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Sugars act as signaling molecules, whose signal transduction pathways may lead to the activation or inactivation of gene
expression. Whole-genome transcript profiling reveals that the flavonoid and anthocyanin biosynthetic pathways are strongly
up-regulated following sucrose (Suc) treatment. Besides mRNA accumulation, Suc affects both flavonoid and anthocyanin
contents. We investigated the effects of sugars (Suc, glucose, and fructose) on genes coding for flavonoid and anthocyanin
biosynthetic enzymes in Arabidopsis (Arabidopsis thaliana). The results indicate that the sugar-dependent up-regulation of the
anthocyanin synthesis pathway is Suc specific. An altered induction of several anthocyanin biosynthetic genes, consistent with
in vivo sugar modulation of mRNA accumulation, is observed in the phosphoglucomutase Arabidopsis mutant accumulating
high levels of soluble sugars.

Anthocyanins are plant secondary metabolites play-
ing a key role as flower pigments in signaling between
plants and microbes, in responses related to nutrient
availability, in male fertility of some species, in defense
as antimicrobial agents and feeding deterrents, in the
modulation of auxin transport, and in UV protection
(Winkel-Shirley, 2001).

The anthocyanin biosynthetic pathway was described
in different plants (Holton and Cornish, 1995), includ-
ing Arabidopsis (Arabidopsis thaliana; Shirley et al., 1995;
Bharti and Khurana, 1997), and several transcription
factors regulating the anthocyanin biosynthetic path-
way have been identified (Nesi et al., 2000; Vom Endt
et al., 2002; Davies and Schwinn, 2003; Mathews et al.,
2003; Broun, 2004; Matsui et al., 2004; Park et al., 2004).

The interrelationships between developmental, en-
vironmental, and metabolic signal transduction path-
ways control the production of flavonoids. Anthocyanin
biosynthesis was often observed in plants germinated
or grown on a sugar-containing medium (Mita et al.,
1997; Németh et al., 1998; Baier et al., 2004). The
chalcone synthase (CHS) gene derived from petunia
(Petunia hybrida) petals in transgenic Arabidopsis
leaves was induced by sugars (Tsukaya et al., 1991),
and petunia corollas cultured in vitro without Suc do
not show any pigmentation (Weiss, 2000). Petunia and
Arabidopsis CHS genes are indeed characterized by

the presence of Suc boxes in the 5#-flanking regions
that may be also found in the Suc-inducible sporamin
and amylase genes (Tsukaya et al., 1991). Arabidopsis
grown on a Suc-containing medium shows high levels
of anthocyanins (Tsukaya et al., 1991; Ohto et al., 2001).

Genes coding for dihydroflavonol reductase (DFR)
and anthocyanidin synthase (ANS), also known as leuco-
anthocyanidin dioxygenase (LDOX), were up-regulated
and the accumulation of anthocyanins was strongly
increased by Suc in grape (Vitis vinifera) cells (Gollop
et al., 2001, 2002), and signal transducers, such as
Ca21 and protein kinases/phosphatases, were shown
to be involved in this process (Vitrac et al., 2000).

The Arabidopsis pho3 mutant, which has a defective
copy of the Suc transporter 2 (SUC2) gene (encoding a
phloem-loading Suc-proton symporter) leading to accu-
mulation of soluble sugars and starch, showed growth
retardation and anthocyanin accumulation (Lloyd and
Zakhleniuk, 2004). The microarray analysis of pho3 adult
leaves evidenced an enhanced expression of PRODUC-
TION OF ANTHOCYANIN PIGMENT 1 (PAP1), PRO-
DUCTIONOFANTHOCYANINPIGMENT 2 (PAP2), and
TRANSPARENTTESTA 8 (TT8) transcription factors, as
well as of genes coding for anthocyanin biosynthesis
enzymes, suggesting that sugars are in vivo triggers of the
anthocyanin biosynthesis (Lloyd and Zakhleniuk, 2004).

We investigated whether sugars coordinately in-
duce most of the genes involved in the anthocyanin
biosynthesis or if only a few genes play a pivotal role,
and we studied the sugar specificity for the anthocy-
anin biosynthesis induction in Arabidopsis. In this ar-
ticle, we show evidence of the coordinated, Suc-specific
modulation of most of the genes involved in the an-
thocyanin biosynthesis. Furthermore, induction of
several anthocyanin biosynthetic genes in the phospho-
glucomutase (pgm) Arabidopsis mutant accumulating
high levels of soluble sugars is described.
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RESULTS

Flavonols and Anthocyanins Are Inversely Modulated
by Suc

We analyzed the anthocyanin and flavonol content
in Arabidopsis seedlings grown in the absence or pres-
ence of exogenous Suc. The histochemical analysis of
flavonols (Fig. 1) shows the fluorescence that is char-
acteristic of chlorophyll (red fluorescence), along with a
limited orange fluorescence, which is typical of quer-
cetin in cotyledons (Fig. 1A). The upper hypocotyl area

exhibits a strong bright-yellow fluorescence (chalcone-
naringenin; Fig. 1C). Whereas Suc does not affect the
presence and distribution of flavonols in the roots
(compare Fig. 1, G and I, with Fig. 1, H and L), this
disaccharide leads to a decreased presence of flavonols
(mainly represented by chalcone-naringenin) in the
hypocotyl and cotyledons (Fig. 1, B and D). Interest-
ingly, these tissues coincide with the anthocyanin ac-
cumulation site following Suc feeding of Arabidopsis
seedlings (Fig. 1F).

Suc Affects the mRNA Level in Anthocyanin
Biosynthetic Pathway Genes

To identify the genes involved in the flavonol and
anthocyanin biosynthesis that are regulated by Suc, we
performed a microarray experiment with seedlings
treated with Suc, compared to control seedlings. The
rationale behind this experiment is that, besides the
known genes involved in this pathway, there appears
to be some gene redundancy for this cluster of genes
(e.g. four 4-coumarate:CoA ligase [4CL] genes and six
4CL-like genes are represented in the Arabidopsis
genome; http://www.arabidopsis.org/). The results
of the microarray experiment are summarized in
Figure 2. Interestingly, at least one gene up-regulated
by Suc was detected in each step of the biosynthetic
pathway, with the exception of the flavonoid 3#5#-
hydroxylase (F3#5#H), which is expressed at a very
low level. This genome-wide overview of the effects of
Suc on the genes involved, or putatively involved, in
the flavonoid and anthocyanin biosynthesis allowed
us to select the genes to be further characterized in
their response to sugar. One Suc-induced gene was
selected (Arabidopsis Genome Initiative [AGI] codes
marked with a red triangle in Fig. 2) for each biosyn-
thetic step, giving preference to well-characterized
genes when more than one gene was up-regulated
by Suc (e.g. the TRANSPARENT TESTA 5 gene [TT5]
corresponding to chalcone isomerase [CHI] was chos-
en among three Suc-induced CHI genes). As far as the
transcription factors are involved in the regulation
of the anthocyanin synthesis pathway, the PAP1
(At1g56650) transcript was 29-fold up-regulated by
Suc, whereas PAP2 (At1g66390), TT8 (At4g09820),
TRANSPARENT TESTA 2 (TT2; At5g35550), ANTHO-
CYANINLESS 2 (ANL2; At4g00730), and MYB family
transcription factor 4 (AtMYB4; At4g38620) mRNA
levels were unaffected by the treatment with Suc, or
the induction of Suc was not confirmed by the biolog-
ical replicate (TT8, ANL2; see Supplemental Table I).

We analyzed the pattern of mRNA accumulation of
the selected transcripts coding for proteins involved in
the flavonoid biosynthesis pathway, selected on the
basis of the microarray experiment results (Fig. 2). The
results indicate that the mRNA level of several genes
increases after the treatment with Suc (Fig. 3A). The in-
duction is particularly evident for those genes coding
for enzymes that act at the level and downstream
of CHS, namely CHS, CHI, flavanone 3-hydroxylase

Figure 1. Effect of Suc on flavonoid and anthocyanin content and
distribution in Arabidopsis seedlings. A to D and G to L, Effects of
exogenous Suc on flavonoid content and distribution byDPBA staining of
3-d-old Arabidopsis seedlings, viewed through a fluorescein isothiocya-
nate filter. When reacting with flavonoids, DPBA emits orange fluores-
cence (quercetin), bright-yellow fluorescence (naringenin-chalcone), and
bright-green fluorescence (kaempferol); chlorophylls exhibit a red auto-
fluorescence. A, C, G, and I, Histochemical results of 3-d-old seedlings
grown foran additional 72hon controlmedium; the cotyledons (shown in
A) display the fluorescence characteristic of quercetin; the cotyledonary
node (shown in C) shows the bright-yellow fluorescence of chalcone-
naringenin; the root (shown in G) contains mostly chalcone-naringenin;
and the root tip (shown in I) contains mostly kaempferol. B, D, H, and L,
Three-day-old seedlings grown for an additional 72 h on 90 mM Suc.
Seedlings show a reduced bright-yellow fluorescence and the chloro-
phyll red fluorescence in cotyledons (shown in B). The cotyledonary
node (shown in D) shows only the chlorophyll red fluorescence. Suc
does not affect the flavonols’ presence and distribution in the roots
(compare G and I with H and L). E to F, Anthocyanin accumulation in
Arabidopsis seedlings grown on control medium (shown in E) or grown
for an additional 72 h on 90 mM Suc (shown in F). Bars in A to D, G to I,
and L5 500 mm; bars in E and F5 200 mm.
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Figure 2. Effects of Suc on the mRNA accumulation for genes coding for flavonoid and anthocyanin biosynthetic enzymes in
Arabidopsis seedlings. Arabidopsis seeds were germinated for 3 d and subsequently treated without (C) or with (S) 90 mM Suc for
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(F3H), flavonoid 3#-hydroxylase (F3#H), flavonol
synthase (FLS), DFR, LDOX, and UDP-Glc:flavonoid
3-O-glucosyltransferase (UF3GT). The cinnamate 4-hy-
droxylase (C4H) mRNA level is barely affected by Suc,
whereas a transient induction of Phe ammonia-lyase
(PAL) by Suc is observed (Fig. 3A). The 4CL mRNA
level was below the detection threshold.

To evaluate whether the observed effects of Suc
could be ascribed to an osmotic effect, we verified the
effects of mannitol on some of the genes studied.
Arabidopsis seedlings were treated with Suc (Fig. 3B,
Suc), mannitol (Fig. 3B, Man), pretreated with manni-
tol (24 h) followed by Suc (Fig. 3B, Man/Suc), and
pretreated with mannitol (24 h) followed by mannitol
(Fig. 3B, Man/Man). The expression of several genes
involved in the flavonoid/anthocyanin biosynthesis
was analyzed, and the mRNA level of protein kinase 1
(KIN1), a stress-induced gene, was monitored (Kurkela
and Franck, 1990). Genes involved in the flavonoid/
anthocyanin synthesis were induced by Suc. The ex-
pression of KIN1 is transient and strongly influenced
by mannitol, whereas Suc is unable to strongly induce
this stress-related gene. A pretreatment with mannitol
(Fig. 3B, Man/Suc) mitigates the perception of stress,
leading to an increase in the level of KIN1 mRNA
(compare Fig. 3B, Man, with Fig. 3B, Man/Man). This
effect is not observed in the seedlings, which were
pretreated with mannitol and subsequently exposed to
Suc (Fig. 3B, Man/Suc): The Suc induction of flavo-
noid/anthocyanin genes is retained and is undistin-
guishable from the Suc-alone treatment (compare with
Fig. 3B, Suc), ruling out a stress response, such as the
triggering of flavonoid gene induction by Suc. These
results suggest that the induction of flavonoid/antho-
cyanin synthesis genes is sugar specific and unlikely to
be stress mediated.

A Specific Suc-Signaling Mechanism Requiring Low
Sugar Concentrations Induces Anthocyanin
Synthesis Genes

We investigated the Suc specificity of the anthocya-
nin biosynthesis by testing the effects of a set of
metabolic sugars (Suc, Glc, Fru, and a 1:1 mixture of
Glc 1 Fru) and nonmetabolic sugars (Suc analogs:
turanose and palatinose; Loreti et al., 2000). The antho-
cyanin synthesis induction is Suc specific, with a strong
accumulation of these pigments in Suc-treated seed-

lings only (Fig. 4A). The mRNA accumulation of tran-
scripts related to flavonoid/anthocyanin synthesis is
high in Suc-enriched media, whereas neither turanose
nor palatinose were able to induce flavonoid/antho-
cyanin genes (data not shown). The threshold for the
induction of the genes involved in the flavonoid/an-
thocyanin synthesis was investigated by testing differ-
ent Suc concentrations. Three-day-old seedlings were
treated with Suc concentrations ranging from 7.5 to
90 mM for 24 h, and the results show that 15 mM Suc is
enough to enhance anthocyanin levels (Fig. 4B), al-
though higher Suc concentrations lead to a more marked
anthocyanin accumulation, reaching a plateau between
60 and 90 mM. The mRNA levels of CHS, CHI, and F3H
readily increase when seedlings are treated with
7.5 mM Suc (Fig. 4C). Increasing the Suc concentration
up to 15 mM results in an increased mRNA level of F3#H,
FLS, and LDOX, whereas 30 to 60 mM is required to
significantly increase the mRNA level of C4H (Fig. 4C).

Northern analysis provides a semiquantitative pro-
file of expression, and a more accurate quantitation can
be obtained by means of real-time reverse transcrip-
tion (RT)-PCR. Three-day-old, light-grown seedlings
were fed for 12 h with Suc, Glc, or Fru in concentra-
tions ranging from 7.5 to 90 mM. The real-time RT-PCR
results indicate that Suc is the most efficient trigger of
mRNA accumulation for genes, whose products act
downstream along the anthocyanin biosynthetic path-
way (DFR, LDOX, UF3GT), as well as for PAP1 (Fig. 5).
These genes are induced by Suc several hundred-fold,
whereas genes upstream of DFR show a lower induc-
tion by Suc and can also be induced by Glc and, to a
minor extent, by Fru (Fig. 5).

In Vivo Sugar Modulation of Flavonoid and Anthocyanin
Synthesis Genes

The pgm Arabidopsis mutant has a defect in the
plastidial pgm gene hampering starch synthesis in the
chloroplasts. Therefore, the mutant is starchless but
accumulates high levels of soluble sugars as a conse-
quence of its photosynthetic activity during the day
(Caspar et al., 1985). Assuming that the experiments
performed by treating seedlings with exogenous sugar
reflect the ability of the plant to sense the endogenous
sugars level, one would expect that the pgm mutant
would show a sugar-controlled induction of genes, as
soon as the endogenous sugar level increases beyond a

Figure 2. (Continued .)
6 h. Genes coding for enzymes involved in the flavonoid and anthocyanin pathways were identified by searching the Arabidopsis
annotation in The Arabidopsis Information Resource (http://www.arabidopsis.org/). Microarray data (averaged transcript level
from two biological replicates) were visualized using Heatmapper Plus software (http://bbc.botany.utoronto.ca/ntools/cgi-bin/
ntools_heatmapper_plus.cgi). The output of the software is shown, with the genes involved in eachmetabolic step represented by
their respective AGI codes. A black square (and black shades) indicates a gene whose transcript level is low. A yellow square (and
yellow shades) indicates a gene whose transcript level is relatively high within the group of genes putatively coding for the same
function. AGI codes marked with a red triangle indicate the genes chosen for further studies. Arabidopsis mutants have been
isolated on the basis of modified seed pigmentation and are therefore known as tt (for transparent testa) mutants (Koornneef,
1981, 1990), and TT loci identified have been characterized. When available, the TT gene codes are reported in the figure.
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certain threshold. Leaves were collected from plants at
the rosette stage before beginning the light treatment
(0 h), after 5 h under light (5 h), and after 10 h under
light (10 h). The pgm mutant exhibits a clear increase in
its Suc and Glc levels (up to 20-fold), whereas the wild

type shows a lower diurnal fluctuation in Suc and Glc
levels (Fig. 6A). The level of Fru increases almost
equally in both the wild type and pgm mutant (Fig.
6A). The highest sugar level was measured in the
leaves of the pgm mutant, 10 h after the beginning of
the light treatment, with a measured concentration of
about 10 mM soluble sugars (Suc 1 Glc 1 Fru). The
expression of several of the flavonoid and anthocyanin

Figure 3. A, Pattern of mRNA accumulation for genes coding for
flavonoid and anthocyanin biosynthesis enzymes in Arabidopsis seed-
lings. Three-day-old Arabidopsis seedlings were grown for an addi-
tional 0 to 96 h on a Murashige and Skoog medium (Control) or on a
Suc-enriched medium (Suc). RNAwas extracted, electrophoresed, and
northern analysis carried out using gene-specific probes. Equal loading
was checked by reprobing with an rRNA probe (data not shown). A
representative experiment is shown. B, Evaluation of the osmotic effect
on the mRNA level of several anthocyanins biosynthetic genes and on
the stress-induced KIN1 gene. Three-day-old Arabidopsis seedlings
were treated for 0 to 120 h with Suc (Suc), mannitol (Man), pretreated
(24 h) with mannitol followed by Suc for 0 to 120 h (Man/Suc), or
pretreated (24 h) with mannitol followed by mannitol for 0 to 120 h
(Man/Man). RNA was extracted, electrophoresed, and northern
analysis carried out using gene specific probes. Equal loading was
checked by reprobing with an rRNA probe (data not shown). A
representative experiment is shown.

Figure 4. A, Effects of a set of metabolic sugars (Suc 90 mM, Glc 90 mM,
Fru 90 mM, 1:1 mixture of Glc 45 mM 1 Fru 45 mM) and of non-
metabolic sugars (turanose and palatinose, 90 mM) on anthocyanin
accumulation. B, Effect of Suc concentrations ranging from 7.5 to 90mM

on anthocyanin accumulation. C, mRNA accumulation for genes
coding for flavonoids and anthocyanin biosynthesis enzymes in Arabi-
dopsis seedlings. Seedlings were sugar treated for 48 h (A) or 24 h (B
and C). RNA was extracted, electrophoresed, and northern analysis
carried out using gene-specific probes. Equal loading was checked by
reprobing with an rRNA probe (data not shown). A representative
experiment is shown.

Anthocyanin Biosynthetic Pathway in Arabidopsis
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synthesis genes increased about 10- to 20-fold after the
10-h light treatment in the pgm leaves but not in the
wild-type leaves (Fig. 6B), suggesting that the in vivo
expression of PAP1, 4CL, CHS, CHI, F3H, DFR, and
LDOX is modulated by the rapid increase in sugar
concentration observed in the pgm mutant (Fig. 6A). To
confirm that the increases observed in the mRNA level
of several of the genes studied is indeed the conse-
quence of in vivo sugar sensing, we used the expres-
sion of the ApL3 gene, known to be sugar modulated
(Sokolov et al., 1998), as a marker of sugar signaling
occurring in leaves. The ApL3 mRNA level increases in
response to Suc, with a limited induction by Glc and
Fru (Fig. 6C, heatmap), and is induced in vivo only in
the pgm mutant (Fig. 6C, pgm, time 10 h).

The comparison of the response of flavonoid and
anthocyanin synthesis genes to low sugar concentra-
tion (7.5 mM; see Fig. 5) with their induction in the pgm
mutant (Fig. 6B) indicates that the genes, which do not
show any induction in the pgm mutant (PAL, C4H, FLS,
F3#H, and UF3GT), are those showing a lower induc-
tion by the lowest sugar concentration tested (7.5 mM;
Fig. 5). When the induction observed in pgm is plotted
against the induction by 7.5 mM sugars (data from Fig.
5), it is possible to observe that all the genes lacking
induction in the pgm mutant are grouped together and
are those showing a lower induction by 7.5 mM

exogenous sugars (Fig. 6D, red dots).

DISCUSSION

The expression of anthocyanin biosynthetic genes in
grape berry skin appears to be highly coordinated
during berry development (Boss et al., 1996), and the
expression of grape DFR is responsive to Suc (Gollop
et al., 2002). Since sugars accumulate during grape berry
development (Boss et al., 1996), it is tempting to
speculate that sugars are endogenous triggers modu-
lating the expression of anthocyanin biosynthetic
genes, possibly through the involvement of sugar-
modulated regulatory genes. The ectopic expression of
the transcription factor PAP1 (also AtMYB75) and of
the related gene PAP2 results in an enhanced expres-
sion of the flavonoid biosynthetic genes PAL, CHS, and
DFR (Borevits et al., 2000). The DFR expression is also
under the control of TT2, interacting with TT8 (Nesi
et al., 2001). Furthermore, the functional TRANSPAR-
ENT TESTA GLABROUS 1 (TTG1), encoding a WD40
repeat protein, is required for the normal expression
of the DFR anthocyanin gene (Walker et al., 1999).
AtMYB4 is another player in the biosynthesis of antho-
cyanins down-regulating C4H and 4CL genes (Jin et al.,
2000), and ANTHOCYANINLESS 2 (ANL2) is involved

Figure 5. Effect of different metabolic sugars on the expression of genes
involved in flavonoid/anthocyanin synthesis. Three-day-old Arabidop-
sis seedlings were grown for 12 h on a Murashige and Skoog standard
medium (control) or standard medium supplemented with Suc, Glc, or
Fru, at concentrations ranging from 7.5 to 90 mM. mRNA accumulation
has been analyzed by real-time RT-PCR. Data (averaged transcript level
from two biological replicates) were visualized using Heatmapper
Plus software (http://bbc.botany.utoronto.ca/ntools/cgi-bin/ntools_
heatmapper_plus.cgi). Each treatment is represented by a row of colored
boxes, and each sugar concentration is represented by a single column.
Data are expressed as fold change (1 5 control). Effects of sugars on

gene expression range from pale to saturated yellow. Black indicates no
change in gene expression. The value for image contrast was set to
automatic for inductions lower than 500-fold, while it was fixed at 500
for induction higher than 500-fold.
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in the accumulation of anthocyanins in subepidermal
tissues (Kubo et al., 1999).

Our results suggest that sugars act as signaling
molecules, activating the PAP1 gene by means of a Suc-
specific signaling pathway. This is supported by the
following experimental evidences. (1) Only PAP1 mRNA
level was strongly Suc inducible, as previously sug-
gested by Kranz et al. (1998), whereas other players
involved in the anthocyanin biosynthesis regulation
were unaffected by the treatment with Suc (see Sup-
plemental Table I). (2) Suc, but neither Glc nor Fru,
increases the mRNA level of PAP1 and of anthocyanin
biosynthetic genes (Fig. 5, DFR, LDOX, UF3GT) and
triggers an increased anthocyanin synthesis (Fig. 4A).
(3) The effects of Suc on PAP1 mRNA level are
unrelated to a generic osmotic response (Fig. 3B). We
cannot, however, rule out the possibility of an involve-
ment of other regulatory genes, since the sugar re-
sponse expression pattern (Fig. 5) reveals that the
response of genes upstream of DFR is clearly distinct
from the response of PAP1.

A metabolite could control a pathway through
selected steps. Regarding sugar regulation of the
anthocyanin pathway, the effect is likely achieved
through the last few steps, which are the most sensi-
tive to sugar and show selective response to Suc (Fig.
5). Only Suc can elicit a clear increase in the anthocya-
nin content of Arabidopsis seedlings (Fig. 4A), and this
is likely due to the induction, which is highly specific
for Suc, of DFR, LDOX, and UF3GT (Fig. 5). This cor-
relates nicely with the disappearance of naringenin
chalcone from the seedling hypocotyl and its replace-
ment with anthocyanins (Fig. 1). Gollop et al. (2001,
2002) reported that the induction of anthocyanin bio-
synthesis genes by sugars is rather unspecific, and Glc,
Fru, and Suc treatments result in the induction of DFR
and ANS (LDOX) in grape. The sugar-sensing mech-
anisms operating in grape are poorly studied, and it is
reasonable to assume that they might be distinct from
the sugar-sensing mechanisms active in Arabidopsis.
Seedlings younger than 2 d show some degree of
sensing unspecificity, and also Glc is able to induce
DFR, LDOX, and UF3GT (data not shown), though not
with the hundred-fold induction observed in the 3-d-
old seedlings used in our experiments. Furthermore, it
is worth outlining that the effects of Glc treatments
longer than 12 h partly mirror the effects obtained with
Suc, and feeding Arabidopsis seedlings with radio-
labeled Glc reveals that this monosaccharide is readily
converted into Suc within a few hours (data not shown).

As low as 7.5 mM Suc is enough to induce the mRNA
accumulation of most of the genes studied, indicating
that the sensing mechanism is compatible with phys-
iological Suc concentrations and is likely to be operating
in vivo. The expression of PAP1 shows a characteristic
fluctuation during dark/light periods, the higher ex-
pression being reached around midday (Harmer et al.,
2000), which is confirmed by our analysis of wild-type
Arabidopsis leaves (Fig. 6B, PAP1; also observed in the
Benshime ecotype, data not shown). The increase in

Figure 6. Expression of flavonoid and anthocyanin synthesis genes in
leaves of Arabidopsis wild type (WT) and pgm mutant. Leaves were
collected fromplants at the rosette stage before the beginning of the light
treatment (0 h), after 5 hunder light (5 h), and after 10hunder light (10 h).
The results aremeans6 SD (n5 3). A, Changes in sugar concentration in
leaves collected from wild-type and pgm mutant plants. Suc, Glc, and
Fru were quantified, and changes in their amount were calculated (fold
change15 time0 h). B,mRNAaccumulationwas analyzedby real-time
RT-PCR, and changes (fold change) in their amountwere calculated (fold
change 1 5 time 0 h). C, Effect of sugars on ApL3 mRNA level. Arabi-
dopsis seedlings were grown and mRNA analyzed by real-time RT-PCR
as described in Figure 5. Data are expressed as fold change (fold change
1 5 control). Effects of sugars on gene expression range from pale to
saturated yellow (heatmap; see Fig. 5 legend for details). Black indicates
no change in gene expression. The value for image contrast was set to
automatic. The histogram showsApL3mRNA accumulation in leaves of
Arabidopsis wild type and pgm mutant. mRNA was analyzed by real-
timeRT-PCR, and changes (fold change) in their amountwere calculated
(fold change 1 5 time 0 h). D, Scatter plot showing the induction
observed in pgm (data from Fig. 6, B andC) plotted against the induction
by 7.5 mM sugars (data from Fig. 5). Red dots identify PAL, C4H, FLS,
F3#H, and UF3GT. The blue dot identifies ApL3. Black dots identify
PAP1, 4CL, CHS, CHI, F3H, DFR, and LDOX.
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sugar content during the light treatment peaks at 5 h
in the wild type, and it is tempting to speculate that
the PAP1 expression is sugar modulated in vivo. The
expression of most of the genes involved in the
flavonoid and anthocyanin biosynthesis is, however,
unaffected in wild-type Arabidopsis leaves during the
light treatment, a likely consequence of the limited
fluctuation in the leaf content of Suc and Glc (Fig. 6A).
The level of soluble sugars in wild-type Arabidopsis
leaves increases from about 1 mM at time 5 0 h to a
maximum of 6 mM (reached at time 5 5 h), whereas the
pgm mutant shows a rise in soluble sugars from the
very low level of 0.4 mM (time 5 0) to a maximum of 10
mM (time 5 10 h). These values are compatible with
the increase observed in the mRNA level of several
genes in the pgm mutant after 10 h of growth under
light (Fig. 6B), as well as with their threshold for
induction by sugars (Fig. 5). Indeed, the induction of
genes in the pgm mutant correlates with gene sensi-
tivity to exogenous sugars (Fig. 6D), and the pattern of
expression of the ApL3 gene, known to be sugar
modulated, mirrors that of anthocyanin-related genes,
by showing an up-regulation in the pgm mutant (Fig. 6,
B and C). The suggestion that sugars play a role in the
modulation of the anthocyanin synthesis pathway in
leaves is consistent with the microarray analysis of
pho3 adult leaves accumulating high levels of soluble
sugars and showing higher levels of expression of
genes coding for anthocyanin biosynthesis enzymes
(Lloyd and Zakhleniuk, 2004); these genes exhibit a
very low expression level in sugar-depleted pgm
leaves at the end of the night (Thimm et al., 2004).

The description of the anthocyanin biosynthesis as
specifically responsive to Suc acting as a signaling mol-
ecule allows us to include this physiological process
among the other Suc-specific processes that have been
described up to now (Dijkwel et al., 1996; Smeekens and
Rook, 1997; Chiou and Bush, 1998; Lalonde et al., 1999;
Rolland et al., 2002; Vaughn et al., 2002; Koch, 2004).
Furthermore, these results provide evidence for the
occurrence of an in vivo Suc-sensing mechanism, which
modulates the anthocyanin biosynthesis in Arabidop-
sis. Further work is needed to elucidate the molecular
basis of this process and the possible interactions with
the hormonal signaling network.

MATERIALS AND METHODS

Plant and Growth Condition

Arabidopsis (Arabidopsis thaliana) seeds were sterilized for 7 min in 1.7%

(v/v) bleach solution, incubated overnight in 4% plant preservative mixture

(PPM; Plant Cell Technology). PPM contains two isothiazolone class biocides,

namely, methylchloroisothiazolinone and methylisothiazolinone (Paul et al.,

2001) in full-strength sterilized Murashige and Skoog salt solution with gentle

shaking, abundantly rinsed in sterile water, and transferred into 2.5 mL of

liquid growing media (Murashige and Skoog half-strength solution 6 sugars)

with 0.05% PPM in six-well plates. Plates were incubated in the darkness at

4�C for 2 d and finally transferred to continuous light (90 mm photons m22)

with gentle swirling for experiment time in a plant growth chamber at 22�C.

Treatments were performed by adding sugar solution to selected wells and

water to the control wells.

Probe Design and Preparation

PCR primers were designed to amplify the most specific region inside the

Affymetrix target region (sequence alignment was checked by the ClustalW

multiple sequence alignment program (version 1.7, June 1997; http://www.ebi.ac.

uk/clustalw/). For the design of the primers, we used the free Web-interfaced

software Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi).

Oligonucleotides were purchased from MWG-Biotech. Primer sequences for

each gene are listed in Supplemental Table II. Poly(A1) RNA was purified by

Oligotex (Qiagen) from total RNA extracted from 4-d-old Arabidopsis seed-

ling incubated for 6 h in the presence of 90 mM Suc. About 150 ng of purified

poly(A1) RNA was reverse transcribed with random primers by Improm-II

(Promega) for 1 h at 42�C. PCR amplification on 15 ng cDNA (or 150 ng ge-

nomic DNA for intronless probed region) was performed with 400 nM specific

primers and 23 PCR MIX (Promega). PCR conditions were as follows: 94�C
for 2 min, 30 PCR cycles; 94�C 45 s, primers annealing temperature (see Sup-

plemental Table II) 45 s; and 72�C for 45 s with a final extension of 8 min at 72�C.

RNA Isolation and Gel Blots

RNA extraction was performed using the aurintricarboxylic acid method

as described previously (Perata et al., 1997). The amount of total RNA loaded

per lane for electrophoresis was 20 mg. RNA was electrophoresed on 1% (w/v)

agarose glyoxal gels, and blotted on nylon membrane (BrightStar-Plus) using

the procedure suggested by the manufacturer. Membranes were prehybrid-

ized and hybridized using the NorthernMax-Gly kit (Ambion). Radiolabeled

probes were prepared from gel-purified cDNAs by random primer labeling

(Takara Chemicals) with [a32P]dCTP. Equal loading was checked by reprobing

with an rRNA cDNA probe (data not shown). RNA blots were scanned using

a Cyclone Phosphoimager (Packard Bioscience, Perkin Elmer). mRNA level

was quantified using the Optiquant software (Packard Bioscience, Perkin Elmer).

RNA Isolation, cRNA Synthesis, and Hybridization to
Affymetrix GeneChips

Total RNA was extracted from the seedling samples using the Ambion

RNAqueous kit (Ambion). RNA quality was assessed by agarose gel electro-

phoresis and spectrophotometry. RNA was processed for use on Affymetrix

Arabidopsis ATH1 GeneChip arrays as described previously (Loreti et al.,

2005). Hybridization, washing, staining, and scanning procedures were

performed by Biopolo (University of Milano Bicocca, Italy) as described in

the Affymetrix technical manual. Expression analysis via the Affymetrix

Microarray Suite software (version 5.0) was performed with standard param-

eters. Two independent, replicated experiments were performed for each

experimental condition, and the output of the Affymetrix Microarray Suite

software for each independent experiment was subjected to further analysis

by using Microsoft Excel. Signal values (indicating the relative abundance of a

particular transcript) and detection call values (indicating the probability that

a particular transcript is present) were generated by Microarray Analysis Suite

5.0 software. Probe pair sets (genes) called Absent were removed from

subsequent analyses. Furthermore, genes with Absent for the detection value

in the baseline data and Decrease for the change call were excluded from the

list. Similarly, genes with Absent for the detection call in the experimental data

and Increase for the change value were also excluded from the list. Differences

in transcript abundance, expressed as signal log ratio, were calculated using

the Microarray Analysis Suite 5.0 software change algorithm. Signal log ratio

was assumed to be correct only if the corresponding change call indicated a

significant change (I, Increase; D, Decrease; generated by Microarray Analysis

Suite 5.0 software). Expression data were filtered to select only genes showing

a coinciding change call in the two biological replicates samples for each ex-

perimental condition.

Real-Time RT-PCR

RNA was extracted from seedlings grown on Murashige and Skoog 0.53

solution (control) or in the same medium supplemented with 90 mM sugars as

indicated in figure legends. Total RNA, extracted with the RNAqueous kit

(Ambion) according to the manufacturer’s instruction, was subjected to a

DNase treatment using the TURBO DNA free kit (Ambion). Two micrograms

of each sample were reverse transcribed into cDNA with the high-capacity

cDNA archive kit (Applied Biosystems). Real-time PCR amplification was

carried out with the ABI Prism 7000 sequence detection system (Applied

Solfanelli et al.
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Biosystems), using the primers described in Supplemental Table III. Ubiqui-

tin10 (UBQ10) was used as endogenous control. Taqman probes specific for

each gene were used. Probe sequences are reported in Supplemental Table III.

PCR reactions were carried out using 50 ng of cDNA and TaqMan Universal

PCR master mix (Applied Biosystems) following the manufacturer’s protocol.

Relative quantitation of each single gene expression was performed using the

comparative CT method as described in the ABI PRISM 7700 Sequence

Detection System User Bulletin #2 (Applied Biosystems).

Anthocyanins Quantitation

Arabidopsis seedling extraction was performed as described by Ronchi

et al. (1997) with minor modifications. In brief, seedlings were ground in 1

volume HCl 1% (v/v) in methanol with the addition of two-thirds volume of

distilled water. Extracts were recovered, and 1 volume of chloroform was

added to remove chlorophylls through mixing and centrifugation (1 min at

14,000g). Anthocyanins containing aqueous phase were recovered and ab-

sorption was determined spectrophotometrically (A535). Mean values were

obtained from three independent replicates.

Flavonoid Staining

Flavonoid staining was performed as described by Peer et al. (2001). Three-

day-old Arabidopsis seedlings, treated for 72 h with 90 mM Suc or minimal

Murashige and Skoog medium (control), were stained for 5 to 15 min using

saturated (0.25%, w/v) diphenylboric acid-2-aminoethyl ester (DPBA) with

0.005% Triton X-100, and were visualized with an epifluorescence microscope

equipped with an fluorescein isothiocyanate filter (excitation 450–490 nm,

suppression LP 515 nm). Photographs of seedlings were taken using color

slide film (Kodak Elite, ASA 400) after 5 min of staining.

Sugar Analysis

Samples were rapidly frozen in liquid nitrogen and ground to a powder.

Samples were then extracted and assayed by coupled-enzymatic assay meth-

ods measuring the increase in A340 as described by Guglielminetti et al. (1995).
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