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Abstract Elevated levels of plasma homocysteine (Hcy),
a risk factor for coronary artery disease (CAD), can result
from genetic errors, e.g., the methylenetetrahydrofolate
reductase (MTHFR) polymorphism, or nutrional deficien-
cies, e.g., in vitamin B12 and folate. The mechanism by
which Hcy induces atherosclerosis is not fully understood.
Recently, Hcy has also been observed to induce DNA
damage. In this study, we have investigated whether DNA
damage is related to the C677T variant in the MTHFR
gene and to plasma levels of Hcy, B12, and folate in pa-
tients with CAD. Patients (n=46) with angiographically
proven CAD were studied by using the micronucleus
(MN) test, an accepted method for evaluating genetic in-
stability. TT patients had plasma Hcy levels higher than
those with the CT or CC genotypes (27.8+5.2 vs 13.7£2.2
and 12.9£1.9 umol/l, respectively; P=0.02). Patients with
multi-vessel disease had higher plasma Hcy levels (11.6+
1.2, 22.0+4.7, 19.3£3.9 umol/I for one-, two- and three-
vessel disease, respectively; P=0.05). The MN index in-
creased with the number of affected vessels (8.4%0.7,
11.1+2.0, 14.2+1.7 for one-, two-, and three-vessels dis-
ease, respectively; P=0.02) and was significantly higher
in subjects with the TT genotype compared with the CC
or CT genotypes (15.7£2.4 vs 8.9%+1.7 and 9.9%0.8; P=
0.02). The MN index was also correlated negatively with
plasma B12 concentration (r=—0.343; P=0.019) and posi-
tively with plasma Hcy (#=0.429, P=0.005). These data
indicate that the MN index is associated with the severity
of CAD and is related to the MTHFR polymorphism, sug-
gesting an interesting link between coronary atherosclero-
sis and genetic instability in humans.

M.G. Andreassi (=9) - N. Botto - E. Antonioli - S. Masetti

S. Manfredi - M.G. Colombo - A. Biagini - A. Clerico
Laboratory of Cellular Biology,

CNR Institute of Clinical Physiology, G. Pasquinucci Hospital,
Via Aurelia Sud-Montepepe, 54100 Massa, Italy

e-mail: andreas@ifc.pi.cnr.it

F. Cocci - D. Battaglia
CNR Institute of Clinical Physiology, Pisa, Italy

Introduction

Coronary artery disease (CAD) is a multifactorial disease
that appears to depend on the interaction between envi-
ronmental risk factors and multiple predisposing genes.
On a genetic level, functional allelic variations or poly-
morphisms in humans may play a role in an individual’s
susceptibility to the manifestation of the disease.

Recently, several pieces of evidence have suggested
that the occurrence of somatic DNA alterations contributes
significantly to the pathogenesis of the disease (De Flora
et al. 1997; Van Schooten et al. 1998; Andreassi et al. 2000;
Botto et al. 2001; Izzotti et al. 2001; J. S. Ross et al. 2001).
Indeed, in accordance with the monoclonal hypothesis
(Benditt and Benditt 1973), the intimal hyperplasia of
smooth muscle cells, i.e., the pathologic process that un-
derlies atherosclerosis and restenosis, may be driven by
molecular events that confer a selective growth advantage
on the cell, similar to the process of human cancer devel-
opment. Thus, it is reasonable to hypothesize common
pathophysiologic pathways in such different disorders as
cancer and atherosclerosis.

Methylenetetrahydrofolate reductase (MTHFR) is a key
enzyme in homocysteine (Hcy) metabolism and seems to
play a role in both cancer and cardiovascular disease
(Fletcher and Kessling 1998; Piyathilake et al. 2000; Song
et al. 2001). MTHEFR is responsible for the circulating
form of folate, 5-methyl-tetrahydrofolate, which provides
methyl groups for the remethylation of Hcy to methionine
and S-adenosyl methionine, the common methyl donor
for the maintenance of DNA methylation.

The C677T polymorphism in the MTHFR gene is as-
sociated with reduced enzyme activity (Frosst et al. 1995).
It is now well-established that the TT genotype is also as-
sociated with increased Hcy levels (Jacques et al. 1996;
Kluijtmans et al. 1997). Although the relationship be-
tween the 677T variant and CAD risk is not clearly estab-
lished at present, the MTHFR polymorphism may play an
important role in the pathophysiology of cardiovascular
disease because of its influence on plasma Hcy levels. Al-
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ternatively, an increase in plasma Hcy levels may occur as
a result of nutrional deficiencies in essential cofactors or
enzyme substrates, including vitamin B12, folate, and/or
vitamin B6.

Hyperhomocysteinemia has been identified as an inde-
pendent risk factor for cerebral, coronary, and peripheral
atherosclerosis, although the pathological mechanism of
this risk is not fully understood. High plasma levels of Hcy
are also associated with an increased risk of neural defects
(Wenstrom 2000), Alzheimer’s disease, and loss of cogni-
tive functions (Miller 2000; Breteler 2000). Interestingly,
several studies have also shown that Hcy can induce DNA
damage (Kruman et al. 2000; Huang et al. 2001) suggest-
ing a further mechanism by which increased levels of Hecy
may contribute to the pathogenesis of the atherosclerosis
and neurodegenerative diseases. In addition, recent obser-
vations indicate that plasma Hcy levels are positively cor-
related with baseline levels of genetic damage, as measured
by the cytokinesis-block micronucleus (MN) assay (Fenech
et al. 1997, 1998).

In numerous studies, the cytokinesis-block MN assay
has been shown to be a reliable and sensitive biomarker
for evaluating spontaneous and mutagen-induced DNA
damage (Fenech 1993). We have previously demonstrated
an increase of MN frequency that is positively correlated
with the severity of CAD (Botto et al. 2001). The aim of
this study has been to investigate whether DNA damage,
as assessed by use of MN assay in human lymphocytes, is
related to MTHFR polymorphisms and to plasma levels of
Hcy, B12, and folate in patients with CAD.

Materials and methods
Nomenclature

Gene symbols used in this article follow the recommendations of
the HUGO Gene Nomenclature Committee (Povey et al. 2001).

Study population

Forty-six patients with angiographically proven CAD (41 male and
5 female; mean age: 55.8+1.1 years) were recruited from the Clin-
ical Cardiology Department of our Institute (CNR Institute of Clin-
ical Physiology, G. Pasquinucci Hospital). The severity of CAD
was determined by the number of involved coronary arteries and
by the number of lesions with more than 50% stenosis. Each an-
giogram was reviewed by two cardiologists who were unaware
that the patients were enrolled in the study. Patient exclusion crite-
ria were acute or chronic inflammatory disease, immunological
disease, and history or presence of neoplastic disease. Medications
used by patients generally included nitrates, oral aspirin, calcium-
channel blockers, and acetylcholine esterase inhibitors. No patients
were undergoing vitamin therapy.

After an 8-h fast, blood was drawn from patients for the MN
assay and for the determination of the MTHFR genotype and
plasma levels of Hcy, vitamin B12, and folate. At the time of blood
sampling, all participants gave a complete medical history that in-
cluded cardiovascular risk factors, such as smoking habits, hyper-
tension, diabetes, dyslipidemia, and family history of CAD. Hyper-
tension was defined as a blood pressure of more than 140/90 mmHg
or based on the use of antihypertensive medication. Subjects with
a history of diabetes or those receiving any antidiabetic medication
were considered to be diabetic. Subjects were deemed dyslipidemic

when their total cholesterol concentration was 220 mg/dl or their
triglyceride concentration was 200 mg/dl, or if they were receiving
lipid-lowering drugs. Smoking history was coded by grouping pa-
tients into non-smokers who had never smoked and those who
were or had been smokers. A positive family history was consid-
ered when a first-degree relative with CAD was present at the age
of 55 years for men and 65 years for women.

Measurement of plasma levels of Hey, vitamin B12, and folate

The plasma levels of Hcy, vitamin B12, and folate were assessed
by use of commercially available kits (IMX system, Abbott Labo-
ratories, Diagnostic Division, Abbott Park, Ill., USA). The refer-
ence ranges for these methods in our laboratory were: Hcy =4.45—
12.42 umol/l; vitamin B12 =179-1132 pg/ml; folate =3.1-12.4 ng/
ml. Intra-assay and inter-assay coefficients of variation were: Hey =
1.83% and 4.33%; vitamin B12 =4.2% and 7.4%; folate =3.8% and
5.1%, respectively.

MTHEFR genotype analysis

According to a previously described procedure (Frosst et al. 1995),
genotyping for the MTHFR point polymorphism C677T was per-
formed by polymerase chain reaction amplification with the primers
5’TGAAGGAGAAGGTGTCTGCGGGA3’ (sense) and 5°’AGGA-
CGGTGCGGTGAGAGTG3’ (antisense). Thirty cycles (95°C for
45 s, 64°C for 30 s, 72°C for 30 s) were used to amplify the 198-bp
product. Because the C to T transition at nucleotide 677 produces
a Hinfl digestion site, the amplified product derived from the mu-
tant gene was cleaved into 175-bp and 23-bp fragments by Hinfl,
which leaves the wild-type gene unaffected. After electrophoresis
through 6% polyacrylamide gel, the digestion products were visu-
alized by staining with ethidium bromide.

Lymphocyte preparation and MN assay

Peripheral blood was collected by using heparin as an anticoagu-
lant. The cellular cultures from each subject were set up by mixing
0.3 ml whole blood with 4.7 ml RPMI 1640 medium (GIBCO),
supplemented with 10% fetal calf serum (GIBCO), 1.5% phyto-
hemagglutin (PHA; GIBCO), and antibiotics (penicillin 100 IU/ml
and streptomycin 100 mg/ml; Sigma, St. Louis, USA). All cultures
were incubated at 37°C in a humidified atmosphere of 5% CO, in
air. For evaluation of MN frequency, cells were blocked in cytoki-
nesis at the 44th hour, by adding cytochalasin B (6 pg/ml final
concentration; Sigma). Cell cultures were then harvested at the
72th hour. Harvesting of cells, hypotonic treatment, fixation, and
slide preparation were performed according to the method previ-
ously described (Botto et al. 2001); fixed cells were then dropped
onto clean microscopic slides, air dried, and stained by the Giemsa
technique.

Slide scoring

For each sample, 1000 binucleated cells were scored blindly under
the optical microscope (final magnification: 400x) for MN analy-
sis. MN frequency was expressed as the number of micronucleated
binucleated cells (MNBN), containing one or more MN, per 1000
cells.

Statistical analysis

All statistical analyses were conducted by means of the Statview
statistical package, version 5.0.1, (SAS Institute, Cary, N.C.). Be-
cause of the skewness of the distributions of value for MN, Hcy,
folate, and vitamin B12, analyses were performed by using the log-
arithmic transformation of data. Differences between the means of
the two continuous variables were evaluated by Student’s #-test.



Table 1 Characteristics of patients according to MTHFR geno-
type

MTHEFR genotype

CC CT TT P-
(n=13) (n=22) (n=11) value
Age (years) 57.5£2.0 53.8x1.3 57.8+2.7 0.19
Gender 0.07
Male 10 22 9
Female 3 0 2
Smoking 0.43
Smokers 7 16 6
No-smokers 6 6 5
Diabetes 2 4 3 0.75
Dyslipidemia 9 19 8 0.43
Hypertension 6 13 6 0.76
Family history of CAD 6 11 4 0.76
No. of involved vessels 1.8£0.2 1.6£0.2 2.4+0.2 0.07
No. of lesions 2.8 3.3 4.7 0.08

The data for the three or more independent groups were investi-
gated by analysis of variance (ANOVA), and the significant dif-
ferences among a group of means were tested by Scheffe’s test.
Scheffe’s test was chosen for multiple comparisons because it is
generally considered to be one of the most conservative tests and
also because it is robust to violations of the assumptions typically
associated with the multiple comparisons procedure (Snedecor and
Cocharn 1980). The relationship between two different parameters
was obtained by simple regression analysis. Multiple regression
analysis was used to evaluate the independent determinants of MN
levels. A P-value of 0.05 was considered statistically significant.
The results were expressed as the mean (£SEM) values.

Results

Study group characteristics and distribution
of MTHFR 677 C/T polymorphism

The distribution of the MTHFR genotype in our popula-
tion was compatible with the Hardy-Weinberg equilibrium.
The T allele frequency was 47.8%; the genotype frequen-
cies were 28.2%, 47.8%, and 23.9% for CC, CT, and TT,
respectively.

Table 1 summarizes the characteristics of the patients
according to MTHFR genotype. One-, two-, and three-
vessel disease was observed in 19, 12, and 15 patients, re-
spectively. There were no significant differences among
MTHEFR genotypes regarding the prevalence of traditional
risk factors, although the number of involved vessels and
the number of coronary lesions tended to be higher in TT
homozygotes (P=0.07 and P=0.08).

MTHEFR genotype and plasma levels of Hecy, B12,
and folate

The plasma levels of Hcy according to MTHFR genotype
are reported in Fig. 1. Hey levels (27.8+£5.2 umol/l for TT,
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Fig.2 Relationship between plasma levels of Hey and vitamin B12

13.742.2 pmol/l for CT, and 12.9£1.9 pmol/l for CC) were
significantly higher in patients with the TT genotype than
in those with the CC (P=0.02) or CT (P=0.02) genotype.

B12 plasma levels in patients with TT tended to be
lower than in those with the CC or CT genotype, but
these differences were not statistically significant (297.1+
51.4 pg/ml, 414.3+41.3 pg/ml, and 440.4+62.8 pg/ml for
TT, CT, and CC, respectively). Plasma folate levels were
not significantly different among the three genotypes (4.0t
0.6, 4.2+0.3, and 3.9+0.4 ng/ml, for TT, CT, and CC, re-
spectively). However, there was no significant difference
between genotypes in individuals with folate greater than
3.1 pg/ml. Conversely, among individuals with folate less
than 3.1 pg/ml, Hcy levels was significantly increased in
TT homozygotes (43.7£3.8 pg/ml, n=4, P=0.0005) and
CT heterozygotes (22.0£9.3 pg/mL, n=5, P=0.02) with re-
spect to CC subjects (9.6+£0.4 pg/ml, n=6).

Moreover, Hcy concentrations were inversely and sig-
nificantly associated with concentrations of B12 (r=—0.386,
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P=0.0081; Fig.2) and weakly associated with folate con-
centrations (7=—0.264, P=0.077). Plasma Hcy levels were
higher in patients with multi-vessel disease (11.6%1.2,
22.0£4.7, 19.3£3.9 umol/1 for one-, two-, and three-vessel
disease, respectively; P=0.05)

Relationship between MN levels, CAD,
and MTHFR genotypes

The mean MN frequency increased with the number of af-
fected vessel (8.4+0.7%o, 11.1£2.0%0, 14.2+1.7%o, for one-,
two-, and three-vessel disease, respectively). Scheffe’s
test after ANOVA showed that the MN frequency was sig-
nificantly higher in three-vessel compared with one-ves-
sel disease (P=0.02). As shown in Fig.3, MN frequency
was significantly higher in subjects with the TT genotype
than in those with the CC genotype (P=0.02). Even after
the exclusion of the subjects with low levels of both B12
(<179 pg/ml) and folate (<3.1 ng/ml), TT homozygotes
had a greater MN frequency compared with the other
genotypes (15.7£3.6, 9.2+0.6, and 8.1£3.0, for TT, CT,
and CC respectively; P=0.049).

Relationship between MN levels and plasma Hcy,
folate, B12 levels

MN frequency was not significantly correlated with plasma
folate (r=0.144, P=0.34), but there was a significant
(P=0.019) negative correlation with plasma B12 (r=—0.343;
Fig.4). Interestingly, MN frequency and plasma Hcy were
also significantly (P=0.005) and positively correlated
(r=0.429) in those subjects who were not deficient in B12.
However, multivariate linear regression revealed that the
number of affected vessels (P=0.01) and vitamin B12
plasma levels (P=0.05) were independently correlated with
MN frequency, whereas TT genotypes appeared to be only
a “borderline” independent factor (P=0.08) in our popula-
tion
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Discussion

This study suggests that the MTHFR genotype and the
levels of plasma Hcy and B12 may be important determi-
nants of genetic instability in CAD. The potential role of
DNA damage in atherosclerosis represents an important
issue that is still not fully understood. The “inflammatory
response to injury” is the foremost theory in the patho-
genesis of atherosclerosis (R. Ross 1999). However, vari-
ous evidence suggests that cancer and atherosclerosis
share common pathogenetic mechanisms, and that DNA
alterations also contribute significantly to the pathogene-
sis of atherosclerosis (Andreassi et al. 2000; J. S. Ross et
al. 2001).

Recently, the generation of oxygen free radicals has
been suggested as an important cause of DNA damage in
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atherosclerosis (Bennet 2001; Lee and Blair 2001; Mar-
tinet et al. 2002). We have previously shown (Botto et al.
2001) that an increase of MN frequency is positively cor-
related with the severity of the CAD. Moreover, our re-
cent observations have indicated that further oxidative
DNA damage is produced in the peripheral lymphocytes
of patients undergoing percutaneous coronary angioplasty,
damage probably related to ischemia-reperfusion oxida-
tive injury (Andreassi et al. 2002).

We have designed the present study to evaluate the ef-
fect of Hcy levels on DNA damage and the impact of the
MTHFR C677T mutation on this damage. We report al-
lelic and genotypes frequencies of the MTHFR gene sim-
ilar to those previously described in patients with CAD
(Morita et al. 1997; Mager et al. 1999). Our study provides
evidence for the first time that the MTHFR TT genotype
is strictly associated with DNA alterations in patients with
CAD. In addition, the MN frequency is correlated nega-
tively with plasma B12 concentration and positively with
plasma Hcy. These results are in agreement with those re-
ported by Fenech et al. (1997, 1998), who have observed
a positive correlation between plasma Hcy and MN index
and a negative relationship between MN and serum B12,
but no significant correlation between MN and folate sta-
tus, in general populations.

Putative mechanisms of atherothrombosis induced by
Hcy include endothelial dysfunction, increased platelet
adhesion, and proliferation of vascular smooth muscle
cells (Thambyrajah and Townend 2000). Moreover, high
concentrations of Hcy are known to produce autooxi-
dation with the production of hydrogen peroxide (H,0,),
a harmful reactive oxygen metabolite (Starkebaum and
Harlan 1986; Loscalzo 1996).
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Thus, an increased production of reactive oxygen spe-
cies may also be involved in Hcy-mediated DNA damage.
Indeed, a recent study has shown that Hcy induces apop-
totic DNA damage mediated by increased intracellular
generation of H,0O, (Huang et al. 2001). Interestingly,
H,0, is known to induce necrosis and MN in human lym-
phocytes (Crott and Fenech 1999). Furthermore, a geno-
toxic potential of high concentrations of Hcy has been re-
cently described, although this experiment utilized a regime
of acute exposure to Hcy in vitro (Crott and Fenech
2001).

On the other hand, the genotoxic action of hyperhomo-
cysteinemia may be an indirect marker of biological
mechanisms associated with excessive misincorporation
of uracil into DNA in the presence of nutrional defi-
ciences and/or the process of DNA methylation (Fig.5).
Indeed, several lines of evidence suggest that the exces-
sive misincorporation of uracil in DNA results in point
mutation, DNA and chromosome breaks, and MN forma-
tion (Fenech 2001; Blount et al. 1997). Most importantly,
a recent study in an experimental model of knockout mice
indicated that MTHFR deficiency is associated with hy-
perhomocysteinemia and global DNA hypomethylation in
several tissues with neuropathology and aortic lipid depo-
sition (Chen et al. 2001). Furthemore, recent human stud-
ies have also shown that the TT MTHFR genotype is as-
sociated with genomic DNA hypomethylation, a charac-
teristic of most cancers (Stern et al. 2000; Friso et al.
2002; Singal and Ginder 1999).

However, the available data indicate important differ-
ences with respect to the association of the TT genotype
MTHEFR with cancer risk susceptibility. On the one hand,
the MTHFR T variant may be linked to a reduced risk for
cancer because of the reduced MTHFR activity, which
may provide more 5,10-MTHF available for the synthesis
of thymine, thus preventing the misincorporation of uracil
into DNA (Ma et al. 1997; Skibola et al. 1999); on the
other hand, there is evidence that the TT genotype is as-
sociated with increased cancer risk, particularly in relation
to low dietary intake of folic acid, methionine, and vita-
mins B12 and B6 (Piyathilake et al. 2000; Song et al.
2001; Esteller et al. 1997; Gershoni-Baruch et al. 2000;



176

Ulvik et al. 2001). Furthemore, experimental results do
not appear to support the hypothesis that the C677T poly-
morphism protects against uracil incorporation into DNA
(Crott et al. 2001a). Crott et al. (2001b) have also not
found an effect of the MTHFR C677T polymorphism on
DNA damage by using the MN assay. However, we have
now found a significant association between TT genotype
and increased MN levels. At present, we cannot explain
clearly these conflicting results, which might be associ-
ated with the higher plasma Hcy concentrations in patients
than those in normal controls.

In conclusion, these data suggest that the association of
MTHFR C677T polymorphism with hyperhomocysteine-
mia, nutrional deficiencies, and oxidative stress may be a
plausible molecular mechanism of genetic instability in
atherosclerotic lesions. However, some limitations of this
study should also be considered. First and foremost is that
our observations are based on relatively few individuals,
and the possibility that DNA damage may occur by many
routes, such as atherogenic risk factors (dyslipidemia, di-
abetes, smoking) and environmental insults should also be
considered. In addition, no direct correlations between
DNA damage and Hcy in vitro experiments have been ex-
amined in this study. Consequently, the higher MN fre-
quency observed in our patients may be caused by factors
other than by TT homozygosity or high plasma Hcy levels
and low plasma B12 concentrations. Nevertheless, our
study was performed to explore a potential between somatic
DNA damage, nutrional deficiencies (vitamin B12 and fo-
late), Hcy, and MTHFR genotype in a population of pa-
tients with CAD rather being “homogeneous” for various
atherogenic risk factors. Therefore, these limitations do
not belittle the main observation of our study, which en-
courages additional work in this area. Additional studies
with a large sample size should be performed to confirm
these observations. In particular, it would be of interest to
clarify the influence of therapy lowering plasma Hcy in
the prevention of simultaneous DNA damage and restenotic
coronary lesions. In addition, our findings should encour-
age further studies for defining the genotoxic potential of
Hcy in a variety of cell types, especially those of the hu-
man cardiovascular system (e.g., smooth muscle cells, en-
dothelial cells), in order to clarify its involvement in the
pathogenesis of atherosclerosis.
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