehow within the sensors’ field of view. The 

latter finding opens up the possibility of performing and/or 

updating the intended grasp on the robotic hand while the 

amputee user moves towards the target, a challenge and 

achievement that is still unprecedented in the field. Ultimately, 

we envision a system in which a complex target recognition 

can be achieved via three phases: 1) during the static phase to 

allow a correct preshape of the prosthesis, 2) during the 

reaching phase to allow corrections of the grasp or to 

alternatively alert the user of a potential misclassification, and 

3) during the target-is-grasped phase to allow recognition of 

further details of the object and consequent grip adjustments. 

It remains of primary interest to understand how each of these 

phases would impact the naturalness of prosthesis use and thus 

the final user’s acceptance.  

Limitations 

To the best of our knowledge, this study offers for the first 

time the exploration of radar and time-of-flight proximity 

sensors for object properties recognition and grasp facilitation 

in autonomous prosthetic hands. However, we report here only 

pure offline analysis. Even though the inference tests included 

here are of great help to assess the nets translational potential, 

such results are limited and to be intended as a feasibility 

check; as seen already in other technologies, the system 

performance can wildly change during real-time tests. For this 

reason, it is our intention to continue optimize the deep 

learning models, port them from the computer to a wearable 

format, and then test such approach in real-time with an actual 

robotic prosthetic hand. 

This study analyzed a limited set of objects and materials, 

thus it is still unclear how results are transferrable to a realistic 

scenario of use with a prosthetic hand. Nevertheless, we argue 

that the target objects used here can be already fairly 

representative of certain daily-life tasks because these objects 

were purposely selected for the Southampton Hand 

Assessment Procedure, a well-known, clinically validated 

functional assessment for robotic hands intended for 

prosthetics purposes. 

The ”no-object” class poses further challenges to the user-

static scenario (i.e., when trying to recognize an object before 

actually starting the reaching motion). Here, the no-object 

class for user-static was simply represented by ideal data 

acquired by the proximity sensors while pointing at nowhere 

with no hit within a 1 meter range. However, such ideal data 

might be hard to acquire in a real implementation with the 

amputee hovering the prosthesis over a desk, or towards a 

group of objects. The risk of frustrating misclassifications is 

higher in a realistic scenario. 

Even though shape recognition proved to be feasible while 

approaching the target object, no hand prosthesis currently on 

the market can change its fingers posture to a grasp in less 

than half a second. Thus, with current robotic technology 

amputee users would need to reach the target with slower 

speed than able-bodied individuals. Nevertheless, the idea and 

goal remain of interest because it would allow the hand 

prosthesis to better mimic its biological counterpart.  

Architecture and hyperparameters optimizations on the 

deep learning models used here were limited. Preliminary 

explorative iterations were conducted to find a basic network 

architecture and a hyperparameters set that could suit all data 

conditions, after which the networks were not further 

optimized during the analyses. However, there is a large 

potential for improvement by performing more extensive 

systematic optimizations tailored to the situation of interest 

(i.e., which sensor, static or dynamic, which classification 

problem). This route will be surely further explored in the next 

steps of the project. 
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V. CONCLUSIONS 

In this study we explored for the first time the use of state-

of-the-art proximity sensors for object grasp facilitation in 

autonomous prosthetic hand. To this aim, an extensive human-

object interactions dataset was analysed via deep learning 

models trying to classify the different target objects. Results 

showed a promising potential for grasp classification (i.e., 

selecting the adequate hand grasp to be used) before and also 

during the reaching-to-grasp motion. Results seem to suggest 

modern, low-power radar as a potential key technology for 

next generation intelligent and autonomous robotic hands. In 

particular, these results seek to contribute to the development 

of alternative control approaches for prosthetic hands, less 

dependent on the conventional but knowingly unreliable 

electromyographic human-machine interface. Autonomous 

prosthetic hands can be a game changer, envisioning a 

complex system that can interact in an intelligent fashion with 

the user and any object. 
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