
A Framework for Designing Embedded Real-Time Controllers

Yifan Wu, Enrico Bini, Giorgio Buttazzo
Scuola Superiore Sant’Anna, Pisa, Italy

{y.wu,e.bini,giorgio}@sssup.it

Abstract

Control systems are typically designed assuming an
ideal behavior of the computing infrastructure where con-
trollers execute. In practice, however, in highly loaded
computing systems consisting of multiple concurrent con-
trollers, resource constraints may introduce delays and jit-
ter in control loops that may degrade control performance
significantly. Hence, taking resource constraints into ac-
count since the beginning of the design cycle is crucial for
optimizing the performance of a control system.

In this paper, we propose a general framework for eval-
uating the performance of a control system as a function of
multiple timing attributes (e.g., sampling frequencies, de-
lays and jitter) and for selecting the proper control task pa-
rameters (e.g., periods and deadlines) taking resource con-
straints into account. The proposed framework is illustrated
using a real control plant.

1. Introduction

The typical approach adopted during the design of a con-
trol system is to separate performance requirements from
architecture and implementation issues. In a first stage, the
control law is designed assuming an ideal behavior of the
computing system on which the controller executes, where
tasks run smoothly on the processor without considering
any kind of interference. This is equivalent of synthesizing
a controller in the continuous time domain without delay.
When computational resources are taken into account in the
design, the limited processing power of the system is con-
sidered by assigning a fixed sampling rate to the controller,
whereas other types of interference are cumulated by con-
sidering a fixed input-output delay in the control loop. In
this case, a controller can either be discretized or directly
designed in the discrete time domain using sampled-data
control theory.

In a second stage, once performance requirements are
ensured by the control laws, control loops are mapped into
periodic tasks and schedulability analysis is performed to

verify whether the timing constraints assumed by the con-
trol designer can be met. If so, the system is implemented,
otherwise the control laws must be designed by assuming
different sampling rates and/or delays, and the process must
be repeated.

Even when timing constraints are verified through fea-
sibility analysis (using predicted values), the actual system
implementation may reveal overload conditions and longer
delays that force further refinement steps in the design pro-
cess, unless very pessimistic assumptions are considered on
the system [8]. Figure 1 illustrates the typical refinement
process of the classical design methodology.

constraints?

Mapping to periodic tasks

Design of control laws

Schedulability analysis

Feasible?

Run time monitoring

Implementation

Meet

OK

NO

NO

YES

YES

Performance

Task parameters

Architectural
constraints

requirement

Figure 1. Typical design cycle of a real-time
control system.

The 14th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/08 $25.00 © 2008 IEEE

DOI 10.1109/RTCSA.2008.22

303

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

Such a separation of concerns facilitates both control de-
sign and implementation, allowing the system to be devel-
oped by teams with different expertise. In fact, control ex-
perts can focus on system-level goals, such as stability, ro-
bustness, and control performance, whereas computer engi-
neers can concentrate on task mapping, schedulability anal-
ysis, resource management and code generation to ensure a
reliable support to the application [1].

Unfortunately, however, such a spiral design methodol-
ogy has the following disadvantages:

• Long and expensive development. Since design is per-
formed following a trial and error strategy, several re-
finement steps can be required to find a suitable so-
lution, especially when computational resources are
scarce and the application consists of several concur-
rent and interacting activities.

• Suboptimal performance. The myopic search in the
space of solutions does not guarantee that the found
solution leads to the best performance. A different set-
ting of parameters could guarantee feasibility with a
significant increase in the performance.

• Suboptimal use of the resources. Since resource con-
straints are not taken into account in the design pro-
cess (except for verifying feasibility), a feasible so-
lution does not guarantee optimal resource exploita-
tion, which would be of crucial importance in embed-
ded systems where resources are scarce. For instance,
optimal resource usage would allow to minimize en-
ergy consumption while meeting performance require-
ments.

The major problem in such a design practice is that the
assumptions made at the first stage of control design are
difficult to meet in the implementation, unless delays are
assumed equal to sampling periods [14]. However, it has
been shown [7] that, in most cases, a shorter and varying
delay leads to a better performance than a fixed but longer
delay. Sampled-data control theory usually assumes a neg-
ligible or at least constant input-output delay, whereas in
resource constrained implementations (as the case of em-
bedded systems and networked control systems) many con-
current tasks competing for computational resources may
cause transient or permanent overload conditions, as well
as introduce variable input-output latencies in control loops.
Such non-deterministic effects can significantly degrade the
overall system performance and possibly lead to the viola-
tion of some properties achieved during the control design
phase, including system stability.

As a result, a trade-off between control performance and
resources usage should be wisely considered during the
whole design process. In particular, architecture constraints

(as processing power, memory size, maximum power con-
sumption) and operating system effects (as runtime over-
head, blocking time, response time, intertask interference)
should be properly modelled to possibly optimize the design
towards a precise control objective.

In recent years, the awareness of schedulability issues
has grown significantly in control systems design. As re-
ported by Törngren et al. [23], there are many complex de-
pendencies between control metrics (e.g., rise time, over-
shoot, and stability) and platform metrics (e.g., task utiliza-
tion and response time). A convenient way to relate these
complex aspects of control and real-time computing was
presented by Seto et al. [21], who proposed to translate a
co-design problem into an optimization problem. The ba-
sic idea of this approach is to use a Performance Index to
measure the performance of the control system and use it to
formulate an optimization problem, where constraints are
represented by task parameters, like sampling periods.

Martı́ et al. [19] chose task utilizations as the variables to
minimize a cost function defined as a linear approximation
of a quadratic performance loss index. Cervin et al. [11] ob-
tained a cost function with respect to sampling frequency by
computing the standard quadratic cost criterion within a cer-
tain range of sampling periods. The cost function was later
approximated as a linear function with respect to the task
frequency. Caccamo et al. [10] introduced a task rate op-
timization framework to optimize the control performance
with constraints on the schedulability of the task set. The in-
volved cost function was the same performance loss index
as introduced by Seto et al. [21].

Kim [16] suggested to express the cost as a function of
both periods and delays, where periods were found assum-
ing that the delays are given. Then the new delays were
computed by simulating the schedule of all the tasks up to
the hyperperiod, and iteratively the periods were computed
again assuming the new values of delay. However, this
method considered only fixed priorities and was extremely
time consuming.

In this paper, we propose a general framework to treat
the control design as an optimization problem. In order
to derive the proper timing attributes of the control tasks
that achieve the best performance, we start by evaluating
the performance of a control system as a function of multi-
ple timing attributes, like sampling frequencies, delays and
jitters. To test the performance of the system under dif-
ferent timing attributes we propose a method for injecting
desired delays into task executions using the S.Ha.R.K real-
time kernel [13]. Then, resource and architecture limita-
tions are taken into account by deriving the space of ad-
missible design variables [5, 6]. A real control application
is presented to validate the proposed approach. Figure 2
illustrates the proposed design methodology, whereas Fig-
ure 3 depicts a typical performance function in the space

304

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

of the design variables. The shadowed region denotes the
feasible region where task parameters satisfy the required
timing constrains. Notice that the optimal control perfor-
mance must take such constraints into account and can only
be achieved by wisely selecting the task parameters setting.

Sampling period
Generic control laws

Resource constraints characterization

Optimization process

Task parameters

Jitter

Delay

System performance characterization

Figure 2. Proposed design methodology.

�
�
�

�
�
�

��
��
��
��

J

��
��
��
��

x1

x2

Figure 3. Relation between control perfor-
mance and task parameters

The rest of the paper is organized as follows. Section 2
presents a general framework of how to construct a perfor-
mance function with respect to different timing attributes.
Section 3 describes how to generate the desired timing at-
tributes in order to evaluate the corresponding performance.
Section 4 reviews the feasible EDF deadline space which
can be used as the feasibility region in the optimization
problem. Section 5 presents some experimental results on
a real plant. Finally, Section 6 states our conclusions and
future works.

2. The Performance Loss Index

The primary goal of a control system is to meet stability
and performance requirements, such as transient response
and steady-state accuracy [8]. Beyond such requirements,
controller design attempts to minimize the system error, de-
fined as the difference between the desired response of the
system and its actual response. The smaller the difference,
the better the performance. Hence, performance criteria
are mainly based on measures of the system error. Tra-
ditional criteria (reported in control text-books, e.g. [9]),
such as IAE (Integral of the Absolute Error), ITAE (Integral
of Time-weighted Absolute Error), ISE (Integral of Square
Error) or ITSE (Integral of Time-weighted Square Error),
provide quantitative measures of a control system response
and are used to evaluate (and design) controllers.

More sophisticated performance criteria, mainly used in
optimal control problems, account for the system error and
for the energy that is spent to accomplish the control ob-
jective. The higher the energy demanded by the controller,
the higher the penalty paid in the performance criterion. In
some case, system error and control energy are multiplied
by a weight to balance their relative importance. For exam-
ple, in [18] and [12] the performance criterion is only based
on the system error, whereas in [22] and [21] both system
error and control energy are considered.

To describe our performance loss index, we start from
the ISE index which is given in [9] and defined as follows:

ISE =

∫ ∞

0

e2(t)dt, (1)

where the system error e(t) is the difference between sys-
tem output and equilibrium value. Since the integral up-
per limit of the ISE index is infinity, a closed loop con-
trol system with permanent error will give an infinite value.
In practical use, the integral upper limit of Eq. (1) could
be designated to tp so that the performance of the control
system is evaluated only during the time interval (0, tp).
When ISE index is used in discrete time with sampling pe-
riod of h, and assume the equilibrium value is zero (i.e.,
e(t) = y(t)), Eq. (1) could be written as:

ISE(h) =

tp/h∑
k=0

∫ h

0

(y(k·h + t))2dt. (2)

Eq. (2) expresses the performance loss index as a func-
tion of the sampling period and Figure 4 (taken from one of
our experimental results in Section 5) illustrates the shape
of this function. Note, the monotone and convex properties
are not necessary, but they fit for a wide range of control
systems.

305

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

0 0.02 0.04 0.06 0.08 0.1 0.12
1

1.5

2

2.5

Sampling period (sec)

P
er

fo
rm

an
ce

 L
os

s
In

de
x

Figure 4. Performance loss index as a func-
tion of sampling period.

The performance loss index ISE(h) is then approxi-
mated by a linear function of h

J(h) = α + βh,

or by a quadratic function

J(h) = α + βh + γh2.

In most research papers, the sampling period is the only
timing attribute used as a design variable to formulate the
optimization problem. This is not sufficient because other
non-deterministic factors, such as delays and jitter, intro-
duced by the runtime environment, may cause a perfor-
mance degradation and even system instability [20, 17].

To model such factors, we consider a typical control task
consisting of three stages: Input (I), Calculation (C) and
Output (O), corresponding to sampling, calculation and ac-
tuation in the control domain. Without loss of generality,
it is assumed that the Input occurs at the beginning of each
job, whereas the Output occurs at the end of each job. Due
to the interference caused by other tasks (typically preemp-
tion and/or blocking) two types of delays can be introduced
during task execution, as depicted in Figure 5:

I C O

ta ts tf

Δ
s

Δ
e

Δ
io

Figure 5. Control loop timing

• The sampling delay, which is the time between the ar-
rival time ta of the job and its start time ts:

Δs = ta − ts

• The input-output delay (or IO delay), which is the time
between the start time ts and the finishing time tf :

Δio = ts − tf

Note that Δio can be prolonged by the extra delay Δe in-
duced by real-time scheduling (i.e., preemption from higher
priority tasks and/or blocking from lower priority tasks). If
C is the worst-case execution time of the Calculate part, we
have:

Δio = Δe + C.

Note that the sampling jitter is defined by

js = maxΔs −min Δs

and the input-output jitter (or IO jitter) is defined by

jio = maxΔio −min Δio.

The amount of delays and jitter experienced by each task
depends on several factors, including the running schedul-
ing algorithm, the overall workload, and the task parame-
ters (i.e., computation times, periods, and deadlines). If not
properly taken into account, delays and jitter may degrade
the performance of the system and even jeopardize its sta-
bility.

Therefore the ideal approach to integrate control perfor-
mance and those timing attributes is to embody all the pos-
sible variables as variables of the performance loss index
function. Considering n control tasks, τ1 . . . τn, running on
one processor, the performance loss index of task τi with
respect to the timing attributes defined above can be written
as follows:

Ji(hi, Δ
s
i , j

s
i , Δ

io
i , jio

i). (3)

In real-time systems, such timing attributes are typically
enforced by task parameters like periods and deadlines. For
instance, a convenient method for reducing delays and jitter
is to limit the execution interval of each task by setting a
suitable relative deadline [3, 15]. A comparative evaluation
with other jitter reduction approaches has been carried out
in [7] to show the simplicity and the effectiveness of such
an approach. Indeed, there is a direct relation between the
control performance and the relative deadline of the con-
trol task, in the sense that decreasing the relative deadline
reduces delays and jitter, thus increasing the control perfor-
mance.

To derive a performance loss index as a function of the
task parameters the following mapping must be made (Ti,
Di and Ci denote task period, relative deadline and WCET,
respectively):

306

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

Ti = hi Task period equal to sampling period.

Δs = Δio = Di − Ci In the worst case, both the sampling
delay and the input-output delay can be approximated
in this way.

js = jio = Di − Ci In the worst case, both the sampling
jitter and the input-output jitter can be approximated
in this way.

In the mapping, we assume using the EDF scheduling al-
gorithm, because RM dose not allow to map priorities into
delays and jitters.

Once the performance loss index is expressed as a func-
tion of periods and relative deadlines, a global performance
loss index function can be defined considering all the n

tasks:
J = F(J1, . . . , Jn), (4)

where F : R
n → R is a system-wide function used to

combine the individual performance of control tasks into
an overall system performance. Note that function F de-
pends on the user’s interest and can be, for instance, a linear
combination of all the individual performance loss indexes,
or the minimum among the performance loss indexes.

It is worth observing that, by mapping timing attributes
into task parameters we cannot derive a single performance
loss index like Ji(Ti, Di) from Eq. (3). In fact, Ji depends
not only on its own period Ti and deadline Di, but also
on the periods and deadlines of the other tasks. Therefore,
only a global performance loss index can be obtained as a
function of all the task periods and deadlines.

3. Deriving Performance using S.Ha.R.K

The performance loss function Ji of Eq. (3) can be de-
rived in an empirical way, by injecting artificial delays in
the code of a controller task and computing the correspond-
ing control performance according to Eq. (2). Although the
implementation is described considering the S.Ha.R.K real-
time kernel [13], the adopted methodology is general to be
used in any real-time system. Notice that the deadline here
is allowed to be larger than the period in order to assign
delays and jitter larger than sampling period.

3.1. Generating configurable timing at-
tributes

We first describe the technique we used to generate con-
figurable delays in task execution. The most intuitive solu-
tion to generate a sampling delay is to defer the start time of
the controller task by inserting a delay primitive before the
input procedure. Similarly, the input-output delay can be
introduced by inserting a delay primitive before the output
procedure, as shown in the following pseudocode:

Pseudocode 1 PID Task
1: loop
2: Delay(Δs)
3: sampled-data← Input()
4: control-signal← Calculation(sampled-data)
5: Delay(Δio)
6: Output(control-signal)
7: End of Job()

End of Job() is a function that suspends the current job
and waits for the next release. This function may vary de-
pending on the real-time kernel on top of which the task
is running. In S.Ha.R.K, the corresponding function is
Task Endcycle().

The problem with this implementation is that, when
deadlines are larger than periods, delays can be larger than
expected, as depicted in Figure 6.

I C O

Δ
s
k Δ

io
k Δ

s
k+1 Δ

io
k+1

Δ̃
s
k+1

Figure 6. Problem when deadlines are larger
than periods

In fact, the sampling delay is generated after the release
of the (k +1)th job and, when the end of the kth job occurs
after the beginning of the next period, the start time delay is
increased (being Δ̃s

k+1
rather than Δs

k+1
).

To solve this problem, we split the controller task into
three subtasks. A periodic subtask and two aperiodic sub-
tasks. At the end of each job of the periodic subtask, a
system-level event is posted to activate the first aperiodic
subtask after a given amount of time, equal to the specified
sampling delay Δs. Such an aperiodic subtask performs In-
put and Calculation, and at the end it posts another system-
level event to activate the second aperiodic subtask after the
specified input-output delay Δio. The second aperiodic sub-
task performs the Output and finishes the control job. The
two aperiodic subtasks are scheduled with a lower priority
with respect to the periodic task. In the S.Ha.R.K kernel,
this can be easily implemented thanks to the configurable
hierarchical scheduling architecture. Data is passed from
subtask to subtask through a stream communication port.
Figure 7 illustrates the activation pattern of the subtasks.

The timeline on the top of the figure shows the equiva-
lent execution of the control task with the proper enforced
delays. It can be easily seen that, except for a negligible
overhead due to the subtask activation, the specified sam-
pling delay Δs

k and input-output delay Δio
k are not affected

307

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�subtask2

subtask3

subtask1

I C

O

Δ
s
k

Δ
s
k

Δ
io
k

Δ
io
k

Δ
s
k+1

Δ
s
k+1

Δ
io
k+1

Δ
io
k+1

Figure 7. Sequence of subtasks to generate
delays larger than periods.

by the task finishing time. It is worth mentioning that the
second aperiodic subtask is assigned a priority higher than
that of the first aperiodic subtask, because the Output is less
time consuming and should not be preempted by the execu-
tion of the first aperiodic subtask. This approach also allows
to generate tasks with arbitrary jitter, obtained by introduc-
ing random activation delays in the subtasks.

3.2. Application in S.Ha.R.K

The pseudocode of the controller task in S.Ha.R.K real-
time kernel is listed as below:

Pseudocode 2 Subtask1
1: loop
2: Kernel Event Post(

tcur + Δ
s ,

event activate aperiodic task 1
)

3: Job Finish()

Pseudocode 3 Subtask2
1: loop
2: sampled-data← Input()
3: control-signal← Calculate(sampled-data)
4: Send Data To Port(control-signal)
5: Kernel Event Post(

tcur + Δ
io ,

event activate aperiodic task 2
)

6: Job Finish()

Pseudocode 4 Subtask3
1: loop
2: control-signal← Read Data From Port()
3: Output(control-signal)
4: Job Finish()

Here, Kernel Event Post(t,e) is the built-in function of
S.Ha.R.K which posts a system-level event e after t time.
tcur is the current system time.

4. Resource Constraints Characterization

Since the system performance J always increases as the
period or the deadline of the controllers decrease, the solu-
tion of the design problem is to decrease the design vari-
ables Ti and Di as much as possible. Hence it is necessary
to study the period and deadline values that are admitted by
the available computational resource.

A good starting point to determine the feasible parame-
ters is the EDF necessary and sufficient test [4]. According
to this test a task set is schedulable by EDF if and only if:{∑n

i=1

Ci

Ti
≤ 1

∀t ∈ dlSet
∑n

i=1
max

{
0,

⌊
t−Di+Ti

Ti

⌋}
Ci ≤ t

(5)

where dlSet is an opportune subset of absolute deadlines.
Unfortunately this test does not provide a description of

the feasible parameters that is well suited for maximizing
the performance. In fact, since periods and deadlines ap-
pear within the floor operator, it is not clear what is the
shape of the boundary that is necessary to apply constrained
optimization techniques such as the Lagrange multipliers.

One possible strategy that can be adopted for the perfor-
mance optimization consists in the following two steps.

1. Assume for all the tasks Di = Ti and then use the
necessary and sufficient test for EDF

n∑
i=1

Ci

Ti
≤ 1 (6)

that is linear and it can be used in optimization [21].

2. Fix the task periods as derived at the previous step.
Relax then the assumption Di = Ti, and perform the
optimization onto the space of feasible deadlines [5].

Due to the regularity of the constrain of Eq. (6), the
first step can be made by applying standard convex opti-
mization techniques. If the performance function conforms
to a class of some special functions (such as linear, expo-
nential or logarithmic) then a closed solution can also be
found [21, 2].

308

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

The second step can be accomplished by exploiting the
geometric properties of the space of feasible deadlines. Bini
and Buttazzo [5] proved that given the computation times
C = (C1, . . . , Cn) and the periods T = (T1, . . . , Tn), then
the region of the feasible deadline is

S =
⋂

k∈Nn

⋃
i:ki �=0

{D ∈ R
n : Di ≥ k ·C− (ki−1)Ti} (7)

To clarify the geometry of the space of feasible deadlines
we propose an example. Suppose we have 2 tasks whose pa-
rameters are C = (2, 6) and T = (4, 12). Then by applying
the definition of Eq. (7), the resulting space of feasible dead-
lines can be drawn (the union of dark and light gray areas
in Figure 8).

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

D1

D2

Figure 8. The region of feasible deadlines.

Since the performance always improves for smaller
deadlines (i.e. ∂Ji

∂Di
≤ 0) then all the corners of the region of

the feasible deadlines are a local optima. An optimization
routine should then test the performance value at all these
local optima and select the best performing solution. In the
example depicted in Figure 8 the local optima occur in the
set S = {(8, 6), (6, 8), (4, 10), (2, 12)}.

Even if in the simple case of two tasks this enumeration
scheme seems to be easily applicable, as the number n of
tasks increases, this method becomes extremely more dif-
ficult and time consuming. It is then very useful to use a
convex subregion of the exact space. In [5] it is proved that

if the following set of linear constraints are satisfied{
Di −Dj ≤ Ti ∀i, j

Dj (1−
∑n

i=1
Ui) +

∑n
i=1

Ui Di ≥
∑n

i=1
Ci ∀j

then the resulting deadline assignment is feasible. More-
over, since in the first step of our optimization procedure
we assigned the periods such that the total utilization

∑
i Ui

reaches 1, the convex constraint becomes{
Di −Dj ≤ Ti ∀i, j∑n

i=1
Ui Di ≥

∑n
i=1

Ci

(8)

In Figure 8 the convex subregion is depicted in light gray.
Although Eq. (8) provides only a sufficient region, the

convexity allows to implement a very efficient algorithm for
finding a deadline assignment.

5. Experimental Results

In the experiment we extracted the performance loss in-
dex Ji using the technique described in Section 3. The plant
is a ball-and-beam system which is controlled by a PID reg-
ulator. The system is modelled using the following transfer
function:

G(s) =
α

s2

and the control performance is evaluated according to
Eq. (2).

Experimental data is collected by S.Ha.R.K tracer, and
then analyzed in Matlab. S.Ha.R.K tracer saves data into
memory during the runtime of the real-time operating sys-
tem. When the system is terminated, all data is saved into a
file.

In the first experiment, we varied both the sampling pe-
riod and the input-output delay (we remind that the input-
output delay can exceed the period). The performance loss
illustrated in Figure 9 has been scaled by dividing it by the
minimum value in one experiment. As expected, the perfor-
mance loss increases with the period and the input-output
delay. It can be noticed that the input-output delay affects
significantly the performance of the system. Hence a careful
control system co-design with respect to only periods [21]
should be enriched by the information about the delay.

In the second experiment we evaluated the performance
loss index as a function of sampling period and input-output
jitter. The result in Figure 10 shows that input-output jitter
does not affect the system performance as significantly as
input-output delay. In fact fast sampling frequency is able
to tolerate input-output jitter. However, input-output jitter
degrades the system performance much or even jeopardizes
the stability of the system especially when sampling fre-
quency is slow. Therefore jitter should also be taken into
account when making real-time control co-design.

309

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

0
0.02

0.04
0.06

0.08

0.02
0.04

0.06
0.08

0.1

1

1.5

2

2.5

3

3.5

Input−output delay (sec)Sampling period (sec)

P
er

fo
rm

an
ce

 L
os

s

Figure 9. Performance loss with respect to
sampling period and IO delay

0
0.02

0.04
0.06

0.08

0.02
0.04

0.06
0.08

0.1

1

1.5

2

2.5

3

3.5

IO jitter (sec)Sampling period (sec)

P
er

fo
rm

an
ce

 L
os

s

Figure 10. Performance loss with respect to
sampling period and IO jitter

Similar experimental results have been obtained consid-
ering sampling delay and sampling jitter.

The above results also demonstrate that the control per-
formance with respect to different timing attributes can be
approximated as linear, quadratic or convex function if the
control system remains stable. This verifies the correctness
of our approach in Section 2.

6. Conclusions and Future Works

In this paper we proposed a general framework for treat-
ing real-time control design as an optimization problem
where the optimal control performance is obtained by set-
ting properly the timing attributes. We presented a method
to evaluate the performance of a control system as a func-
tion of multiple timing attributes, such as sampling frequen-
cies, delays and jitter. This method is based on the injection
of configurable delays into task code using S.Ha.R.K real-
time kernel. Resource constraints were then considered by

deriving admissible design parameters.
In the future we plan to develop a procedure that opti-

mizes the performance loss index derived within this frame-
work.

References

[1] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha. An introduc-
tion to control and scheduling co-design. In Proceedings of
the 39

th IEEE Conference on Decision and Control, Sydney,
Australia, Dec. 2000.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alarez. Op-
timal reward-based scheduling for periodic real-time tasks.
IEEE Transactions on Computers, 50(2):111–130, Feb.
2001.

[3] P. Balbastre, I. Ripoll, and A. Crespo. Optimal deadline
assignment for periodic real-time tasks in dynamic prior-
ity systems. In Proceedings of the 18

th Euromicro Con-
ference on Real-Time Systems, pages 65–74, Dresden, Ger-
many, July 2006.

[4] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor.
In Proceedings of the 11

th IEEE Real-Time Systems Sympo-
sium, pages 182–190, Lake Buena Vista (FL), U.S.A., Dec.
1990.

[5] E. Bini and G. Buttazzo. The space of EDF feasible dead-
lines. In Proceedings of the 19

th Euromicro Conference on
Real-Time Systems, pages 19–28, Pisa, Italy, July 2007.

[6] E. Bini, G. Buttazzo, and M. Di Natale. Sensitivity analy-
sis for fixed-priority real-time systems. Real-Time Systems,
39(1–3):5–30, Aug. 2008.

[7] G. Buttazzo and A. Cervin. Comparative assessment and
evaluation of jitter control methods. In Proceedings of the
15

th conference on Real-Time and Network Systems, pages
163–172, Nancy, France, Mar. 2007.

[8] G. Buttazzo, P. Martı́, and M. Velasco. Quality-of-control
management in overloaded real-time systems. IEEE Trans-
actions on Computers, 56(2):253–266, Feb. 2007.

[9] R. C. Dorf and R. H. Bishop. Modern Control Systems. Pren-
tice Hall, tenth edition, 2004.

[10] M. Caccamo, G. Buttazzo, and L. Sha. Elastic feedback
control. In Proceedings of the 12

th Euromicro Conference
on Real-Time Systems, pages 121–128, Stockholm, Sweden,
June 2000.

[11] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén.
Feedback-feedforward scheduling of control tasks. Real-
Time Systems, 23(1–2):25–53, July 2002.

[12] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E.
Årzén. How does control timing affect performance? IEEE
Control Systems Magazine, 23(3):16–30, June 2003.

[13] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new kernel
approach for modular real-time systems development. In
Proceedings of the 13

th Euromicro Conference on Real-Time
Systems, pages 199–206, Delft, The Nederlands, June 2001.

[14] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Embedded
control systems development with giotto. In Proceedings
of The Workshop on Languages, Compilers, and Tools for
Embedded Systems, pages 64–72, Snow Bird (UT), U.S.A.,
June 2001.

310

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

[15] H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson. Com-
puting the minimum edf feasible deadline in periodic sys-
tems. In Proceedings of the 12

th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and
Applications, pages 125–134, Sydney, Australia, Aug. 2006.

[16] B. K. Kim. Task scheduling with feedback latency for real-
time control systems. In Proceedings of the 5th International
Conference on Real-Time Computing Systems and Applica-
tions, pages 37–41, Hiroshima, Japan, October 1998.

[17] H. J. Kushner and L. Tobias. On the stability of randomly
sampled systems. IEEE Transactions on Automatic Control,
14(4):319–324, Aug. 1969.

[18] F.-L. Lian, J. Moyne, and D. Tilbury. Network design con-
sideration for distributed control systems. IEEE Transac-
tions on Control Systems Technology, 10(2):297–307, Mar.
2002.

[19] P. Martı́, C. Lin, S. A. Brandt, M. Velasco, and J. M.
Fuertes. Optimal state feedback based resource allocation
for resource-constrained control tasks. In Proceedings of
the 25

th IEEE Real-Time Systems Symposium, pages 161–
172, Lisbon, Portugal, Dec. 2004.

[20] J. Nilsson, B. Bernhardsson, and B. Wittenmark. Stochastic
analysis and control of real-time systems with random time
delays. Automatica, 34(1):57–64, Jan. 1998.

[21] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task
schedulability in real-time control systems. In Proceedings
of the 17

th IEEE Real-Time Systems Symposium, pages 13–
21, Washington (DC), U.S.A., Dec. 1996.

[22] K. G. Shin and C. L. Meissner. Adaptation of control system
performance by task reallocation and period modification. In
IEEE Proc. of the 11

th Euromicro Conference on Real-Time
Systems, pages 29–36, York, England, June 1999.

[23] M. Törngren, D. Henriksson, K.-E. Årzén, A. Cervin, and
Z. Hanzalek. Tools supporting the co-design of control
systems and their real-time implementation: Current sta-
tus and future directions. In Proceedings of the 2006 IEEE
Computer Aided Control Systems Design Symposium, pages
1173–1180, München, Germany, Oct. 2006.

311

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on February 10, 2010 at 08:50 from IEEE Xplore. Restrictions apply.

