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This note analyzes some properties of the Pareto Type III distribution. A three parameter
version of the original two parameter distribution proposed by Pareto is introduced and
both its density and characteristic function are derived. The analytic expression of the
inverse distribution function is also obtained, together with an explicit expression of its
moments of any order. Finally, a simple statistical exercise is proposed, designed to show
the reliability of the Pareto Type III distribution in describing asymptotically dumped power-
like behaviors.
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1 INTRODUCTION

Zipf’s Law [1], and Pareto Laws in general [2], have been assumed, since a relative long time, as
reliable descriptions of the distributional properties of variables characterizing different social and
natural phenomena (see Newman [3], the critical review in Kleiber and Kotz [4] and references
therein). The application is the domain of economics are many, ranging from portfolio theory to
economic growth [5,6]. These Laws are usually assumed valid when sufficiently large realizations of
the variable of interest are considered, that is for the upper tail of the associated distributions. If a
random variable X follows the Pareto Law with tail index a, the associated survival function
possesses a power-like asymptotic behavior, 1 − F(x) ~ x−a, so that its n-th moment E[Xn], for
sufficiently large values of n, it is not defined. This property is particularly relevant when small
values of the tail parameter are considered. For instance, when a ≤ 2, the variance (n = 2) is already
absent. Contrary to the Pareto hypothesis, however, the empirical evidence often suggests finite
values for the central moments, also when heavy-tail distributed variables are considered.
Sometimes this can be understood with the presence of a natural upper bound which limits
the largest attainable value of a given variable. Indeed in several cases it has been reported that a
truncated Pareto provides a better fit to the data (Burroughs and Tebbens, 2001) than a pure power
Law. In this paper I introduce a new three parameter version of the two parameter family of
distributions originally proposed in Pareto [7]. The added parameter is a “dispersion” parameter
which explicitly accounts for the typical scale of the underlying random variable, thus reducing the
negative effect of the latter on the estimation of the power and exponential coefficients reported in
Creedy [8]. Since the shape of the distribution is essentially the same of the orignal two parameter
family proposed by Pareto, following Kleiber and Kotz [4] I retain the name of Pareto Type III
distribution. The exponential dumping in the upper tail makes this distribution particularly
suitable in describing all those samples which display power behavior for intermediate values and a
more than power-like decrease in probability above a certain threshold or for particularly large
observations (c.f. the examples in Burroughs and Tebbens [9]).

2 THE PARETO TYPE III DISTRIBUTION

Consider the three parameter family of distributions
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F x( ) � 1 − x

s
+ 1( )−a

e−b
x
s , x≥ 0, (1)

where s > 0 is a scale parameter, a > 0 the power coefficient and b≥ 0
the exponential coefficient. The upper-tail of the distribution is
characterized by a power-like behavior dumped by an exponential
factor. When the exponential coefficient is set to zero, b = 0, the
previous distribution reduces to a Pareto Type II distribution [4],
which is asymptotically equivalent to the original Pareto
distribution. The effect of the values of the exponential coefficient
b on the overall shape of the distribution can be see in Figure 1,
where the logarithm of the survival function log(1 − F(x)) is
reported. For x/s ≪ 1 (left panel), when b is large the
exponential factor becomes leading and the survival function
decreases linearly. At the same time, when x/s ≫ 1 (right panel)
an increase in b introduces a deviation (on the log-log graph) from
the straight line characteristic of the Pareto power like behavior.
With respect to the original formulation of Pareto and some later
works, the functional expression proposed in Eq. 1 contains the
additional scale parameter s. The addition of the scale parameter
does not change the general properties of the distribution. In fact, it
can be simplified away by a simple redefinition of the random
variable. However, it might be useful in application, when the typical
scale of the variable under study is not clear and has to be derived
from data. The density associated to Eq. 1 reads

f x( ) � 1
s

x

s
+ 1( )−a

e−b
x
s b + a

x/s + 1
( ). (2)

The density f(x) is strictly decreasing, thus the Pareto III
distribution is unimodal with mode in x = 0.

2.1 Characteristic Function and Moments
Following Abramowitz and Stegun [10] (equation 6.5.20, p. 262))
define

αn x( ) � ∫+∞

1
dt e−xt tn � x−n−1 Γ n + 1, x( ), (3)

where Γ(n, x) stands for the incomplete gamma function

Γ n, x( ) � ∫+∞

x
dt e−t tn−1.

Using the properties of Γ(n, x), it is immediate to obtain the
following recurrence relation

αn x( ) � e−x

x
+ n

x
αn−1 x( ). (4)

Using this relation it is easy to show the following
Theorem 2.1. If the random variable X is distributed according to
Eq. 1, its characteristic function ϕ(k) = E[eikX] reads

ϕ k( ) � 1 + ik s e−iks+b α−a b − iks( ). (5)

Proof. By definition one has

ϕ k( ) � ∫+∞

0
dx eikx

1
s

x

s
+ 1( )−a

e−b
x
s b + a

x/s + 1
( )

which, after the change of variable z = x/s + 1, reduces to

ϕ k( ) � ∫+∞

1
dz z−ae− b−iks( )z b + a

z
( ).

FIGURE 1 | Lower (left) and upper (right) tail of the survival function of the Pareto III distribution for a = 1, s = 1 and different values of the exponential coefficient b.
The case b = 0 corresponds to the Zipf’s law log(1 − F(x)) ~ x−1.
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Using Eq. 3 this can be rewritten as

ϕ k( ) � e−iks+b b α−a b − iks( ) + a α−a−1 b − iks( )( ),
which using (Eq. 4) reduces to (Eq. 5).

In principle, all the moments of Eq. 1 can be obtained from the
characteristic function (Eq. 5). For instance, one immediately has
that the mean m1 is

m1 � −i( ) d

dk
ϕ k( )

∣∣∣∣∣∣∣k�0 � s eb α−a b( ). (6)

A more practical expression can be obtained for higher
moments.
Theorem 2.2. The moments mn = E[Xn], where X is distributed
according to Eq. 1, admit the following representation:

mn � sn eb ba ∑n
h�0

n

h
( ) −1( )n−h h

bh
Γ h − a, b( ). (7)

Proof. By definition of the n-th moment and using z = x/s + 1
one has

mn � sn eb ∫+∞

1
dz z − 1( )nz−ae−bz b + a

z
( ).

Taking the binomial expansion of (z − 1)n and using Eq. 3, it
becomes

mn � sn eb ∑n
h�0

n

h
( ) b αh−a b( ) + a αh−a−1 b( )( ),

which given Eq. 4 and the definition of the α function in terms of
incomplete gamma function, reduces to Eq. 7.

2.2 Inverse Distribution Function
The distribution function in Eq. 1 is defined over [0, +∞) and has
image in [0, 1). In this Section 1 derive its inverse, the quantile
function Q(q). Consider the real function g(x) = x ex. Since it is
continuous and strictly increasing for x ≥−1, it admits a
continuous inverse W(y) defined for y ≥−1/e, that satisfies the
equations

W y( ) eW y( ) � y , andW xex( ) � x, (8)
for any y ≥−1/e and x ≥−1. The functionW(y) corresponds to the
real branch of the Lambert function (c.f. Jeffrey et al. [11]).
Theorem 2.3. The inverse distribution function Q of Eq. 1 reads

Q q( ) � s
a

b
W

b

a
e
b
a 1 − q( )−1/a( ) − s, (9)

where W(x) is the real branch of the Lambert function.

Proof. Let q ∈ [0, + ∞). We are interested in the value of x that
satisfy F(x) = q. Considering the expression in Eq. 1 this reduces
to the equation

x

s
+ 1( )−a

e−b
x
s � 1 − q.

The expression can be rewritten in terms of z = (x/s + 1) b/a.
After some manipulations one gets

FIGURE 2 | Distribution of the largest worldwide firms in 2006 according to Fortune 500 (revenues in millions of dollar). The maximum likelihood estimation of the
upper tail obtained using 5%,10% and 30% of the available data is plotted for the Pareto Type I (left) and Pareto Type III (right) distribution.
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z ez � b

a
e
b
a 1 − q( )−1/a.

The right hand side is non-negative, thus from Eq. 8 it is

z � W
b

a
e
b
a 1 − q( )−1/a( ),

whence the assertion.
When q ∈ [0, + ∞), the argument of the function W in Eq. 9 is

positive, so that the above expression is well defined. From Eq. 8, it
follows that Q(0) = s a/b W(b/a exp(b/a)) − s = 0, as expected. The
quantile function Eq. 9 can be used to generate i.i.d. pseudo-random
variables extracted from a Pareto Type III distribution: generate a set
of independent realizations {qi} uniformly distributed in [0, 1) and
apply the inverse distribution function Q to each realization to
obtain a set {Q(qi)} of independent variates distributed according to
Eq. 1. Another application of the quantile function, common in
exploratory data analysis, is the construction of q-q plots to
investigate the agreement of data to the theoretical model.

3 FIRMS SIZE DISTRIBUTION

The upper tail exponential cut-off which characterizes the Pareto
Type III distribution can prove extremely useful in obtaining
better and more reliable descriptions of empirical data. I illustrate
this claim with an example based on the size distribution of
business firms. The Pareto III distribution will be used to describe
the upper tail of the Empirical Distribution Function (EDF) of
annual revenues of the largest worldwide companies. This choice
seems particularly fit, as it was precisely the problem of finding a
reliable statistical description of the distribution of wealth which
originally prompted the work of Pareto. I consider the Fortune
500 database, published each year by the Fortune magazine,
which collects the revenues of the largest 500 firms in the
world. Using Maximum Likelihood (ML) estimation (c.f. Hill
[12] and for details Bottazzi et al. [13]) I fit the Pareto Type III
distribution defined in Eq. 1 to the EDF upper tail, using
subpopulations of different sizes. The analytic nature of the
distribution and density functions, Eqs 1, 2, guarantee an
asymptotic optimal performance of the ML approach. For
comparison, I also fit a Pareto Type I distribution defined as

F x( ) � 1 − x

s
( )−a

. (10)

The Pareto Type I is the distribution traditionally applied to the
description of the upper tail of wealth or income distribution (see for

instance Castaldi and Milakovic [14] and references therein). Results
are reported in Figure 2: the power-like decay of the Pareto I
distribution shows up as a straight line in the log-log plot (left
panel) while the exponential cut-off of the Pareto III distribution
appears as a convex shape. As can be seen, the latter is remarkably less
sensitive to the size of the considered sample andmuchmore adapted
to empirical observations. The estimate values for the tail index â and
the exponential correction b̂ are reported in Table 1.

4 CONCLUSION

The Pareto Type III distribution, originally proposed by Pareto in
1896 as one of the possible statistical characterization of the
distributional properties of the wealth in the Grand Duchy of
Oldenburg, has never received much attention. However, its
exponential asymptotic shape assures the existence of all central
moments. Due to its relative simplicity and analytical tractability, it
can be successfully used as an alternative candidate to probe for the
presence of “deviation” from the power-like behavior of the upper tail
of empirical distributions. The use of an exponentially dumped power
behaviour could help in shading some new light on the difficulty of
statistically differentiate between a power-like or a stretched
exponential behavior [15]. As shown in Gabaix [16], the
assumption of a power-like behavior of the size distribution of
individual firms has important implications for the observed
dynamics at the aggregate, macroeconomic, level. Thus,
investigating the validity and extent of the Paretian assumption
acquires a new relevance and the particular distribution analyzed
in these notes might help in this investigation.
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TABLE 1 | Estimated coefficients for Pareto Type I and III on Fortune 500 data
using different upper tail fractions of observations.

Pareto I Pareto III

sample size 5% 10% 30% 5% 10% 30%
â 1.74 1.39 1.13 1.74 1.31 1.48

b̂ - - - 0.024 0.026 0.023
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