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Abstract—We present a novel perturbation method for the
nonlinear Schrödinger equation (NLSE) that governs the prop-
agation of light in optical fibers. We apply this method to study
signal-noise interactions in amplified multispan fiber-optic sys-
tems. Being based on a combination of the regular perturbation
(RP) and logarithmic perturbation, the method is especially
suitable for modeling the simultaneous presence of nonlinear
and dispersive effects. Even after linearization, it retains the
contribution of the quadratic perturbation terms of the NLSE,
thereby achieving higher accuracy than an RP with comparable
complexity. We revise parametric gain and nonlinear phase-noise
effects under the new theory. We finally consider several examples
and evaluate the probability density function of the optical or
postdetection signal and the bit-error rate of an NRZ–OOK
system. All of the results are compared with other models and
with multicanonical Monte Carlo simulations.

Index Terms—Communication system performance, Karhunen–
Loève transforms, Monte Carlo methods, nonlinearities, optical-
fiber theory, optical Kerr effect, optical noise, parametric gain,
perturbation methods, phase noise.

I. INTRODUCTION

T HE propagation of light in optical fibers is governed by
the nonlinear Schrödinger equation (NLSE) and its vari-

ants [1]. For deterministic signals, the problem can be solved
either by numerical methods [1], [2] or analytical approxima-
tions [3]–[7]. In this case, the choice of the method is a matter
of accuracy and computational efficiency, which can be opti-
mized by controlling parameters, such as the step size in the
split-step Fourier method [2], or the recursion depth in the reg-
ular perturbation (RP) or logarithmic perturbation (LP) expan-
sion [7]. On the other hand, special attention must be paid to the
propagation of a stochastic process, such as an optical signal
affected by the amplified spontaneous emission (ASE) noise
generated by optical amplifiers to determine its output statis-
tics. In systems operating in the linear regime, ASE noise is not
affected by propagation through the optical fiber, and can be
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modeled as additive white Gaussian noise at the end of the link.
On the other hand, when nonlinear effects are not negligible,
signal and noise interactions occur during propagation. As a re-
sult, at certain frequencies, the noise may be amplified or at-
tenuated, and become colored. This effect is called parametric
gain. Additionally, the probability distribution function for the
noise samples may change, becoming nonstationary and even
non-Gaussian. In previous work [3], [8], [9], parametric gain has
been studied by an RP expansion of the nonlinear Schrödinger
equation (NLSE). For a small perturbation, only the first-order
terms of the RP can be retained, and the NLSE can be linearized.
More recently, other work has shown that a simple lineariza-
tion does not hold in many cases [10] and second-order terms
may not be neglected, since they can produce a strong degrada-
tion of the system performance [11]. In the covariance matrix
method [10], the RP expansion is applied to a modulated signal,
and phase jitter is extracted (eliminated) from each pulse during
propagation in order to maintain the validity of the linearization
hypothesis. In this paper, we present a novel perturbation ap-
proach [12] to the NLSE, derived by a combination of the RP
and LP expansions described in [7]. The intuitive idea behind
this approach, such as in [7] and [10], is that the nonlinearity
produces phase rotations and so at high powers, one wishes
to perturb the phase and amplitude (LP approach), rather than
the two quadratures (RP approach) of the signal. The difficulty
when perturbing the amplitude and phase is to avoid singulari-
ties at low power, and our approach does that. Moreover, if we
try to map the Gaussian noise introduced by amplifiers onto an
amplitude-phase basis, its components are no longer Gaussian
distributed. Our approach also avoids this problem. We derive a
set of differential equations for the propagation of the perturbed
solution of the NLSE. As in the RP approach, the equations can
be linearized. The resulting linear model is simple, but, being
based on a more convenient basis, it is more robust than the lin-
earized RP model. The model gives a complete statistical char-
acterization of the received optical signal and is suitable for the
evaluation of system performance.

This paper is organized as follows. In Section II, we introduce
the combined regular-logarithmic perturbation (CRLP) model
and derive the basic propagation equations. In Section III, we
apply the model to the propagation of ASE noise in amplified
multispan optical systems. In Section IV, we consider some
simple systems to discuss the characteristics and accuracy of the
proposed model and compare it with other models. Section V
shows some examples, where we evaluate the probability den-
sity function (pdf) of the optical and postdetection signal, and
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the bit-error rate (BER) of an NRZ–OOK system, and compare
the results obtained by the CRLP model with those obtained by
other models and by simulations. Finally, in Section VI, we dis-
cuss the results and give the conclusions.

II. COMBINED REGULAR-LOGARITHMIC

PERTURBATION (CRLP)

In general, the propagation of light in optical fibers is gov-
erned by the NLSE and its variants [1]. Neglecting polariza-
tion effects and accounting for chromatic dispersion, self-phase
modulation, and loss, in a time frame moving with the signal
group velocity, the NLSE can be written as

(1)

where is the optical field complex envelope, is the
power attenuation constant, is the chromatic dispersion co-
efficient, and is the Kerr nonlinear coefficient. By defining

, we can eliminate the last term in
(1), which becomes

(2)

As performed in [3], [8], and [9], we make the hypothesis that
for the purpose of investigating the interaction between signal
and noise, the signal can be considered a continuous wave (CW),
and the noise can be treated as a perturbation of the CW solution
of the NLSE. The novelty of our approach is that instead of the
classical RP expansion

(3)

where is the power of the noise-free solution
is the additive perturbation, and

(4)

is the deterministc time-independent nonlinear phase rotation
of the noise-free solution, we write the perturbed solution of the
NLSE as being

(5)

Equation (5) is motivated by the evidence, given in [7], that the
LP solution of the NLSE can be more accurate than the RP so-
lution as well as by the observation that this solution becomes
singular when the signal power goes to zero. Therefore, it in-
cludes a complex RP component
and a real LP component . Equation (5) can also be re-
garded as a generalization and formalization of the phase-jitter
removal concept introduced in [10], with the difference that in
(5), the phase jitter is directly determined from the perturbed so-
lution through the time-dependent term . The attenuation

is implicitly contained in the definition of . Substituting
(5) in (2), we obtain the complex differential equation

(6)

where we have omitted writing the dependence on and . With
respect to the standard RP expansion in (3), the perturbed so-
lution in (5) has one additional degree of freedom (DOF). As a
consequence, in (6), we have two equations for three unknown
quantities , , and , which makes the system underdetermined.
Hence, we have the freedom to arbitrarily add an additional
equation to relate these three variables. In principle, all of the
choices are equivalent. The difference is that a particular choice
can lead to a more useful solution of (6). A trivial choice is to let

, which turns (5) into the RP expansion of (3),
where the perturbation is entirely in the additive term. However,
our purpose is to find a linearized model for the perturbation that
resembles the LP expansion at high powers and resembles the
RP expansion at low powers, with a smooth transition between
these regimes. We achieve this goal by seeking an equation for

that minimizes the impact of the terms that we are going to
neglect in the linearization process. Since the term on
the left side of (6) is multiplied by the factor , we may
equate it to the fourth and fifth term on the right side and elimi-
nate the common factor, obtaining

(7)

By removing the factor , we have removed the singularity
that appears in the CRLP expansion. In this equation, we do not
include the term , which does not comply with
the constraint that is real. Equation (7) implies that the Kerr
term of the NLSE, which corresponds to the last term in (6), di-
rectly affects the phase component of the CRLP, which was
the intuitive foundation of our approach. The Kerr terms in (6)
that are quadratic in and are neglected in the RP approach be-
come linear in (7) and are included in the CRLP approach, while
the cubic term becomes quadratic. The other two equations of
the system are obtained by dividing the remaining terms of (6)
into real and imaginary parts. Writing explicitly that ,
the system of three real equations for the CRLP terms is

(8a)

(8b)

(8c)

In (8c), the time-independent term produces the
nonlinear-phase rotation term of the noise-free solution,
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defined in (4). Hence, we may isolate that term by posing
. Finally, by neglecting the quadratic

terms and denoting the Fourier transforms by uppercase letters
of the corresponding quantities in lowercase, we obtain the
linearized system of equations for the CRLP model

(9a)

(9b)

(9c)

For the sake of comparison, we also report the linearized system
for the RP model

(10a)

(10b)

where and are the Fourier transform of and in (3).
The differences are that in the CRLP we have three rather than
two equations, the Kerr term has been moved
from the equation driving the evolution of to that one driving
the evolution of , and is also affected by through disper-
sion. However, if we define a new variable

(11)

and take the difference of (9b) and (9c), we obtain

(12a)

(12b)

which is the same system as in (10) with and .
As a consequence, we may solve (9) by a two-step procedure.
First, we exploit the RP solution (derived in [8] and [9] for in-
stance) to evaluate the propagation of and . Then, we re-
sort to (9) and (11) to identify how the contribution of the fic-
titious variable has to be shared between the real perturba-
tion terms and . In particular, when , and and

are constant, the equations in (12) have constant coefficients
and can be solved analytically. Defining the vector

, the solution of (12) can be expressed in a
matrix notation as , where

is the 2 2 transfer matrix for the RP model

(13)

with

(14)

Integrating (9b) and (9c) and taking their ratio, we obtain

(15)

which, together with (11), constitutes the linear algebraic
system for and . By defining the vector

, the final solution of (9) can be
expressed in matrix notation as ,
where , shown in (16) at the bottom of this page, is the
transfer matrix for the CRLP model. We note that for
and , the parameters and are imaginary.
However, (13)–(16) still hold, and the elements of transfer
matrices in (13) and (16) are still real. The ratio in (15) discrim-
inates between two different behaviors of the CRLP model.
When nonlinearity dominates over dispersion, that ratio is
small, and the perturbation appears primarily in the evolution
of . On the other hand, when dispersion dominates, that ratio
is large and the perturbation appears primarily in the evolution
of . For intermediate cases, (15) ensures a balance between
RP and LP that enhances the model accuracy. We note that the
CRLP approach includes all of the relevant quadratic perturba-
tion terms that are neglected in the RP approach. In fact, all of
the neglected terms in (8), either correspond to the cubic terms
of (6), or are proportional to the first or second derivative of

and to . These last terms would be relevant only at high
dispersion and frequency. However, (15) ensures that is not
significantly affected by the perturbation at high dispersion and
frequency. Finally, we note that in place of (7), we could have
set 0, mapping all of the perturbation on and and
obtaining a sort of CRLP model with only two real variables.
In that case, splitting (6) into real and imaginary parts, after
linearization, and would be driven by the same equations
in (12), but with . This model would give similar results
to the proposed CRLP model in all cases where the quadrature
component is small compared to the signal. However, it would
not behave as the RP model in the linear regime—for which the
RP model gives an exact solution—and would be less accurate
for small-signal amplitude.

A comparison can also be made with the theory developed in
[11] for the zero-frequency component of the RP. According to
(10a), the linearized RP theory predicts that the zero-frequency
component of the inphase perturbation term is not affected by
parametric gain. However, as pointed out in [11], the quadratic
terms neglected in the RP approximation also affect at zero

(16)
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frequency. By contrast, as shown in (9c), the linearized CRLP
model includes parametric gain at zero frequency through the
term . According to (5), the phase is responsible for a rotation
of the signal in the complex plane. If we project this rotation
onto the inphase and quadrature components with respect to the
output signal, we obtain a quadrature component that is linear in

, and an inhase component that is quadratic in , in agreement
with the behavior predicted in [11].

Finally, compared to the covariance matrix method proposed
in [10], the CRLP method formalizes and generalizes the con-
cept of phase-jitter removal. In fact, the phase-jitter removal that
is required in the covariance matrix method in order to obtain a
Gaussian distribution of the noise and accurate results is con-
tained in (5). In the place of random phase jitter associated with
each pulse, which must be extracted during the propagation, we
have a random process , whose propagation is described
by the CRLP equations. On the other hand, with respect to [10],
the CRLP equations in this paper are only derived for a con-
tinuous-wave CW signal. This limitation is not severe for NRZ
systems. However, an extension of the CRLP model to modu-
lated signals could be of interest for narrow RZ signals in which
timing jitter becomes the dominant source of signal degradation.
This extension is theoretically possible by changing the CRLP
ansatz in (5) into

(17)

where is the normalized noise-free solution of the
NLSE.

III. ASE-NOISE PROPAGATION IN MULTISPAN SYSTEMS

In this section, we apply the CRLP model to study the propa-
gation of ASE noise in multispan systems. The ASE noise gen-
erated by optical amplifiers is the source of a random pertur-
bation, and the inverse Fourier transform of the vector
defined in Section II is a vector process, statistically character-
ized by the 3 3 power spectral density (PSD) matrix

(18)

where indicates expectation, and indicates the
Fourier transform with respect to . Since each amplifier is an
independent source of complex additive white Gaussian noise
(AWGN), its effect can be modeled by adding two forcing terms
to the system of differential equations in (9), which becomes

(19a)

(19b)

(19c)

where and are the Fourier transform of the
inphase and quadrature component of the complex forcing term

, where is the location of the
th amplifier, and is the Dirac delta function. In the

definition of the forcing term, the are independent iden-
tically disrtibuted complex Gaussian random processes, with

Fig. 1. Generic �th span of a multispan system with optical amplifiers. The span
of length � , variable attenuation coefficient �, dispersion coefficient � , and
nonlinear coefficient � are divided into � steps of length�� � � �� so that
in each step, the fiber parameters can be considered constant and the attenuation
negligible.

and , where
is the PSD of the ASE noise generated by each amplifier on

any polarization, and is the Kronecker delta function.
Thus, considering the generic th span of length repre-

sented in Fig. 1, the PSD matrix at the output of the amplifier is

(20)

where . In general, the attenua-
tion is not negligible, and the fiber parameters are not constant.
Thus, the analytical formula in (16) cannot be directly applied
to the whole span. A closed-form solution for the RP model
when is given in [9] in terms of Hankel’s functions.
However, we prefer to follow the simple approach suggested
in [8] for the RP model. We divide the span of length into

steps of length , as depicted in Fig. 1, such
that each step has a negligible attenuation , con-
stant dispersion, and an effective nonlinear coefficient

. The transfer matrix
of each step is given by (16), and the overall transfer

matrix can be evaluated by multiplying the transfer matrices of
each step

(21)

The PSD matrix at the output of the span is

(22)

By repeating the procedure described in (20)–(22) for each span
composing the system, we finally obtain the output power spec-
tral density (PSD) matrix.

Due to the linearization of our propagation equations, which
we carried out by neglecting the quadratic terms in (8), the quan-
tities , , and at each point in time will remain Gaussian
distributed at every in the presence of AWGN. However, the
signal itself, given by a nonlinear combination of , , and in
(5), will not be Gaussian distributed in general. Thus, the output
process is not Gaussian but it turns out to be a combination of
Gaussian processes. With respect to RP, the CRLP approach is
slightly more complex, because the power spectral density is de-
scribed by a 3 3 rather than by a 2 2 matrix. However, we
will show that the accuracy of the CRLP is significantly higher
than the RP, since it accounts for the effects of the Kerr interac-
tions on that are neglected in the RP.
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Fig. 2. Normalized PSD matrix (diagonal elements) of the (a) RP model and (b) CRLP model for � � 10 mW, � � ��� ps��nm � km), � � � �W � km� ,
and � � 50 km, corresponding to normal dispersion and � � 1 rad.

Fig. 3. Normalized PSD matrix (diagonal elements) of the (a) RP model and (b) CRLP model for � � 10 mW, � � �� ps/(nm � km), � � � (W � km) , and
� � 50 km, corresponding to anomalous dispersion and � � 1 rad.

IV. APPLICATIONS OF THE CRLP MODEL TO SIMPLE SYSTEMS

Fig. 2 shows a comparison between the main (diagonal) terms
of the output PSD matrices for the (a) RP and (b) CRLP models
in the case of a CW plus additive white Gaussian noise (AWGN)
propagating through a lossless fiber with 10 mW,

ps nm km), W km , 50 km. These choices
correspond to normal dispersion and rad. The disper-
sion parameter , where is the speed of light
and is the reference wavelength, is often used to characterize
the fiber dispersion. The PSDs are normalized with respect to
the PSD of the inphase or quadrature component of the injected
AWGN noise. Comparing (10) and (12), we infer that the PSD
of the inphase component is the same for the RP and CRLP
model, while the PSD of the quadrature component is dif-
ferent. Moreover, the phase-noise PSD of the CRLP model in
Fig. 2(b), , is concentrated at low frequencies. This result
is the consequence of (15), which implies that is primarily
affected by parametric gain at low frequencies, while is pri-
marily affected by parametric gain at higher frequencies. Fig. 3
shows the same comparison as in Fig. 2, but for an anomalous
dispersion km). Those results can be gener-
alized by showing that according to the CRLP model, the sign
of the dispersion determines how and are affected by
parametric gain. In an uncompensated span, and are both
subject to attenuation or amplification when the dispersion is
normal , or anomalous , respectively, and are both
unaffected at the carrier frequency or when 0. On the other
hand, the RP model predicts a different behavior for , whose

large increase at the carrier frequency is often responsible for
an increase in the marks at the detection point in the receiver
and, thus, for BER improvement.

Another interesting comparison can be drawn in the case
where there is no dispersion, for which an exact solution exists.
Letting 0 in (8), (9), or (10), or letting also 0 in (10),
we obtain, respectively

Exact:

(23a)

(23b)

(23c)

(23d)

where we dropped the time dependence because it is irrelevant
in this case. When there is no dispersion, the linearized CRLP
model yields the exact amplitude and a first-order approxima-
tion of the phase, the RP model yields the wrong amplitude and
phase, and the AWGN model yields the correct amplitude, but
an incorrect phase. For instance, if we consider a system with

, and initial conditions
, we obtain the solutions presented in Fig. 4. As can be seen,

the CRLP yelds the most accurate result. Moreover, if we are
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Fig. 4. Schematic representation of the zero-dispersion solutions in (23). Thick
lines represent the input and output noise-free signals at a generic time �. Sym-
bols represent the corresponding noisy input and output (exact, AWGN, RP, and
CRLP) perturbed signals. Thin dotted lines show how the perturbed signals re-
late to the noise-free signals through the perturbation components.

mainly interested in the output signal amplitude, as in the case
of OOK systems, the AWGN approximation is better than the
RP, even though the phase is incorrect.

When there is no dispersion, the CRLP solution in (23b) re-
produces the well-known results for the phase noise in ampli-
fied systems [13]–[15]. Considering the inphase and quadrature
components of the injected ASE noise, and , re-
spectively, as the source of the perturbation, the phase
corresponds to the nonlinear phase noise, which, at first order,
is proportional to and is therefore Gaussian distributed,
although its exact distribution slightly deviates from Gaussian
if we include the quadratic components. This result confirms
the accuracy of the CRLP model, which exactly predicts the
well-known results for the nonlinear phase noise at zero dis-
persion and only leads to a slight discrepancy with the signal
phase. Indeed, the model is valid even in the presence of disper-
sion, in which case it predicts a parametric gain effect for and

and a limited bandwidth in which phase noise is generated, as
shown in Fig. 2. Finally, we note that in the linear regime, the
RP and CRLP models converge to the AWGN model and give
exact results, as can be seen by letting (or, equivalently,

) in (13) and (16), respectively. In this sense, we can
view the CRLP model as a combination of the theories devel-
oped for the parametric gain effect [8]–[11] and the nonlinear
phase noise [13]–[15].

V. APPLICATIONS OF THE CRLP MODEL

In this section, we give some applications of the CRLP model.
Under the aforementioned CW approximation, the PSD matrix
of the CRLP model in (18) gives a complete statistical charac-
terization of the optical signal at the receiver for a multispan
optically amplified single-channel system. Therefore, the pro-
posed model is suitable for the analysis of single-channel op-
tical systems regardless of the detection strategy and modula-
tion format (provided that the CW approximation holds). In re-
gards to the detection strategy, we apply the CRLP model to
the evaluation of the pdf of the optical sample for a coherent
receiver, and to the evaluation of the pdf of the photodetected

sample for a direct-detection receiver. In regards to modulation
formats, we apply the model to the evaluation of the BER for an
NRZ–OOK system. In order to check the validity of the model
and the improvement in accuracy with respect to other models,
all of the results are compared to the simple AWGN model, the
classical RP model, and numerical simulations, which are per-
formed by using the multicanonical Monte Carlo (MMC) algo-
rithm described in [16]–[18]. Finally, we shortly discuss some
possible extensions to different modulation formats and wave-
length-division multiplexing (WDM) systems.

A. Probability Density Function of the Optical Signal

We consider the propagation of a CW signal plus AWGN
noise in a lossless fiber and look at the pdf of the optical signal
after propagation. This example is of particular interest for the
analysis of a coherent receiver, where the detected samples
are proportional to the optical field. In addition, it allows us
to understand the behavior of the CRLP model and its ability
to obtain the non-Gaussian distribution of the optical noise
after propagation. Fig. 5 shows the contour plot of the joint pdf

, where and are the inphase and quadrature
components of the optical signal
at the output of the fiber. The pdf is independent of time since
the process is stationary. In the AWGN or RP model, is
given by (3). In the AWGN case, the interaction between noise
and signal is completely neglected, and are independent
identically distributed Gaussian random variables, and the
contour lines of the pdf have a circular shape. In the RP case,

and are still Gaussian because of linearization, but are
not independent because of parametric gain. Their covariance
matrix can be derived from the PSD matrix, and the contour
lines assume a slightly tilted, elliptical shape. In the CRLP
model, is given by (5). Due to the nonlinear dependence
of on , the contour lines bend around the origin, giving a
banana-like shape. Consequently, the Cartesian fields and

are no longer Gaussian. In this case, the joint pdf can be
evaluated as explained in Appendix A. Finally, simulations are
made by using the split-step Fourier method for the propagation
of the CW plus AWGN, and applying the MMC algorithm
described in [16] and [17] to estimate the pdf with uniform
accuracy down to low values.

Fig. 5 shows two different cases. in Fig. 5(a), the CW power
is 20 mW, the noise PSD is W/Hz, cor-
responding to an optical signal-to-noise ratio1 OSNR nm
14 dB for an ideal 10 Gb/s-NRZ signal with the same peak
power, and the fiber dispersion is ps/(nm km); in
Fig. 5(b), 5 mW, 15 W/Hz, corresponding
to the same 14 dB, and ps/(nm km).
In both cases, the nonlinear coefficient is (W km ,
the fiber length is 50 km, and the noise bandwidth is lim-
ited by a Gaussian filter with a 20-GHz 3-dB bandwidth. In the
graphs, the fields and are normalized with respect to .
The large deviation of the MMC simulations from the AWGN
model shows that signal-noise interaction is strong. In partic-
ular, in the normal dispersion regime of Fig. 5(a), with a fairly
high value 2 rad of the nonlinear phase rotation, two

1The reported OSNR values also take the noise in the orthogonal polarization
into account.
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Fig. 5. Pdf of the optical signal after propagation through a single lossless span according to the AWGN, RP, and CRLP models, and to MMC simulations:
(a) � � 20 mW, � � �� ps/(nm � km�, � � � �W � km� , � � 50 km, � � ��� � �� 14 W/Hz, corresponding to � � 2 rad and OSNR � 14 dB;
(b) � � 5 mW, � � � ps/(nm � km�, � � � (W � km) , � � 50 km, � � 	 � �� W/Hz, corresponding to � � 0.5 rad and OSNR � 14 dB.

effects are evident: 1) shrinkage of the noise pdf along the
signal direction, and 2) strong bending of the pdf around the
origin. The first effect, which corresponds to a reduction of
the inphase noise component , is correctly predicted by the
RP and CRLP model, as shown in Fig. 2, while the second
effect, which is related to the presence of strong phase noise,
is correctly predicted only by the CRLP model. The agreement
of the CRLP model with simulations is excellent for small per-
turbations, as evidenced by the inner contour line, and is good
even for large perturbations, as evidenced by the outer contour
lines. The quadratic terms and , which are neglected in the
linearization of the third equation of (8), produce a slight asym-
metry of and a slight increase of its variance, which explains
the discrepancy between MMC and CRLP on the tips of the
outer contour lines. This phase discrepancy is only observed for
perturbations that are larger than the signal itself, and are not
expected to be relevant in amplitude-modulated systems. On the
other hand, the RP model greatly overestimates the quadrature
component , as shown in Fig. 2, and it does not predict the
conversion of amplitude noise into phase noise. Therefore, we
expect the RP model to overestimate the performance of both
amplitude- and phase-modulated systems. In the anomalous
dispersion regime of Fig. 2(b) , the CRLP model again shows
the best agreement with simulations of all the perturbation
methods that we studied, but the agreement is not as good as
in Fig. 2(a) . In fact, in this case, the parametric gain effect,
contrary to what happens in case 1), tends to transfer the power
from signal to noise, as shown in Fig. 3, with a fast increase
of the perturbation and a consequent degradation of the model
accuracy. Already at the value of Fig. 3(b),
the discrepancy for large perturbations is significant. However,
as we will show in the following examples, the discrepancy is
only due to a phase error, and the amplitude, which is relevant
for amplitude-modulated systems, is still correctly predicted.

B. Probability Density Function of the Photodetected Signal

As in the previous example, we consider again the simple
case of CW plus AWGN noise propagating through a lossless
fiber, but now we focus attention on the pdf of the signal after

a standard OOK receiver. After propagation, the optical signal
is filtered by a bandpass Gaussian filter with 3-dB bandwidth
of 20 GHz, photodetected and filtered again by a low-pass
fifth-order Bessel filter with a 3-dB bandwidth of 7.5 GHz.
Fig. 6(a)–(c) shows the pdfs of the normalized photocurrent
for three different cases: Fig. 6(a) shows a normal dispersion
fiber ps/(nm km) with CW power 20 mW
and a noise PSD W/Hz; Fig. 6(b) shows an
anomalous dispersion fiber ps/(nm km) with
10 mW and W/Hz; and Fig. 6(c) shows a zero
dispersion fiber with 5 mW and W/Hz.
In all three cases, the fiber length is 50 km, the nonlinear
coefficient is (W km) , and OSNR 14 dB as
in the previous examples. The pdfs are derived from the PSD
matrices for the AWGN, RP, or CRLP models, as explained in
Appendix B, and are then compared to MMC simulations. In
all cases, the CRLP model is in good agreement with simula-
tions, which strongly deviate from the AWGN prediction due
to the nonlinear interaction between the noise and signal. In
particular, the left tail of the pdf, which is the most important
for the evaluation of the BER, in Fig. 6(a)) and Fig. 6(b) differs
substantially from the simulations in the AWGN case, mainly
due to a change of the inphase component of the perturbation,
that is predicted by the RP and CRLP models, as shown in
Figs. 2 and 3. However, the RP model also predicts a strong
increase of the quadrature component , leading to a systematic
biasing of the pdf toward large values of the photocurrent. This
bias is evident in the left and right tails of the pdfs. In particular,
in Fig. 6(b), the increase of the inphase component, which
leads to a small increase of the left tail of the pdf in its upper
portion, is masked by the larger increase of the quadrature
component, which leads to a significant decrease of the same
tail at lower values. As a result, the RP model would predict
an improvement of performance in the anomalous dispersion
regime, where the CRLP model correctly predicts the strong
degradation shown by the MMC simulations.

In Fig. 6(c), a completely different behavior is observed. As
already pointed out in Section IV, at zero dispersion, only the
phase term of the CRLP model is affected by PG, leaving the
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Fig. 6. Pdf of the normalized photocurrent after propagation through a single
lossless span with � � 50 km and � � � (W � km� , according to the
AWGN, RP, and CRLP models, and to MMC simulations: (a) � � 20 mW,
� � ��� ps/(nm � km), � � ��� � �� W/Hz, corresponding to � �
� and OSNR � 14 dB; (b) � � 10 mW, � � �� ps/(nm � km�,
� � 	 ��� W/Hz, corresponding to � � 1 and OSNR nm � 14 dB;
(c) � � 5 mW,� � � ps/(nm � km�,� � 
 � �� W/Hz, corresponding
to � � 0.5 and OSNR nm � 14 dB.

amplitude unaltered. This case was already investigated in [14],
where it is shown that at zero dispersion, the Kerr nonlinearity
of the fiber produces an increase in the noise background which,
however, does not affect the amplitude noise of the propagating
field and, consequently, the performance of an OOK system,
unless optical filtering is performed. On the other hand, when
optical filtering is performed, significant signal attenuation is
observed that depends on the total bandwidth of the ASE noise
before filtering. For instance, in the case of Fig. 6(c), the total
bandwidth of the injected ASE noise was 320 GHz, compared
to the 20-GHz bandwidth of the optical filter, which gives sig-
nificant attenuation. This phenomenon is not captured by either
the AWGN or the RP model, but can be explained by the CRLP
model. In fact, at zero dispersion, the PG bandwidth is theo-
retically unlimited in the cases treated here. Therefore, the op-

tical filter bandwidth is much narrower than the bandwidth of the
phase term , and the linear filtering approximation discussed
in Appendix B is no longer valid. While a CW signal would
pass unaltered through the optical filter, the phase modulation
imposed by in the zero-dispersion regime increases the band-
width of the CW signal, which is then attenuated by the optical
filter. Following [19] and considering a second-order approxi-
mation, it can be shown that the normalized intensity of the
phase-modulated CW signal after an optical filter with an im-
pulse response can be approximated as

(24)

where indicates convolution. Taking the expected value of
(24) and exploiting the linearity of expected values to arbitrary
linear operators, we obtain

(25)

Since is a stationary ergodic process, the expected values
on the right side of (25) correspond to the power of and
the power of (assuming 1), respectively, and are in-
dependent of time. Therefore, (25) can be rewritten as

(26)

where is the PSD of the term (i.e., the (3,3) element
of the PSD matrix defined in (18), and is the Fourier
transform of ). When including the signal attenuation given
by the integral in (26), which corresponds to a translation of
the pdf toward low values, the CRLP model in Fig. 6(c) yields a
good approximation of the pdf once more. We note that (25) can
be used also for nonzero dispersion. However, in most practical
cases, the bandwidth of is narrower than the optical filter
due to dispersion, and the attenuation given by the integral in
(25) is negligible.

C. BER of NRZ–OOK Systems

Here, we evaluate the bit-error ratio of a simple 10-Gb/s
NRZ-OOK system model with five spans of fiber. Each span
has an optical amplifier, 128 km of standard transmission
fiber, and 16 km of dispersion compensating fiber. The am-
plifier has a spontaneous emission factor 4 and the
gain is equal to the loss of the entire span. The standard
transmission fiber has a dispersion ps/(nm km),
a nonlinear coefficient (W km) , and attenuation

dB/km. The dispersion compensating fiber has a
dispersion ps/(nm km) and the same and as
the standard transmission fiber. Since we are not interested in
the dispersion map optimization, the dispersion in each span is
fully compensated. The receiver model has a Gaussian band-
pass optical filter with 50-GHz bandwidth, a photodetector, and
a fifth-order low-pass Bessel filter with 7.5-GHz bandwidth.
The BER is evaluated as explained in Appendix B, and thermal
and shot noise are neglected. Simulations are performed by
using a version of the MMC algorithm that accounts for pattern
dependences [18]. Fig. 7(a) shows the BER as a function of
the peak power (measured at the output of each amplifier)
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Fig. 7. BER versus peak power for a five-span 10-Gb/s-NRZ system. (a) � � 4, � � � (W � km) , � � ���� dB/km, 128 km of transmission fiber with
� � ��� ps/(nm � km� and 16 km of compensation fiber with � � ���� ps/(nm � km�. (b) Transmission and compensation fibers are swapped.

by using the AWGN, RP, CRLP, and MMC algorithms. As
explained in Appendix B, self-phase modulation, which is
the most relevant nonlinear effect in this case, is taken into
account in all of the models by propagating the noise-free
signal with the split-step Fourier method. When increasing the
peak power, the OSNR increases, but self-phase modulation
becomes stronger. As a consequence, the BER curves have a
minimum at the point where the best tradeoff between OSNR
and self-phase modulation impairments occurs. In addition, the
system performance is affected by parametric gain due to the
nonlinear interaction between the noise and signal, which is
neglected by the AWGN model and approximated differently
by the RP and CRLP models. In this example, parametric gain
is first visible at 2 mW, where the various models and the
simulations begin to disagree. The BER improvement shown
by simulations with respect to the AWGN model is correctly
predicted by the CRLP model, which is in agreement with
simulations up to 9 mW (the minimum of the BER curve),
which corresponds to a nonlinear phase rotation 1.8 rad.
By contrast, the BER improvement predicted by the RP model
is too large.

Fig. 7(b) shows a different case, where the system character-
istics are the same as in (a), but the transmission and compen-
sating fibers are swapped. Although the performance predicted
by the AWGN model is almost the same as in the previous case,
the actual performance found in the MMC simulations shows
completely different behavior due to the parametric gain. In
fact, the performance is worse than that predicted by the AWGN
model. Again, the agreement between CRLP and simulations is
good up to the minimum of the BER curve at 9 mW, while
the RP model is too optimistic.

D. Extension to Different Modulation Formats and WDM
Systems

The CW approximation adopted in this paper relies on the
hypothesis that, during propagation, the noise interacts with a
slowly time-varying signal. In the last example, we have shown
that this is a reasonable approximation for an NRZ–OOK
system. However, it could be too severe if we were interested
in the statistical analysis of a rapidly time-varying signal, as in
the case of RZ formats or in the case of oversampled receivers.
In this case, analogous but more complex equations for the per-
turbation terms , , and that also account for the modulation

of the interacting signal could be derived by removing the CW
approximation in (5) by using (17) as a starting point.

Another interesting extension of the CRLP model would be
the inclusion of other sources of perturbation (noise) that are
typical of WDM systems by adding proper forcing terms to (19).
For instance, cross-phase modulation (XPM) could be approxi-
mately modeled by adding a Gaussian forcing term to (19c), and
four-wave mixing (FWM) by adding two more Gaussian forcing
terms to (19a) and (19b). The propagation equations would re-
main as a system of linear differential equations, but—with the
forcing terms distributed along —would be nonhomogeneous
and require a slightly different procedure for the evaluation of
the output PSD matrix. However, all of the perturbation terms
would remain Gaussian after propagation, meaning that the PSD
matrix in (18) would still give a compete statistical characteri-
zation of the optical signal and that the procedures described in
this section for pdf or BER evaluation would remain unchanged.

VI. CONCLUSION

We have introduced a novel perturbation method for the
NLSE that reduces to the RP expansion at low power and to
the LP expansion at high power. It is more accurate than either.
In this CRLP expansion, the optical signal is represented as a
perturbed noise-free signal, and the perturbation is described
by two additive terms and one phase factor. The phase factor
can also be viewed as a generalization and formalization of the
phase jitter removal concept introduced in [10].

We have derived the CRLP propagation equations, and we
have applied them to amplified multispan optical systems. In
this case, the CRLP model can accurately model parametric
gain, including the contribution of the Kerr terms that are
quadratic with respect to the perturbation, and the nonlinear
phase-noise generation. We have compared the results to those
predicted by other linearization models, and the CRLP perfor-
mance was consistently better.

Finally, we have shown how the CRLP model can be applied
to evaluate the pdf of the received optical signal in a coherent
receiver, the pdf of the postdetection signal in a direct-detec-
tion receiver, and the BER of an NRZ–OOK system. We have
considered several different examples of pdf or BER evaluation.
All of the results obtained with the CRLP model have been com-
pared to other linearization models and to multicanonical Monte
Carlo simulations in order to validate the accuracy of the CRLP
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model and to show its advantages. In addition, we have shortly
discussed the possibility of removing the CW approximation
and extending the model to the analysis of WDM systems.

APPENDIX A

In this Appendix, we explain how to derive the pdf of the op-
tical signal from the PSD matrix

by following the rules for functions of random variables
given in [20]. At a fixed time and position , the perturbation
terms , , and of the CRLP are three Gaussian random vari-
ables with multivariate normal distribution

(A1)
whose covariance matrix is

(A2)

From (5), we derive the transformation

(A3a)

(A3b)

(A3c)

where we have introduced the auxiliary variable . The corre-
sponding inverse transformation is

(A4a)

(A4b)

(A4c)

Since the determinant of the Jacobian matrix of the trans-
formation in (A4) is equal to one, we obtain the joint pdf

by substituting (A4) into (A1). Taking apart
the Gaussian factor coming from the term in brackets in
(A1), we write the pdf as

(A5)

where is the remaining factor, and
. We finally obtain the desired joint pdf by elimi-

nating the auxiliary variable in (A5) through calculation of
the marginal distribution

(A6)

where and , , are the abscissas and weights
of an -point Gauss–Hermite integration formula [21, p. 924].

APPENDIX B

In common OOK receivers, the received optical signal is fil-
tered by a bandpass optical filter, photodetected, and filtered
again by a lowpass postdetection filter. The pdf of the current
after the postdetection filter can be exactly evaluated by using

a Karhunen–Loève series expansion method [22]–[25]. In the
following text, we will shortly review the procedure for BER or
pdf evaluation, mainly following [23], where the noise and the
signal are expanded on two different Fourier bases, and the pdf
is obtained by inverting the moment generating function through
the saddlepoint method. In particular, we will highlight the small
modifications required to account for parametric gain. The ex-
tension to the non-AWGN case is done by following [26], the
PSD matrix is evaluated by adapting the CRLP model to a mod-
ulated signal, and a slightly different form of the moment gen-
erating function is adopted.

In the presence of nonlinearities, the modulated noise-free
signal at the input of the photodetector is evaluated by propa-
gating the -bit de Bruijn transmitted sequence through the
whole system by the split-step Fourier method. For each re-
ceived bit at sampling time , , a different output
PSD matrix is evaluated as explained in Section III,
considering a CW signal with power that is equal to the trans-
mitted power at time . Following the notation adopted in [23],
the photodetected sample at for each bit can be expressed as

(B1)

where is a complex vector containing the most relevant
Fourier components of the optical noise at the input of the pho-
todetector, and is the noise-free sample. The complex vector
and the Hermitian matrix , defined in [23], account for signal-
noise and noise-noise beating, respectively. Since parametric
gain breaks the symmetry between the inphase and quadrature
noise components, we rewrite (B1) as

(B2)

where

(B3a)

(B3b)

(B3c)

and is the phase of the optical sample at the output of the
fiber at time , which is needed to account for the proper phase
relationship between the noise and signal. The covariance ma-
trix of , obtained directly from [23], is not diagonal. However,
the vector can be related to another noise vector through
a whitening operation , so that is a zero mean
Gaussian vector with diagonal covariance matrix

, where , is the duration of the overall im-
pulse response of the system defined in [23], and is the identity
matrix. We note that in the presence of parametric gain, that is
not an instantaneous effect, the convergence of the expansions
in (B1) or (B2) can be reached for a larger value of than in
[23]. The matrix can be derived from the output noise PSD
matrix . Hence, we assume that the impulse response
of the optical filter is real and its bandwidth is larger than , so
that we can neglect the phase-to-amplitude conversion caused
by the optical filter [19]. Therefore, after photodetection, the
phase term of the CRLP model in (5) disappears and only the
PSD and cross-PSD of and are needed. The matrix can be
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evaluated as in [26], , where is a block matrix
derived from the Cholesky decomposition of

(B4)

and is a block matrix which relates the inphase/quadrature
basis (adopted for ) to the real/imaginary basis (adopted for

and )

(B5)

In (B5), is the identity matrix and is an antidiagonal matrix
with all of the antidiagonal elements being equal to one. After
the whitening operation, the problem is reduced, as in [23], to
evaluate the pdf of the sum of noncentral chi-square independent
random variables plus some constant terms. After some calcula-
tions and the diagonalization of the matrix , it can
be shown that the moment generating function of can be
written as

(B6)
where are the elements of the vector

, is the matrix of the eigenvectors of , and
are the corresponding eigenvalues. The

expression in (B6) is slightly different from the one reported
in [23], where the contribution of the constant terms was sepa-
rated. Although theoretically equivalent, the straight use of (B6)
avoids the singularity that arises in the expression reported in
[23] when one or more eigenvalues are equal to zero [27]. Fi-
nally, the pdf can be evaluated by a saddle-point integration of

(or for the BER), and by averaging all bits
of the sequence , exactly as described in [23].
In the special case of a true CW signal, which is considered in
Section V-B, the described procedure is significantly simplified,
since the signal propagation and expansion become trivial, and
sequence averaging is not required.
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