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Abstract

We set up a simple behavioral model for a large population of agents who are repeatedly

playing the Minority Game and whose interaction is modeled by means of the so-called

replicator dynamics. This allows us to specify the dynamics of the aggregate variables, the

number of agents choosing each side, in terms of a low-dimensional dynamical system that

gives qualitatively the same results of the existing computational approaches. As an extension

we introduce asymmetric payoffs, i.e., we analyze the case where the minority and majority

payoffs are side dependent. In this case the fluctuations out of the equilibrium are qualitatively

different. In particular, contrary to the previous case, they are associated with a difference in

the average payoff gained by each side. Furthermore, a parameter region exists where the

dynamics does not converge to any isolated periodic attractor.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Minority Game has been introduced as a stylized setting for modeling and
analyzing the strategic interaction of a large number of agents. In the original
see front matter r 2005 Elsevier B.V. All rights reserved.
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version of the game [1] an odd number of agents has to choose simultaneously
whether to take side ‘‘1’’ or side ‘‘0’’. Once the decisions are taken the agents who
turn out to be in the minority side get a point, the others get nothing. The same game
is repeated over time, the agents cannot communicate and they take their decisions
on the basis of their common and symmetric information over the previous rounds.
The fact that every winning strategy is not profitable anymore as soon as too many
agents start using it, causes the competition to sit in the minority side never to settle
down. The large literature [2] on the topic has primarily concentrated on the
capability of the agents to self-organize and to maximize the total population payoff.
This is compared to the benchmark case where the mixed strategy Nash equilibrium
of the one stage game is played repeatedly. The two cases coincide for what concerns
the mean of the fraction of agents taking each side and are usually distinguished only
by looking at its variance. Most of the existing approaches are computational and
the observed properties of the system are described by means of the tools of
statistical mechanics and critical phenomena.
In order to tackle the same issue using a tractable model, we construct a dynamical

system for the Minority Game and we analyze its behavior using local bifurcation
analysis and by looking at the properties of the orbits generated by the system. At
this first stage, in order to keep the structure of the model, as well as its mathematical
formulation, as simple as possible, we consider agents using simple heuristics. For
this case, in accordance with the literature, e.g. [3], we find that the variance of the
fraction of agents taking each side remains strictly positive for large N. As an
extension, we consider the case where the number of points awarded to a minority
depends on the side where the minority is realized. This introduces an asymmetry in
the system which causes the mixed strategy Nash equilibrium to differ from the level
at which the system is maximizing the total population payoff. We apply our
dynamical system to investigate the effect of the asymmetry in the payoffs on the
coordination and self-organization properties of our agents. We are particularly
concerned both with the distribution of payoffs among the population and with the
total population payoff.
This paper is organized as follows: Section 2 presents the intuition behind our

model and its mathematical formalization. Section 3 contains a qualitative analysis
of the dynamics of our system and investigates the effect of the asymmetry on the
population payoff. Section 4 concludes with a summary of the results and directions
for future research.
2. The model

2.1. Intuition

The starting point is a population of agents who choose, period after period, to
take either side ‘‘0’’ or side ‘‘1’’. Our assumption is that the number of agents
choosing each side is proportional both to how profitable that side has been so far
and to the number of agents who were in that side the previous period. We could say,
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in this respect, that the number of agents taking a side is related to how popular that
side is within the population. Where, with popular, we mean profitable during the
previous periods and already chosen by other agents. Our agents have limited
cognitive capabilities, in particular they do not consider the possibility that other
agents may use the same ‘‘index of popularity’’ in taking their decisions. It is possible
to think of more sophisticated agents who, for example, condition their choice on the
past history or on the outcome of a set of predictors. In this case the corresponding
dynamical system would be more complicated. At this stage of our investigation we
want to keep the formulation of the model as simple as possible. We notice that
despite its simplicity, our framework incorporates the main message of the Minority
Game: a decision cannot be popular and winning at the same time. As long as a side
is winning its popularity increases so that it is chosen by more and more agents,
turning in the loosing side soon. The competition for choosing the minority side may
never settle down.

2.2. Formalization

We call x1;t the fraction of agents that at time t ends up in side ‘‘1’’ and x0;t ¼

1� x1;t the fraction of agents in side ‘‘0’’ at time t. In principle every fraction is a
number of the type k=N with k 2 f0; . . . ;Ng but, in practice, we use xi;t 2 ½0; 1�,
i ¼ 0; 1, which corresponds to considering a very large population of agents. In the
original definition of the game, every agent who sits in a minority gets a payoff ps

(minority ¼ success) and every agent in a majority gets pf ops (majority ¼ failure).
Here, at time t, we consider:

pi;t ¼ pðxi;tÞ ¼
ðps þ pf Þ

2
�

ðps � pf Þ

2
tanhðgðxi;t � 0:5ÞÞ; i ¼ 0; 1 . (1)

Note that the limit as g ! 1 gives back the original minority rule which pays
pi ¼ ps if and only if xio0:5. If g is finite, the size of the minority also matters so that
a smaller minority is rewarded with a higher payoff. As a difference with the original
case, where N is odd and finite, we consider an arbitrarily large value of N so that, in
general, the point xi ¼ 0:5 is also in the domain of the payoff function given in
Eq. (1). A generalization of the payoff function allows us to investigate the case
where an asymmetry is introduced in the payoff structure. We are particularly
interested in the case where one side, say side ‘‘0’’, is less risky than the other: being
in the minority is rewarded with less points but ending up in the majority causes a
lower loss. This idea is realized by taking the values of the majority and minority
payoffs as side dependent. We introduce this asymmetry by means of the parameter
a 2 ½0; 1� in the definition of p0;t:

p0;t ¼ paðx0;tÞ ¼
ðps þ pf Þ

2
� ð1� aÞ

ðps � pf Þ

2
tanhðgðx0;t � 0:5ÞÞ . (2)

If a ¼ 0 we are back in the symmetric case. When aa0 side ‘‘0’’ is less ‘‘risky’’ than
side ‘‘1’’. By that we mean that the difference between the highest and the lowest
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payoff is nearly1 ð1� aÞðps � pf Þ on side ‘‘0’’ and nearly ðps � pf Þ, thus higher, on
side ‘‘1’’. When a ¼ 1 we have p0;t ¼ ðps þ pf Þ=2, 8t. Taking side ‘‘0’’ has no strategic
uncertainty anymore.2

In accordance with Section 2.1 we assume that, at period t þ 1, the number of
agents on a side is proportional both to the points that side has earned and to how
many agent were on that side at period t. The replicator dynamics [5] implements this
mechanism. It is commonly used to model the interaction of agents in evolutionary
games [6] and, according to it, the fraction xi;tþ1 is given by

xi;tþ1 ¼
xi;tui;t

x1;tu1;t þ x0;tu0;t
, (3)

where ui;t measures the points that side i has earned and it is given by the discounted
sum, with coefficient m, of the past gained payoffs:

ui;t ¼ mui;t�1 þ ð1� mÞpi;t . (4)

We have now all the elements to write down a dynamical system for the Minority
Game. We note that x0;t ¼ 1� x1;t, so that the system is three-dimensional and
given by

x1;tþ1 ¼
x1;tu1;t

x1;tu1;t þ ð1� x1;tÞu0;t
,

u1;tþ1 ¼ mu1;t þ ð1� mÞpðx1;tþ1Þ ,

u0;tþ1 ¼ mu0;t þ ð1� mÞpað1� x1;tþ1Þ . (5)

We characterize the dynamics for different values of the parameters in the following
section. We are particularly interested in behavior of the distribution of payoffs
among the population as a function of the degree of asymmetry a.
3. Some results

Here we briefly present the qualitative analysis of the dynamics of the model we
have set up in the previous section. We treat as different cases the situation where
a ¼ 0 (symmetric case) and the situation were aa0 (asymmetric case). In both cases,
x1 ¼ 0:5 is the fixed point of the system as well as the unique symmetric mixed
strategy Nash equilibrium.3 An insight about the difference between the two cases
comes from the comparison of the average population payoff, p̄ ¼ x1p1 þ x0p0, as a
function of x1 (see Fig. 1). In the symmetric case, x1 ¼ 0:5 is both the (unique
symmetric mixed strategy) Nash equilibrium and the optimal level which maximizes
1Note that this difference depends on g. The result holds with equality only when g ! 1.
2This situation resembles the setting of the El Farol problem [4] when going to the bar is risky (taking

side ‘‘1’’) while staying at home (taking side ‘‘0’’) gives always the same payoff.
3X 1 ¼ Nx1 ¼ N=2 is in fact the expected value of a binomial random variable with parameters N and

p ¼ 0:5. The latter can be shown to be the symmetric mixed strategy Nash equilibrium of the Minority

Game for all N and for all a.
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Fig. 1. Average population payoff, p̄, is plotted as function of x1, for two different values of a. On the left
for a ¼ 0, on the right for a ¼ 1. Both plots illustrate both the case of g ¼ 5 as well as the case of g ¼ 100.

The values of the payoffs are ps ¼ 3 and pf ¼ 1.
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the average payoff of the population so that, p̄ð0:5Þ ¼ p̄MAX . As a result, when the
system is not stable at the mixed strategy Nash equilibrium, its fluctuations
considerably lower the average population payoff. In the asymmetric case, x1 ¼ 0:5
is still the (unique symmetric mixed strategy) Nash equilibrium but p̄ð0:5Þap̄MAX . In
this second case fluctuations around the mixed strategy Nash equilibrium may lead
to a higher average population payoff then p̄ð0:5Þ. We investigate this circumstance
in what follows.

3.1. The symmetric case

When a ¼ 0 the system (5) has three different fixed points: x1 ¼ 0, 1 and 0.5. As
already noted, the latest corresponds to the unique mixed strategy Nash equilibrium
of the game. It can be shown that the two first fixed points are always unstable. The
stability of x1 ¼ 0:5 primarily depends on m and g. When m ¼ 0 the system is one-
dimensional and the stability condition for x1 ¼ 0:5 in terms of g is given by4

go4
ps þ pf

ps � pf

. (6)

The previous condition means that the system loses stability as soon as the payoff
function is steep enough at the fixed point. In the case ma0 it can be shown that the
system is stable in a bigger parameter region but a similar condition still holds. In
general the steady state turns into a two-cycle by means of a period doubling
bifurcation. The dynamics in the instability region depends again on the value of m.
When m ¼ 0 the system has different coexisting two-cycles, an infinite number as
g ! 1. When ma0, the system shows coexistence of stable two-cycles and stable
four-cycles. For a given initial condition, the system converges to either one of the
two-cycles or one of the four-cycles. We illustrate this feature in the first panel of
4The system depends also on ps=pf . If we normalize pf to one, the system does not show qualitative

changes for other values of ps.
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Fig. 2. Left panel shows a bifurcation diagram w.r.t. g. For every value of g after a transient of 900
iterations an orbit of 100 points is plotted. When we add some noise (zt i.i.d., �Nð0; 0:001Þ) to x1 the

system jumps between different two-cycles and four-cycles as soon as g is high enough. Note that the noise
does not significantly affect the system when g is low. Right panel shows the time average (1000 periods) of
p̄, p1 and p0 as a function of g. When g is such that the system loses stability, hp̄i decreases while hp1i and
hp0i are always equal. In both plots ps ¼ 3, pf ¼ 1, m ¼ 0:2 and a ¼ 0.
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Fig. 2, where we show, for a range of values of g, how the addition of a little noise
causes the orbits to jump among the different coexisting attractors.
It is interesting to characterize the stability and instability region also in terms of

time average payoffs. Let hi denote the time average along an orbit. In the stability
region p1 ¼ p0 and x1 ¼ 0:5 so that p̄ achieves a maximum. When fluctuations are
present the symmetry of the system implies hx1i ¼ 0:5 and hp1i ¼ hp0i ¼ p̄MAX but
now hp̄i is lower than p̄MAX . The fluctuations have no effect on average individual
payoff but a negative effect in terms of average population payoff. The reason for
that is clear from Fig. 1: out of the equilibrium the value of p̄ is always lower than
p̄ð0:5Þ. The right panel of Fig. 2 shows how time average payoffs change with g.

3.2. The asymmetric case

When aa0 the system (5) has the same three fixed points as in the symmetric case.
The only one of a certain interest is, again, x1 ¼ 0:5 which corresponds to the unique
symmetric mixed strategy equilibrium of the underlying game. Its stability condition
in terms of g (when m ¼ 0) is given by

go
8

2� a
ps þ pf

ps � pf

. (7)

Note that the previous condition coincides with (6) when a ¼ 0 but, when aa0, the
system is stable for g in a larger interval, if we keep ps and pf fixed. As before it can
be shown that 8m the fixed point x1 ¼ 0:5 becomes unstable by means of a period
doubling bifurcation but the total bifurcation structure of the system is now richer.
In particular, values of the parameters exist where the dynamics produces non-
periodic orbits. Furthermore, when the system is one-dimensional (m ¼ 0) the
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Fig. 3. On the top panels two bifurcation diagrams are shown. In both cases after a transient of 900

iterations, orbits of 100 points are plotted. On the right g 2 ½0; 150� and a ¼ 1 while on the left a 2 ½0; 1�
and g ¼ 100. On the bottom panel Lyapunov exponents are shown for the same ranges of the parameters.

Note that the value of g and a where a bifurcation occurs corresponds to l ¼ 0 and that when l40 the
dynamics does not settle down to any period attractor. The value of the payoffs are fixed to ps ¼ 3 and

pf ¼ 1. In all the cases m ¼ 0.
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presence of a three-cycle implies topological chaos [7]. Fig. 3 presents, in the case5 of
m ¼ 0, a bifurcation diagram and Lyapunov exponents both as a function of g for
a ¼ 1 and as a function of a for g ¼ 100. In the first bifurcation diagram, as g
increases, the period doubling bifurcation is followed by a cascade of bifurcation of
the same type and by a tangent bifurcation which creates a three-cycle (g�40). When
g is higher a region with positive Lyapunov exponents is present. In the second
bifurcation diagram, the system converges to a two-cycle only when a is lower then
0.1. As soon as a higher degree of asymmetry is introduced, the system exhibits
positive Lyapunov exponents.
We turn to the analysis of time average payoffs. In the stability region p1 ¼ p0 ¼ p̄

holds but, contrary to the symmetric case, now p̄ap̄MAX (see also Fig. 1). In the
instability region the dynamics is not symmetric anymore so that the aggregate
attendance is no longer distributed around the mixed strategy Nash equilibrium
level. Furthermore the fluctuations are not exclusively associated with a lower
5The case of ma0 is a smoothed version of the one with no memory.
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Fig. 4. Right panel shows the 1000 periods time average of p̄, p1 and p0 as a function of g for a ¼ 1. On the

left, the same time average payoffs as a function of a for g ¼ 100. In all the plots ps ¼ 3, pf ¼ 1 and

m ¼ 0:2.
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average population payoff as before. In particular, hp̄i increases with a and hp1i is
now always higher than hp0i (for both effects see the left panel of Fig. 4). The side
associated with a higher ‘‘risk’’, i.e., where the difference between the majority and
the minority payoff is larger, has a higher time average payoff. We present the
behavior of the time average payoffs as a function of the bifurcation parameter g in
the right panel of Fig. 4 which should be compared with the right panel of Fig. 2.
4. Conclusions

We have set up a tractable low-dimensional dynamical system that replicates the
interaction of a large number of agents who are repeatedly playing the Minority
Game. In the symmetric region, we have qualitatively obtained the same results as
known in the literature in the case of agents using simple heuristics: the fractions of
agents are distributed around the level which corresponds to the mixed strategy Nash
equilibrium and the out-of-equilibrium oscillations considerably lower the average
population payoff for a large value of g. We have extended the problem by
considering the asymmetric case where side ‘‘0’’ and side ‘‘1’’ have different
associated ‘‘risks’’. In this case a parameter region exists where the dynamics does
not converge to any isolated periodic cycle. In particular, contrary to the previous
case, the mixed strategy Nash equilibrium does not seem to offer a good
approximation to the out-of-equilibrium aggregate dynamics. Furthermore the
payoff associated with the more risky side is higher than the other and the
fluctuations are possibly associated with an increase in the average population
payoff.
In order to draw more general conclusions we need to set up a similar dynamical

system where more sophisticated agents are interacting. This, together with a precise
characterization of the dynamics for more values of the parameters, will be the
content of our future research.
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