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1. Introduction

A real-time system is one with explicit deterministic or probabilistic timing requirements.
Historically, real-time systems were scheduled by cyclic executives, constructed in a rather
ad hoc manner. During the 1970s and 1980s, there was a growing realization that this static
approach to scheduling produced systems that were inflexible and difficult to maintain.
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In the 1980s, under the leadership of Andre van Tilborg, this understanding led to the
launch of a Real Time Systems Initiative by the United States Office of Naval Research.
Many important early results reported here are the results of this research initiative.
During this period, a number of individuals and organizations cooperated to develop a
new real-time computing infrastructure that consists of a fixed-priority scheduling theory,
a suite of supporting hardware and software open standards, educational and professional
training materials, and commercially available schedulability analysis tools. Also in this
period (starting in 1979), a series of meetings started that eventually turned in to a major
annual international conference. The IEEE Real-Time Systems Symposium has in the last
twenty-five years been the main forum for publishing the key results in scheduling theory
that are reviewed in this paper.

In the early 1990s a number of other initiatives were funded, including a series of
influencial studies commissioned by the European Space Agency. Text books also began
to appear, for example, Burns and Wellings (1990).

The transition from cyclical executive based infrastructure to fixed-priority scheduling
theory based infrastructure was ushered in by an integrated research and technology
transition effort led by Lui Sha et al. at the Carnegie Mellon University and its Software
Engineering Institute. This effort consisted of: (1) identifying model problems from
challenges encountered in advanced system development; (2) creating theoretical results
for the model problems; (3) providing consultation support to industry in the application
of new results; (4) developing timely professional training materials, for example, the
handbook for practitioners by Klein et al. (1993); (5) revising open standards on real-time
computing to support the application of the fixed-priority scheduling theory.

Building upon the seminal work of Liu and Layland (1973), this integrated effort
produced the main body of the fixed priority scheduling results reported here. In addition,
there were notable and timely successes in the application of this theory to national high
technology projects including a Global Positioning Satellite software upgrade (Doyle and
Elzey, 1994) and the Space Station. In 1991 the U.S. Department of Defense (DoD)
Software Technology Strategy report called the development of generalized Rate
Monotonic Scheduling theory a major payoff of DoD-sponsored research. The report
stated that ‘‘system designers can use this theory to predict whether task deadlines will be
met long before the costly implementation phase of a project begins. It also eases the
process of making modifications to application software.”” In his October 1992 Speech,
“‘Charting The Future: Challenges and Promises Ahead of Space Exploration’’, Aaron
Cohen, Deputy Administrator of the U.S. National Aeronautics and Space Administration
(NASA), said, ‘‘through the development of Rate Monotonic Scheduling, we now have a
system that will allow [International Space Station] Freedom’s computers to budget their
time, to choose between a variety of tasks, and decide not only which one to do first but
how much time to spend in the process.”’

The successes in practice provided the momentum to revise the open systems standards
and create a coherent set of hardware and software standards to support fixed-priority-
theory-based real-time computing. Before these revisions, real-time computing standards
were ad hoc. They suffered from priority inversion problems, and had an inadequate
number of priority levels to support real-time applications of fixed-priority scheduling. A
stanards-driven transformation of the real-time computing infrastructure started with
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solving the priority inversion problem in Ada (Sha and Goodenough, 1990), and in
providing sufficient priority levels in Futurebus + (Sha et al., 1991). Today, all major
open standards on real-time computing support fixed-priority scheduling.

Since this initiative, there has been an explosion of interest in real-time systems, and an
explosion of research and publication on the analysis of real-time scheduling. In this
paper, we briefly review five important areas of real-time scheduling theory: (1) fixed-
priority scheduling, (2) dynamic-priority scheduling, (3) soft real-time applications, (4)
feedback scheduling and (5) extended scheduling models. Finally, we take a look at some
of the new challenges ahead of us.

2. Fixed-Priority Scheduling

The notion of priority is commonly used to order access to the processor and other shared
resources such as communication channels. In real-time scheduling theory priorities are
principally applied to the scheduling of jobs. Each job has a release time, a computation
time, and a deadline. The deadline can be expressed relative to the release time or as an
absolute time. In priority scheduling, each job is assigned a priority via some policy.
Contention for resources is resolved in favor of the job with the higher priority that is
ready to run.

The phrase ‘‘fixed priority scheduling’’ is generally applied to tasks. A task, sometimes
also called a process or thread, is a potentially infinite sequence of jobs. A task is periodic
if it is time-triggered, with a regular release. The length of time between releases of
successive jobs of task t; is a constant, T;, which is called the period of the task. The
deadline of each job is D; time units after the release time. A task may also have an offset,
from system start-up, for the first release of task. A task is aperiodic if it is not periodic.
An aperiodic task is sporadic if there is a bound on the load it may impose on the system.
For a sporadic task there are constants C; and 7; such that the sum of the compute times of
all the jobs of 1; released in any interval of length 7; is bounded by C;. In one important
case C; is an upper bound on the compute time of each job and 7; is the minimum time
between releases.

In fixed-priority task scheduling all the jobs of a task have the same priority. Usually,
the tasks are numbered so that t; has priority i, where the value one denotes the highest
priority and larger integers denote lower priorities. Task-level priority assignments are
known as ‘‘generalized rate-monotonic’’ scheduling because of historical reasons. The
priority of each task is assumed to be fixed, but a system may still be analyzed under the
assumption of fixed task priorities if the changes in priority only occur at major epochs,
such as system ‘‘mode changes’’, or if the changes only apply to short time intervals,
such as critical sections.

2.1. The Liu and Layland Analysis

In 1973, Liu and Layland published a paper on the scheduling of periodic tasks that is
generally regarded as the foundational and most influential work in fixed-priority real-
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time scheduling theory (Liu and Layland, 1973). They started with the following
assumptions:

1. all tasks are periodic;

2. all tasks are released at the beginning of period and have a deadline equal to their
period;

3. all tasks are independent, that is, have no resource or precedence relationships;

4. all tasks have a fixed computation time, or at least a fixed upper bound on their
computation times, which is less than or equal to their period;

5. no task may voluntarily suspend itself;
6. all tasks are fully preemptible;

7. all overheads are assumed to be O;

8. there is just one processor.

Under this model, a periodic task is time triggered, with a regular release time. The
length of time between releases of successive jobs of task 7; is a constant, T;, which is
called the period of the task. Each job has a deadline D; time units after the release time.
A task is said to have hard deadline if every job must meet its deadline. A task may also
have an offset, from system start-up, for the first release of the task.

Feasibility analysis is used to predict temporal behavior via tests which determine
whether the temporal constraints of tasks will be met at run time. Such analysis can be
characterized by a number of factors including the constraints of the computational model
(e.g., uniprocessor, task independence, etc.) and the coverage of the feasibility tests.
Sufficient and necessary tests are ideal, but for many computational models such tests are
intractable. Indeed, the complexity of such tests is NP-hard for non-trivial computational
models (an overview of complexity results is given by Garey and Johnson (1978)).
Sufficient but not necessary tests are generally less complex, but are pessimistic.
Feasibility analysis is most successful in systems where the relative priorities of tasks (as
in fixed priority scheduling), or at least jobs (as with EDF scheduling), does not vary. Ha
and Liu (1993) showed that if a system of independent preemptible jobs with fixed
release times and fixed job priorities is feasible with worst-case execution times, it
remains feasible when task execution times are shortened.

Liu and Layland’s fundamental insight regarding the feasibility of fixed-priority task
sets is known as the Critical Instant Theorem (Liu and Layland, 1973). A critical instant
for a task is a release time for which the response time is maximized (or exceeds the
deadline, in the case where the system is overloaded enough that response times grow
without bound). The theorem says that, for a set of periodic tasks with fixed priorities, a
critical instant for a task occurs when it is invoked simultaneously with all higher priority
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tasks. The interval from O to D; is then one over which the demand of higher priority tasks
T, ...T;_ 1s at a maximum, creating the hardest situation for t; to meet its deadline. This
theorem has be proven to be robust. It remains true when many of the restrictive
assumptions about periodic tasks listed above are relaxed.

Though further research would find more efficient techniques, the Critical Zone
Theorem provided an immediately obvious necessary and sufficient test for feasibility,
that is, to simulate the execution of the set of tasks, assuming they are all initially released
together, up to the point that the lowest priority task either completes execution or misses
its first deadline. The task set is feasible if and only if all tasks have completed within
their deadlines. The simulation only need consider points in time that correspond to task
deadlines and release times. Since there are only [D,,/T;] such points for each task t; , the
complexity of this simulation is O(>_;_, D,/T;).

Based on the concept of critical instant, both Serlin (1967) and Liu and Layland (1973)
proved a sufficient utilization-based condition for feasibility of when a set of tasks
assigned priorities according to a rate-monotonic (RM) policy, that is, when the task with
the shortest period is given the highest priority, the task with the next shortest period the
second highest priority, etc. The efficacy of RM priority assignment for periodic tasks had
been suggested earlier (Liu and Layland, 1973; Wyle and Burnett, 1967), but without
analysis or proof. Liu and Layland proved that it is the optimal static task priority priority
assignment, in the sense that if a task set can be scheduled with any priority assignment it
is feasible with the RM assignment. Serlin et al. also showed that with this policy
scheduling a set of n periodic tasks is feasible if

n

Z%gn(zi—l)

i=1 "1

For example, a pair of tasks is feasible if their combined utilization is no greater than
82.84%. As n approaches infinity, the value of n(2'/" —1) approaches In(2)
(approximately 69.31%).

A common misconception is that with fixed-priority scheduling, and rate-monotonic
scheduling in particular, it is not possible to guarantee the feasibility for any periodic task
set with a processor utilization greater than In 2. This bound is tight in the sense that there
exist some infeasible task sets with utilization arbitrarily close to n(2!/* — 1), but it is
only a sufficient condition. That is, many task sets with utilization higher than Liu and
Layland are still schedulable. Lehoczky et al. (1989) showed that the average real
feasible utilization, for large randomly chosen tasks sets, is approximately 88%. The
remaining cycles can be used by non-real-time tasks executing with background
priorities. The desire for more precise fixed-priority schedulability tests, that is,
conditions that are necessary as well as sufficient, led to the feasibility analysis which is
described later in this section.

It is also important to note that high utilization can be guaranteed by appropriate choice
of task periods. In particular, if task periods are harmonic (that is, each task period is an
exact integer multiple of the next shorter period) then schedulability is guaranteed up to
100% utilization. This is often the case in practice in a number of application domains.
Sha and Goodenough showed that by transforming periods to be nearly harmonic (with
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zero or small residues in the division of periods), the schedulability can be significantly
improved (Sha and Goodenough, 1990). For example, for two tasks with periods 10 and
15, the task with period 10 can be mapped into a new task with period 5 and half of the
original execution time. The schedulability now becomes 100% because the residue in
period division is now zero. This technique, called period transformation, can be done
without changing the source code by means of using one of the fixed-priority aperiodic
server scheduling techniques, such as the Sporadic Server. There is, however, some
increase in system overheads when servers are used.

2.2. Further Developments

The success of fixed-priority scheduling has come through the work of a large group of
researchers, who extended Liu and Layland’s original analysis in a number of ways. The
full story spans a very large number of publications. However, taking a historical point of
view (Audsley et al., 1995; Sha and Goodenough, 1990), one can recognize within all this
research a few principal threads:

1. exact feasibility analysis—necessary and sufficient feasibility tests (based upon
calculation of the worst-case response time of a task) permitted higher utilization
levels to be guaranteed, and led to further extensions of the theory, such as overrun
sensitivity analysis and the analysis of tasks with start-time offsets;

2. analysis of task interaction—the introduction of the family of Priority Inheritance
Protocols enabled potential blocking to be bounded and analyzed,;

3. inclusion of aperiodic tasks—the introduction of aperiodic servers permitted
aperiodic tasks to be accomodated within the strictly periodic task model;

4. overload management—techniques for handling variations in task execution times
made it possible to relax the requirement of known worst-case execution times, and
still ensure that a critical subset of the tasks will complete on time;

5. implementation simplifications—the demonstration that only a small number of
implementation priority levels is needed made it practical to apply fixed priority
scheduling more widely, including in hardware buses;

6. multiprocessors and distributed systems—analysis techniques were adapted to
systems with multiple processors.

In the following sections we discuss these key results, together with the subsequent
threads of research leading from them.
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2.3. Feasibility Analysis

The utilization bound feasibility test described above is simple, both in concept and
computational complexity. Consequently, it is widely recognized and is frequently cited.
However, it has some limitations:

1. the feasibility condition is sufficient but not necessary (i.e., pessimistic);

2. it imposes unrealistic constraints upon the timing characteristics of tasks (i.e.,

3. task priorities have to be assigned according to the rate-monotonic policy (if
priorities are not assigned in this way then the test is insufficient).

During the mid 1980s, more complex feasibility tests were developed to address the
above limitations.

Lehoczky et al. (1989) abstracted the idea behind the Critical Zone simulation
feasibility test for RM scheduling, by observing if a set of tasks is released together at
time zero, the i highest priority task will complete its first execution within its deadline if
there is a time 0 <t < T such that the demand on the processor, W;(¢), of the i highest
priority tasks is less than or equal to # that is,

W=y H ¢ <t (m

j=1 1%

Since (¢/T;) is strictly increasing except at the points where tasks are released, the only
values of ¢ that must be tested are the multiples of the task periods between zero and T;.
This test is also applicable to task sets with arbitrary fixed priority orderings, although it
was not recognized until Nassor and Bres (1991) extended the approach to permit task
deadlines to be less than their periods.

Concurrently, another group of researchers looked at the more general problem of
determining the worst-case response time of a task, that is, the longest time between the
arrival of a task and its subsequent completion. Once the worst-case response time of a
task is known, the feasibility of the task can be checked by comparing its worst-case
response time to its deadline.

Fixed-priority response-time analysis was initiated by Harter (1984, 1987) who used a
temporal logic proof system to derive the Time Dilation Algorithm. Equivalent analysis
was developed independently by Joseph and Pandya (1986) and Audsley et al. (1991).
The algorithm computes the worst-case response time R; of task t; as the least-fixed-point
solution of the following recursive equation:

R =C;+ i Fﬂ C; 2)

j=1 J
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Harter, Joseph et al. and Audsley et al. observed that only a subset of the task release
times in the interval between zero and T; need to be examined for feasibility. That is,
the above equation can be solved iteratively. Audsley et al. (1991) gave an algorithm
for this with the formal mathematical representation stated in 1993 (Audsley et al.,
1993a,b).

Leung (1982), considered fixed-priority scheduling of sets of tasks that may have
deadlines that are less than their periods, that is, C; < D; < T;. He showed that the
optimal policy for such systems, called deadline monotonic (DM) scheduling, is to assign
tasks with shorter deadlines higher priorities than tasks with longer deadlines. RM and
DM scheduling are the same when deadline equals period, and the proof of optimality
follows the same reasoning. Since the response-time tests described above do not depend
on any particular priority assignment, they can be applied to DM scheduling as well as
RM scheduling.

Lehoczky (1990) considered another relaxation of the Liu and Layland model, to
permit a task to have a deadline greater than its period. For this case, he proposed two
sufficient but not necessary feasibility tests. Both tests are based upon utilization,
extending the D; = T; utilization test of Liu and Layland. The tests restrict all tasks t; to
have D; = kT;, where k is constant across all tasks. One test restricts k to be an integer,
the other does not. In the early 1990s, Tindell (1994) extended response time analysis,
providing an exact test for tasks with arbitrary deadlines. Unlike the tests proposed by
Lehoczky, the analysis given by Tindell places no restrictions upon the relative task
periods.

A further relaxation of the Liu and Layland task model is to permit tasks to have
specified offsets (phasing), in which case the tasks might never share a common release
time and the worst-case situation described by Liu and Layland (when all tasks are
released simultaneously) might never occur. Since the response time and utilization
bound feasibility conditions rely on the assumption of worst-case task phasing, they may
be overly pessimistic for such systems. For such systems the approach of Leung and
Merrill (1980) (i.e., construction of a schedule for the LCM of task periods) can be used
to determine feasibility. Alternatively, an approach that realizes a sufficient and necessary
test can be developed (which is more efficient than evaluating the schedule) (Audsley,
1994). General offsets do however remain a problem to efficiently analyze (especially if
sporadic tasks are contained in the system). Fortunately for many practical problems a
system with offsets can be transformed into one without (for analysis purposes) (Bate and
Burns, 1997).

Under the assumption of specified offsets the rate and deadline monotonic algorithms
are no longer optimal. Leung (1982) questioned whether there is a polynomial time
algorithm to find the optimal priority assignment for such task sets. Later, Audsley
(1993, 1994) showed that optimal priority assignment for this case can be achieved
by examining a polynomial number of priority ordering over the task set (i.e., not
n!).

Although the forms of analysis outlined above are all efficient and can easily be
incorporated into tools, researchers continue to work on the algorithms and produce even
more efficient schemes (Han and Tyan, 1997; Sjodin and Hansson, 1998; Bini and
Buttazzo, 2002). For example, Bini et al. (2003) derived a new sufficient test having
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polynomial complexity, less pessimistic than the Liu and Layland one, proving that a set
of n periodic tasks is feasible if

n C.
—’+1) <2
11(7

They showed that the test is tight.

2.4. Task Interaction

The Liu and Layland model assumes that tasks are independent. In real systems that is not
the case. There are resources, such as buffers and hardware devices, that tasks must
access in a mutually exclusive manner. The mechanisms that enforce mutual exclusion
necessarily sometimes cause a task to block until another task releases a resource. For a
task system to be feasible, the duration of such blocking must be bounded. Given such a
bound, the feasibility analysis can be refined to take the worst-case effect of blocking into
account.

In a fixed-priority preemptive scheduling system, blocking is called priority inversion
because it results in a violation of the priority scheduling rule: if the highest priority task
is blocked, a lower priority task will execute. Sha observed that the duration of priority
inversion due to blocking may be arbitrarily long. For example, a high-priority task may
preempt a low priority task, the high-priority task may then be blocked when it attempts
to lock a resource already locked by the low priority task, and then the low priority task
may be repeatedly preempted by intermediate priority tasks, so that it is not able to
release the resource and unblock the high-priority task. Sha et al. (1987) introduced the
family of priority inheritance protocols as a solution approach to the priority inversion
problem (Sha et al., 1987, 1990, 1991; Rajkumar et al., 1994). The Priority Inheritance
Protocol (PIP) prescribes that if a higher priority task becomes blocked by a low priority
task, the task that is causing the blocking should execute with a priority which is the
maximum of its own nominal priority and the highest priority of the jobs that it is
currently blocking.

However, the PIP does not prevent deadlocks. In addition, a job can be blocked
multiple times. A solution is to add a new rule to the PIP: associate with each resource a
priority, called the priority ceiling of the resource. The priority ceiling is an upper bound
on the priority of any task that may lock the resource. A job may not enter its critical
section unless its priority is higher than all the priority ceilings currently locked by other
jobs. Under this ceiling rule, a job that may share resources currently locked by other
tasks cannot enter its critical section. This prevents the deadlocks. In addition, under the
priority ceiling protocol, a job can be blocked at most once. This notion of priority
ceilings was also suggested earlier in the context of the Mesa programming language in
1980 (Lampson and Redell, 1980). It is the basis of several locking protocols, including
the Priority Ceiling Protocol (PCP), (Sha et al., 1987, 1990, 1991; Rajkumar et al., 1994,
1988), the Stack Resource Protocol (SRP) (Baker, 1991), the Ada 95 programming
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language ceiling locking protocol (Baker and Pazy, 1991), and the POSIX mutex
PTHREAD_PRIO_PROTECT protocol (IEEE PASC Committee, 2003).

The feasibility analyses given in the previous section have been extended to account
for the blocking that tasks may be subject to at run time. In the calculation of the
feasibility of a task, its computation time is viewed as consisting of its worst-case
execution time, the worst-case interference it gets from higher priority tasks, and the
worst-case time for which it may be blocked.

Permitting tasks to communicate and synchronize via shared resources is only one
form of task interaction that is not allowed within the Liu and Layland model. Another
is precedence constraints or relations between tasks. When two tasks have a precedence
relationship between them, the successor task cannot commence execution before the
predecessor task has completed. While the choice of task offsets and periods can
enforce precedence relations implicitly, little work has appeared in the literature
regarding the explicit analysis of precedence related tasks within fixed-priority systems.
Harbour et al. (1991) considered tasks that are subdivided into precedence constrained
parts, each with a separate priority. Audsley et al. (1992) considered priority assignment
across precedence constrained tasks where the priority of a predecessor task is at least
that of all its successors. Further, they also gave analysis for groups of tasks where each
group comprises a set of tasks linked by a linear precedence constraint (Audsley et al.,
1993c).

2.5. Aperiodic Tasks

In previous sections, we have discussed the scheduling of tasks with periodic releases and
predictable execution times. However, many real-time systems also contain tasks whose
processor demands do not fit that model. We use the term non-periodic for such tasks,
whether they have significantly varying inter-release times, significantly varying
execution times, no hard deadline, or some combination of these characteristics.

If the periodic task model is relaxed slightly, letting C; be just the maximum execution
time and T; be just the minimum inter-release time, Liu and Layland’s analysis and most
of the refinements that followed it remain valid (Liu, 2000). However, for non-periodic
tasks with large variations in inter-release times and/or execution times, reserving enough
processor capacity to guarantee feasibility under this model is impractical.

One simple way to handle non-periodic tasks is to assign them priority levels below
those of tasks with hard deadlines, that is, relegate them to background processing.
However, if there is more than one such task and they have quality-of-service
requirements, average response-time requirements, or average throughput requirements,
background processing is likely to be unsatisfactory.

Non-periodic tasks with quality-of-service requirements may be run at a higher priority
level, under the control of a pseudo hard real-time server task such as a polling server
(Sha et al., 1986). A polling server is a periodic task with a fixed priority level (possibly
the highest) and a fixed execution capacity. The capacity of the server is calculated off
line and is normally set to the highest level that permits the feasibility of the hard-
deadline periodic task set to be guaranteed. At run time, the polling server is released
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periodically. Its capacity is used to service non-periodic tasks. Once this capacity has
been exhausted, execution of the polling server is suspended until the server’s next
(periodic) release. Since the polling server behaves like a periodic task, the feasibility
analysis techniques developed for periodic tasks can be applied.

A polling server can guarantee hard deadlines for sporadic tasks, by appropriate choice
of period and server budget, and can guarantee a minimum rate of progress for long-
running tasks. It is also a significant improvement over background processing for
aperiodic tasks. However, if aperiodic jobs arrive in a large enough burst to exceed the
capacity of the server, then some of them must wait until its next release, leading to
potentially long response times. Conversely, if no jobs are ready when the server is
released, the high-priority capacity reserved for it is wasted.

The Priority Exchange, Deferrable Server (Strosnider et al., 1995; Lehoczky et al.,
1987), and Sporadic Server algorithms (Sprunt et al., 1989)" are based on principles
similar to those underlying the polling server. However, they reduce wasted processor
capacity by preserving it if there are no jobs pending when the server is released. Due to
this property, they are termed bandwidth preserving algorithms. The three algorithms
differ in the ways in which the capacity of the server is preserved and replenished and in
the feasibility analysis needed to determine their maximum capacity. In general, all three
offer improved responsiveness over the polling approach. One variant of the Sporadic
Server was adopted for the POSIX SCHED_SPORADIC scheduling policy (IPAS
Committee, 2003).

Even these more complex server algorithms are unable to make full use of the slack
time that may be present due to the often favorable (i.e., not worst-case) phasing of
periodic tasks. The Deferrable and Sporadic servers are also unable to reclaim spare
capacity gained, when for example, other tasks require less than their worst-case
execution time. This spare capacity can, however, be reclaimed by the Extended Priority
Exchange algorithm (Sprunt et al., 1988). Comparisons of these server schemes are
provided by Bernat and Burns (1999) who conclude that the best choice of server
algorithm is application dependent.

The Slack Stealing algorithm overcomes these disadvantages (Lehoczky and Thuel,
1992; Ramos-Thuel and Lehoczky, 1993, 1994). It is optimal in the sense that it
minimizes the response times of aperiodic tasks amongst all algorithms that allocated
spare capacity immediately while meeting all hard task deadlines.” The Slack Stealer
services aperiodic requests by making any spare processing time available as soon as
possible. In doing so, it effectively steals slack from the hard-deadline periodic tasks. To
achieve optimal aperiodic task scheduling, this static Slack Stealing algorithm relies on a
table that stores the slack available on each release of each hard-deadline periodic task
over the least common multiple (LCM) of task periods. Unfortunately, the need to map
out the LCM restricts the applicability of the Slack Stealer: slack can only be stolen from
hard-deadline tasks which are strictly periodic and have no release jitter. Realistically, it
is also limited to task sets with a manageably short LCM, and with very reliable worst-
case execution time bounds.

Many of the limitations inherent in the optimal static Slack Stealing algorithm have
been addressed by a dynamic variant developed by Davis et al. (1992). By computing
the slack available at run time, this algorithm handles a wider range of scheduling
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problems, including task sets that contain hard-deadline sporadics and tasks that exhibit
release jitter. However, there are problems with the practical implementation of both the
static and dynamic versions of the optimal Slack Stealing algorithm due to their
respective space and time complexities.

Another approach to supporting soft-deadline tasks within a system that contains hard
deadlines is to assign two priorities to the hard-deadline tasks (Burns and Wellings, 1993,
1995). When necessary, the task is promoted to the second, higher, priority to ensure that
it will meet its deadline. In general, the soft tasks have deadlines below the second but
above the initial deadline of these hard tasks.

Recently Abdelzaher et al. (2004) have developed sufficient conditions for accepting
firm deadline aperiodic work while guaranteeing that all deadlines of those tasks will be
met. The admission algorithm requires knowledge of an arriving task’s computation
requirement and deadline. Given this knowledge, Abdelzaher derives a schedulability
bound in the spirit of the Liu and Layland bound showing that if the workload level is
kept below a certain synthetic utilization level, all admitted tasks will always meet their
deadlines. Specifically, assume that each arriving aperiodic task has known computation
time C and deadline D. At each instant of time, a synthetic utilization value,
U(t) =5 (C;/D;), is computed where the sum extends over all tasks that have arrived
and been accepted but whose deadlines have not yet expired. Abdelzaher et al. show that
there is a fixed-priority policy that will meet all the deadlines of the accepted aperiodic
tasks as long as the restriction U(f) < 2 — /2 is enforced. Arriving aperiodic tasks that
would cause U(f) to exceed this bound are not accepted for processing. Under heavy
workload, this algorithm will reject unschedulable requests and accept those whose
deadline can still be guaranteed, leading to improved aperiodic utilization.

2.6. Overload Management

Analyzes of schedulability must make some assumptions about workload, which is
ordinarily characterized by the worst-case execution time and the minimum inter-release
time of each task. However, real task execution times may vary widely, and the actual
worst-case execution time of a task may be difficult or impossible to determine. Task
release times may also vary from the ideal model. To cope with such variability, a system
designer may try to: (a) prevent overloads, by making safe assumptions about workload,
which may be even more pessimistic than the actual worst case; (b) tolerate overloads, by
providing some reduced-but-acceptable level of service when the workload exceeds
normal expectations.

With fixed-priority scheduling, an execution time overrun ( provided it is not in a non-
preemptible section) or early task release may only delay the execution of lower priority
tasks. If it is known which tasks may be released early or run over their nominal worst-
case execution times, then only those tasks and the tasks of lower priority need to be
designed to tolerate and recover from overruns.

Many practical systems, for example, factory automation systems, PCs and cell
phones, have a mixture of real-time tasks and non-real time tasks. A widely used practice
is to give real time tasks higher priorities. We know that real time tasks can meet their
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deadlines as long as they are schedulable as a group. For example, in a modern PC, the
audio and video will have higher priorities and typically have a total utilization that is far
below the Liu and Layland bound. They can meet their deadlines, even if the system is
overloaded by other activities such as compiling applications and backing up files. Such a
simple but effective solution takes advantage of the nature of fixed priority scheduling.

Even if all the real time tasks are not schedulable under worst-case conditions, it may
be possible to distinguish critical and non-critical tasks. That is, the system may able to
function tolerably for some period of time if all the critical tasks complete within their
deadlines. Sha and Goodenough showed that it is easy to ensure a set of critical tasks’
deadlines will be met when non-critical tasks overrun their nominal worst-case execution
times, provided the critical tasks never overrun their own nominal worst-case execution
times and are schedulable as a group under with those worst-case execution times (Sha
and Goodenough, 1990). The technique is to shorten the periods of the critical tasks (the
period transformation mentioned in Section 2.1) so that the critical tasks all have higher
rate monotonic priorities than the non-critical tasks.

More precise control over the effects of overload may be achieved in other ways.
Servers can be used to isolate the cause of overload, or to provide resources for recovery
(Ramos-Thuel and Stosnider, 1991). A dual priority scheme can be used to assign higher
priorities to the recovery code (Lima and Burns, 2003). Another approach to overload is
to define, if the application will allow, certain executions of each task to be ‘skippable’’
(Koren and Shasha, 1995; Bernat and Burns, 1998; Quan and Hu, 2000; Bernat and
Cayssials, 2001).

If one designs to prevent overloads, by sizing a system to function correctly under very
conservative, safe, assumptions about workload, there will ordinarily be significant spare
capacity available at run time. This spare capacity becomes available for many reasons,
including tasks completing in less than their worst-case execution time, sporadic tasks not
arriving at their maximum rate and periodic tasks not arriving in worst-case phasing. One
then has the problem of resource recovery, that is, finding a way to use the spare capacity
to enhance the quality of hard real-time services.

One important approach to designing to make good use of spare capacity, for both
fixed-priority and dynamic-priority scheduling, is the imprecise computation model (Liu
et al., 1991; Lesser et al., 1998; Lin et al., 1987; Liu et al., 1987; Shin et al., 1991; Liu et
al., 1994; Natarajan, 1995). This is based on what are known more generally as ‘‘anytime
algorithms’’, because they can provide a useful result any time they are queried or
stopped. One such approach is to decompose every task t; into a mandatory subtask M;
and an optional subtask O,. The mandatory subtask is the portion of the computation that
must be done in order to produce a result of acceptable quality, whereas the optional
subtask refines this result (Shih et al., 1989). Both subtasks have the same arrival time q;
and the same deadline d; as the original task 7;; however, O; becomes ready for execution
when M; is completed.

For a set of periodic tasks, the problem of deciding the best level of quality compatible
with a given load condition can be solved by associating each optional part of a task a
reward function R;(g;), which indicates the reward accrued by the task when it receives g;
units of service beyond its mandatory portion. This problem has been addressed by Aydin
et al. (2000), who presented an optimal algorithm that maximizes the weighted average of
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the rewards over the task set under EDF scheduling. In 1993, it was shown how many of
the above techniques could be supported within the framework of fixed-priority
preemptive scheduling (Audsley et al., 1993, 1994). However, to achieve the goal of
maximizing system utility, some form of best effort scheduling (Jensen et al., 1985;
Locke, 1986) of optional components is required. It remains an open research issue to
fully integrate fixed-priority and best-effort scheduling.

2.7. Implementation Simplifications

While there can be an arbitrary large number of task periods, it is impractical to support
an arbitrary large number of priority levels in system platforms, especially in hardware
buses and communication channels. Lehoczky and Sha (1986) showed that when using a
constant ratio grid to map periods to priority levels, having 256 priority levels is almost as
good as having an arbitrary large number of priority levels. 256 priority levels can be
neatly represented by a single byte. This trade-off analysis between priority levels and
schedulability loss was used by many open standards in their design decisions on the
number of priority levels, for example, Futurebus + (Sha et al., 1991).

2.8. Multiprocessor and Distributed Systems

The paper of Dhall and Liu (1978) has been nearly as influential on multi-processor
scheduling as that of Liu and Layland (1973) was for single processor scheduling. There
are two approaches to scheduling tasks on multiple processors: (1) partitioned, in which
the each task is assigned to one processor, more or less statically; (2) global, in which
tasks compete for the use of all processors. Dhall and Liu showed that the global
application of RM scheduling to m-processor scheduling cannot guarantee schedulability
of a system of m + 1 tasks for system utilizations above 1, whilst RM next-fit partitioning
can guarantee schedulability of such task systems for system utilizations up to
m/(1+2'3). For several years thereafter, the conventional wisdom was in favor of
partitioned scheduling and research focussed on partitioning algorithms.

The optimal partitioning of tasks among processors, a variant of the well-known Bin
Packing problem, is known to be NP-complete (Garey and Johnson, 1979), so the
problem of finding optimal allocations is intractable for all but the simplest systems.
Hence, heuristics and global optimization techniques, such as simulated annealing, have
been used to find good sub-optimal static allocations (Ramamritham, 1990; Tindell et al.,
1992; Burchard et al., 1995; Oh and Son, 1995; Hou and Shin, 1997). The best
understood heuristic is the Rate-Monotonic First-Fit (RMFF) heuristic. Dhall and Liu
(1978) showed that this may require between 2.4 and 2.67 times as many processors as an
optimal partition. Oh and Baker (1998) showed that RMFF can schedule any system of
periodic tasks with total utilization bounded by m(21/ 2 —1). Lopez et al. (2001) showed
that RMFF can schedule any system of periodic tasks with utilization up to
(m+1)(2"m+1 — 1), a bound that appears to be tight.
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Andersson et al. (2001) showed that the utilization guarantee for any fixed-priority
multiprocessor scheduling algorithm—partitioned or global, with any priority scheme—
cannot be higher than (m + 1)/2 for an m-processor platform.

Recent research has reopened the subject of global scheduling shown that the ‘‘Dhall
effect’’ is not a problem with global scheduling so much as it is a problem with high-
utilization tasks. Phillips et al. (1997) studied the competitive performance of on-line
multiprocessor scheduling algorithms, including fixed-priority scheduling, against
optimal (but infeasible) clairvoyant algorithms. Among other things, they showed that
if a set of tasks is feasible (schedulable by any means) on m processors of some given
speed then the same task set is schedulable by preemptive RM scheduling on m
processors that are faster by a factor of (2 — 1/m). This was followed by a number of
other results by other authors on schedulability of both identical and ‘‘uniform’’
(meaning differing only in speed) processors (Anderson et al., 2001; Baruah and
Goossens, 2003; Funk et al., 2001; Goossens et al., 2003).

The key seems to be be that global RM scheduling works well for tasks with low
individual utilizations. If A is an upper bound on the individual utilization, the smaller is 4
the larger is the worst-case guaranteeable system utilization. Andersson et al. (2001)
showed that for A =m/(3m —2) a system utilization of at least m?/(3m — 1) can be
guaranteed. Baruah and Goossens (2003) showed that for 4 = 1/3 system utilization of at
least m/3 can be guaranteed. Baker (2003) showed that for any A < 1, system utilization
of (m/2)(1 — A) + A can be guaranteed.

Andersson et al. (2001) also showed how to extend these results to tasks with
arbitrarily large individual utilizations. The scheduling algorithm called RM-US (0)
gives highest priority to tasks with utilizations above some threshold 6, and then
assigns priority to the rest in RM order. This algorithm can guarantee a system
utilization least (m+1)/3 for 0=1/3 (Baker, 2003). Lundberg (2002) has gone
further, arguing that the guaranteed system utilization is maximized at 0.37482-m
when 0 =0.37482. Work on the analysis of RM-US continues, including its application
to aperiodic servers.

Priority ceiling protocols, and synchronization protocols in general, are also
significantly affected by parallel execution. Although a number of revised protocols
have been developed (Markatos, 1993; Rajkumar et al., 1988; Dertouzos and Mok, 1989;
Rajkumar et al., 1990; Mueller, 1999) there is not as yet a general-purpose approach
equivalent to the uniprocessor protocols. An alternative approach is to employ non-
blocking or lock free protocols (Simpson, 1990; Anderson et al., 1995).

Most research on fixed-priority scheduling has focussed on processor scheduling, but
there are other resources for which priority may be used to arbitrate between competing
requests. For example Futurebus+ (Sha and Rajkumar, 1990) and the CAN
communication protocol use a non-preemptive fixed-priority scheme, and hence fixed-
priority response-time analysis can be applied directly to real-time message passing
(Tindell et al., 1994; Broster et al., 2002). For a distributed system, all resources
(processor and communication media) must be analyzed and then a complete end-to-end
model of transactions passing through the many resources must be constructed. The use
of a consistent priority scheduling policy for all resources significantly simplifies this
problem and allows global real-time requirements to be addressed and verified (Tindell
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and Clark, 1994; Gutierrez et al., 1995, 1997, 1998; Bate and Burns, 1997; Lauzac et al.,
1998; Palencia and Harbour, 1998; Baker, 2003).

Despite the advances described above, feasibility analysis for parallel computation
systems is still not as well understood as for the single processor case. It is likely that
more of the advances made for single processor systems will be successfully generalized
to parallel systems in coming years.

3. Dynamic Priority Scheduling

With dynamic-priority scheduling, task priorities are assigned to individual jobs. One of
the most used algorithms belonging to this class is the Earliest Deadline First (EDF)
algorithm, according to which priorities assigned to tasks are inversely proportional to the
absolute deadlines of the active jobs. The feasibility analysis of periodic task sets under
EDF was first presented by Liu and Layland (1973), who showed that, under the same
simplified assumptions used for RM scheduling, a set of n periodic tasks is schedulable
by the EDF algorithm, if and only if

i:U,.gl 3)

i=1

In 1974, Dertouzos showed that EDF is optimal among all preemptive scheduling
algorithms, in the sense that, if there exists a feasible schedule for a task set, then the
schedule produced by EDF is also feasible. Later, Mok presented another optimal
algorithm, Least Laxity First (LLF) (Mok, 1983), which assigns the processor to the
active task with the smallest laxity.> Although both LLF and EDF are optimal algorithms,
LLF has a larger overhead due to the higher number of context switches caused by laxity
changes at run time. For this reason, most of the work done in the real-time research
community concentrated on EDF to relax some simplistic assumption and extend the
feasibility analysis to more general cases.

In this section, we provide an overview of the key results related to EDF scheduling.
We first present an analysis technique for verifying the feasibility of deadline-based
schedules and briefly describe some efficient algorithms for aperiodic task scheduling and
shared resource management. Then, we describe some method for dealing with overload
conditions and we conclude the section by presenting some open research issues.

3.1. Processor Demand Criterion

Under EDF, the analysis of periodic and sporadic tasks with deadlines less than periods
can be performed by processor demand analysis, proposed in 1990 for strictly periodic
tasks by Baruah et al. (1990a), and for sporadic tasks by Baruah et al. (1990b).

In general, the processor demand in an interval [t,, t,] is the amount of processing time
g(t,,t,) requested by those jobs activated in [t,,7,] that must be completed in [, 1,].
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Hence, the feasibility of a task set is guaranteed if and only if in any interval of time the
total processor demand does not exceed the available time, that is, if and only if

Vit gt ) < (h,—t1)

Baruah et al. showed that a set of periodic tasks simultaneously activated at time =0
is schedulable by EDF if and only if U < 1 and

"\ |L+T;, - D,
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Baruah et al. (1990) showed that the points in which the test has to be performed
correspond to those deadlines within the hyper-period H not exceeding the value
max{D,, ..., D,,L*} where

L= > (I; = D)U;
1-U
It follows that when deadlines are less than or equal to periods, the exact feasibility

analysis of EDF is of pseudo-polynomial complexity. Of course, when deadlines are
equal to periods the utilization test may be used, with complexity of only O(n).

3.2. Aperiodic Task Scheduling

The higher schedulability bound of dynamic scheduling schemes also allows achieving
better responsiveness in aperiodic task handling. Several algorithms have been proposed in
the real-time literature to handle aperiodic requests within periodic task systems scheduled
by EDF (Ghazalie and Baker, 1995; Spuri and Buttazzo, 1994, 1996). Some of them are
extensions of fixed-priority servers, whereas some were directly designed for EDF.

3.2.1. The Total Bandwidth Server Approach

One of the most efficient techniques to safely schedule aperiodic requests under EDF is
the Total Bandwidth Server (TBS) (Spuri and Buttazzo, 1994, 1996), which assigns each
aperiodic job a deadline in such a way that the overall aperiodic load never exceeds a
specified maximum value U,.
In particular, when the k-th aperiodic request arrives at time ¢ = ry, it receives a
deadline
dy = max(ry, dy ;) +g
Uy
where C;, is the execution time of the request and U, is the server utilization factor (that
is, its bandwidth). By definition d, = 0. Note that in the deadline assignment rule the
bandwidth allocated to previous aperiodic requests is considered through the deadline
d; _ . Once the deadline is assigned, the request is inserted into the system ready queue
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and scheduled by EDF as any other periodic instance. As a consequence, the
implementation overhead of this algorithm is practically negligible. The schedulability
test for a set of periodic tasks scheduled by EDF in the presence of a TBS is given by the
following theorem by Spuri and Buttazzo.

THEOREM 1 Given a set of n periodic tasks with processor utilization U,, and a TBS with
processor utilization U,, the whole set is schedulable by EDF if and only if

U, +U, <1

3.2.2. Achieving Optimality

The deadline assigned by the TBS can be shortened to minimize the response time of
aperiodic requests, still maintaining the periodic tasks schedulable. Buttazzo and Sensini
(1999) proved that setting the new deadline at the current estimated worst-case finishing
time does not jeopardize schedulability.

The process of shortening the deadline can then be applied recursively to each new
deadline, until no further improvement is possible, given that the schedulability of the
periodic task set must be preserved. If dj is the deadline assigned to the aperiodic request
Ji at step s and f is the corresponding finishing time in the current EDF schedule
(achieved with d}), the new deadline d,i“ is set at time f;. The algorithm stops either
when d§ = d{~! or after a maximum number of steps defined by the system designer for
bounding the complexity.

It is worth noticing that the overall complexity of the deadline assignment algorithm is
O(Nn), where N is the maximum number of steps performed by the algorithm to shorten
the initial deadline assigned by the TBS. Finally, as far as the average case execution time
of tasks is equal to the worst-case one, this method achieves optimality, yielding the
minimum response time for each aperiodic task, as stated by the following theorem by
Buttazzo and Sensini.

THEOREM 2 Let ¢ be afeasible schedule produced by EDF for a task set 7 and let f, be the
finishing time of an aperiodic request Ji, scheduled in ¢ with deadline d,. If f, = d,, then
v =1, where f} is the minimum finishing time achievable by any other feasible schedule.

Although the TBS can efficiently handle bursty sequences of jobs, it cannot be used to
serve jobs with variable or unknown execution times. In this case, a budget management
mechanism is essential to prevent execution overruns to jeopardize the schedulability of
hard tasks.

3.2.3. The Constant Bandwidth Server

The Constant Bandwidth Server (CBS) is a scheduling mechanism proposed by Abeni
and Buttazzo (1998, 2004) to implement resource reservations in EDF based systems.
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A CBS is characterized by a budget c,, a dynamic server deadline d,, and by an ordered
pair (Q,,T;), where Q; is the maximum budget and 7| is the period of the server. The
ratio U; = Q,/T, is denoted as the server bandwidth.

Each job served by the CBS is assigned a suitable deadline equal to the current server
deadline, computed to keep its demand within the reserved bandwidth. As the job
executes, the budget ¢, is decreased by the same amount and, every time ¢, = 0, the
server budget is recharged to the maximum value Q; and the server deadline is postponed
by a period T, to reduce the interference on the other tasks. Note that by postponing the
deadline, the task remains eligible for execution. In this way, the CBS behaves as a work-
conserving algorithm, exploiting the available slack in an efficient way, providing better
responsiveness as compared to non-work-conserving algorithms and to other reservation
approaches that schedule the extra portions of jobs in background.

An important property is that, in any interval of time of length L, a CBS with
bandwidth U; will never demand more than U,L, independently from the actual task
requests. This property allows the CBS to be used as a bandwidth reservation strategy to
allocate a fraction of the CPU time to soft tasks whose computation time cannot be easily
bounded. The most important consequence of this result is that such tasks can be
scheduled together with hard tasks without affecting the a priori guarantee, even in the
case in which soft requests exceed the expected load.

3.3. Resource Sharing

Under EDF, several resource access protocols have been proposed to bound blocking due
to mutual exclusion, such as Dynamic Priority Inheritance (Stankovic et al., 1998),
Dynamic Priority Ceiling (Chen and Lin, 1990), Dynamic deadline Modification (Jeffay,
1992), and Stack Resource Policy (Baker, 1991). The Stack Resource Policy is one of the
most used methods under EDF for its properties and efficiency, hence it will be briefly
recalled in the following section.

3.3.1. Stack Resource Policy

The Stack Resource Policy (SRP) is a concurrency control protocol proposed by Baker
(1991) to bound the priority inversion phenomenon in static as well as dynamic-priority
systems. In this work, Baker made the insightful observation that, under EDF, jobs with a
long relative deadline can only delay, but cannot preempt jobs with a short relative
deadline. A direct consequence of this observation is that a job cannot block another job
with longer relative deadline. Thus, in the study of blocking under EDF, we only need to
consider the case where jobs with longer relative deadlines block jobs with shorter
relative deadlines.

This observation allows Baker to define preemption levels separately from priority
levels under EDF, in a way that they are inversely proportional to relative deadlines. It
follows that the semaphore preemption ceiling under SRP can be defined in the same way
as the priority ceiling under PCP.
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Hence, under SRP with EDF, each job of t; is assigned a priority p; according to its
absolute deadline d; and a static preemption level 7; inversely proportional to its relative
deadline. Each shared resource is assigned a ceiling which is the maximum preemption
level of all the tasks that will lock this resource. Moreover, a system ceiling 7 is defined
as the highest ceiling of all resources currently locked.

Finally, SRP scheduling rule requires that

a job J is not allowed to start executing until its priority is the highest among the active
tasks and its preemption level is greater than the system ceiling .

SRP guarantees that, once a job is started, it will never block until completion; it can
only be preempted by higher priority tasks. SRP prevents deadlocks and a job can be
blocked for at most the duration of one critical section.

Under the SRP there is no need to implement waiting queues. In fact, a task never
blocks during execution: it simply cannot start executing if its preemption level is not
high enough. As a consequence, the blocking time B; considered in the schedulability
analysis refers to the time for which task 7; is kept in the ready queue by the preemption
test.

The feasibility of a task set with resource constraints (when only periodic and sporadic
tasks are considered), can be tested by the following sufficient condition (Baker, 1991):

. . ~ C | B;
Vi, 1<i<n —+ =<1 5

, 1<is< /; T S (5)
which assumes that all the tasks are sorted by decreasing preemption levels, so that
m; > mionly ifi < j.

As a final remark, the SRP allows tasks to share a common run-time stack, allowing
large memory saving if there are many more tasks than relative priority levels.

Under EDF, resources can also be shared between hard tasks and soft tasks handled by
an aperiodic server. Ghazalie and Baker (1995) proposed to reserve an extra budget to the
aperiodic server for synchronization purpose and used the utilization-based test (Liu and
Layland, 1973) for verifying the feasibility of the schedule. Lipari and Buttazzo (2000)
extended the analysis to a Total Bandwidth Server. Caccamo and Sha (2001) proposed
another method for capacity-based servers, like the CBS, which also handles soft real-
time requests with a variable or unknown execution behavior. The method is based on the
concepts of dynamic preemption levels and allows resource sharing between hard and
soft tasks without jeopardizing the hard tasks’ guarantee.

3.4. Overload Management

An overload condition is a critical situation in which the computational demand requested
by the task set exceeds the time available on the processor, so that not all tasks can
complete within their deadlines. When a task executes more than expected, it is said to
overrun. This condition is usually transient and may occur either because jobs arrive



REAL TIME SCHEDULING THEORY: A HISTORICAL PERSPECTIVE 121

more frequently than expected (activation overrun), or because computation times exceed
their expected value (execution overrun). A permanent overload condition may occur in a
periodic task system, when the total processor utilization exceeds one. This could happen
after the activation of a new periodic task, or if some tasks increase their activation rate to
react to some change in the environment. In such a situation, computational activities
start to accumulate in system’s queues and tasks response times tend to increase
indefinitely.

Transient light overloads due to activation overruns can be safely handled by an
aperiodic server that, in the case of a bursty arrival sequence, distributes the load more
evenly according to the bandwidth allocated to it. In heavier load conditions admission
control schemes may be necessary to keep the load below a desired threshold (Stankovic
et al., 1999; Lu et al., 1999).

Overloads due to execution overruns can be handled through a resource reservation
approach (Mercer et al., 1993, 1994; Abeni and Buttazzo, 1998). The idea behind
resource reservation is to allow each task to request a fraction of the available resources,
just enough to satisfy its timing constrains. The kernel, however, must prevent each task
to consume more than the requested amount to protect the other tasks in the systems
(temporal protection). In this way, a task receiving a fraction U; of the total processor
bandwidth behaves as it were executing alone on a slower processor with a speed equal to
U, times the full speed. The advantage of this method is that each task can be guaranteed
in isolation, independently of the behavior of the other tasks. A simple and effective
mechanism for implementing temporal protection under EDF is the Constant Bandwidth
Server (CBS) (Abeni and Buttazzo, 1998, 2004). To properly implement temporal
protection, however, each task t; with variable computation time should be handled by a
dedicated CBS with bandwidth U, so that it cannot interfere with the rest of the tasks for
more than U, .

Although resource reservation is essential for achieving predictability in the presence
of tasks with variable execution times, the overall system’s performance becomes quite
dependent from a correct resource allocation. For example, if the CPU bandwidth
allocated to a task is much less than its average requested value, the task may slow down
too much, degrading the system’s performance. On the other hand, if the allocated
bandwidth is much greater than the actual needs, the system will run with low efficiency,
wasting the available resources.

Two reclaiming techniques have been proposed to cope with an incorrect bandwidth
assignment. The CApacity SHaring (CASH) algorithm (Caccamo et al., 2000) works in
conjunction with the CBS. Its main idea can be summarized as follows: (1) whenever a
task completes its execution, the residual capacity (if any) is inserted with its deadline in
a global queue of available capacities, the CASH queue, ordered by deadline; (2)
whenever a new task instance is scheduled for execution, the server tries to use the
residual capacities with deadlines less than or equal to the one assigned to the served
instance; if these capacities are exhausted and the instance is not completed, the server
starts using its own capacity. The main benefit of this reclaiming mechanism is to reduce
the number of deadline shifts in the CBS, so enhancing aperiodic tasks responsiveness.

The Greedy Reclamation of Unused Bandwidth (GRUB) (Lipari and Baruah, 2000)
algorithm is another server-based technique to reclaim unused processor bandwidth.
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According to the GRUB algorithm, each task is executed by a distinct server S;, where
each server is characterized by two parameters: a processor share U;, and a period P;. As
main properties, GRUB is able to emulate a virtual processor of capacity U; when
executing a given job, and it uses a notion of virtual time to enforce isolation among
different applications and to safely reclaim all unused capacities generated by periodic
and aperiodic activities. Compared to CASH, the GRUB algorithm has more overhead
due to its virtual time management but it achieves better performance in terms of
aperiodic responsiveness.

Permanent overload conditions in periodic task systems can be handled using three
basic approaches that allow keeping the load below a desired value. A first method
reduces the total load by properly skipping (i.e., aborting) some jobs in the periodic tasks,
in such a way that a minimum number of jobs per task are guaranteed to execute within
their timing constraints. In a second approach, the load is reduced by enlarging task
periods to suitable values, so that the total workload can be kept below a desired
threshold. In the third approach, the load is reduced by decreasing the computational
requirements of the tasks, trading quality of results with predictability.

34.1. Job Skipping

Permitting skips in periodic tasks increases system flexibility, since it allows making a
better use of resources and to schedule systems that would otherwise be overloaded. The
job skipping model has been originally proposed by Koren and Shasha (1995), who
showed that making optimal use of skips is NP-hard and presented two algorithms that
exploit skips to increase the feasible periodic load and schedule slightly overloaded
systems.

According to the job skipping model, the maximum number of skips for each task is
controlled by a specific parameter associated with the task. In particular, each periodic
task 1; is characterized by a worst-case computation time C;, a period T;, a relative
deadline equal to its period, and a skip parameter S;, 2 < S; < co, which gives the
minimum distance between two consecutive skips. For example, if S; = 5 the task can
skip one instance every five. When S; = co no skips are allowed and 7; is equivalent to a
hard periodic task. The skip parameter can be viewed as a quality-of-service (QoS) metric
(the higher S, the better the quality of service).

Using the terminology introduced by Koren and Shasha in (1995), every instance of a
periodic task with skips can be red or blue. A red instance must complete before its
deadline; a blue instance can be aborted at any time. When a blue instance is aborted, we
say that it was skipped. The fact that S > 2 implies that, if a blue instance is skipped, then
the next S — 1 instances must be red. On the other hand, if a blue instance completes
successfully, the next task instance is also blue.

Koren and Shasha showed that the worst case for a periodic skippable task set occurs
when all tasks are synchronously activated and the first S; — 1 instances of every task t;
are red (deeply-red condition). This means that, if a task set is schedulable under the
deeply-red model, it is also schedulable without this assumption.
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In the same work, Koren and Shasha proved the following theorem, which provides a
sufficient condition for guaranteeing a set of skippable periodic tasks under EDF.

THEOREM 3 A set of firm (i.e., skippable) periodic tasks is schedulable if

w5l
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It is worth noting that, if skips are permitted in the periodic task set, the spare time saved
by rejecting the blue instances can be reallocated for other purposes. Caccamo and
Buttazzo (1997) generalized the results of Theorem 3 by identifying the amount of
bandwidth saving achieved by skips to advance the execution of aperiodic tasks.

3.4.2. Elastic Scheduling

In a periodic task set, processor utilization can also be changed by varying task periods.
Whenever the total processor utilization is greater than one, the utilization of each task
needs to be reduced so that the total utilization becomes equal to a desired value U, < 1.
This can be done as in a linear spring system, where springs are compressed by a force F
(depending of their elasticity) up to a desired total length. To apply this method, each task
needs to be specified with additional parameters, including a range of periods and an
elastic coefficient, used to diversify compression among tasks, so that utilization
reduction is higher for tasks with higher elasticity.

As shown in Buttazzo et al. (2002), in the absence of period constraints, the utilization
U; of each compressed task can be computed in order O(n) (where n is the number of
tasks), whereas in the presence of period constraints (7; < 7; ) the problem of finding
the U; values requires an iterative solution of O(n?) complexity.

The same algorithm can be used to reduce the periods when the overload is over, so
adapting task rates to the current load condition to better exploit the computational
resources.

Elastic scheduling has also been used in conjunction with feedback schemes to
automatically adapt task rates to fully utilize the processor when task computation times
are unknown (Buttazzo and Abeni, 2002a). Finally, elastic scheduling has been also
extended to work with dumping coefficients (Buttazzo and Abeni, 2002b), whenever
periods need to be smoothly adapted to satisfy some QoS requirements. Another method
is imprecise computation that was discussed in Section 2.6.

3.5. Implementation Overhead

Since the seminal work of Liu and Layland in 1973, research has addressed most of the
problems related to EDF-based real-time systems, including aperiodic task management,
resource sharing, temporal isolation, resource reclaiming, overload management, and
adaptive scheduling techniques. Combined with such advanced scheduling techniques,
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deadline-based scheduling has been shown to have many interesting properties that can
be useful for developing efficient, predictable, as well as flexible real-time systems.

One of the remaining concerns, which may be holding back wider adoption of EDF
scheduling, is the perceived higher implementation complexity and overhead, especially
in commercial operating systems, which presently do not provide direct support for
explicit timing constraints and deadline-based scheduling. Future implementation work
is likely to address these possible areas of overhead complexity, and enable direct
comparisons with other scheduling schemes to be made.

4. Soft Real-Time Scheduling
4.1. The Soft Real-Time Case

Much of the early work on real-time scheduling focused on the hard deadline case in
which tasks were assumed to have deterministic deadlines, and any missed task was
considered to be a system failure. To build a predictable system that would have correct
temporal behavior as well as correct logical behavior, it was necessary to impose a
deterministic worst-case formulation. For example, it was necessary to assume that the
jobs arriving from a task had deterministic minimum interarrival times, maximum
computation times, and minimum deadlines. The worst-case formulation allowed for an
upper bound on the workload during any interval of time, which, in turn, permitted an
analysis of whether all deadlines of all tasks would always be met. The performance
measure called schedulable utilization was developed, the largest level of utilization that
could be achieved for a specific task set and still have all deadlines of all jobs be
satisfied.

In most control and signal processing applications, the worst case and average case
execution times are often nearly equal; however, there are also many applications for
which the average-case utilization can be much less than the worst-case utilization. An
example of this occurs in video conferencing in which the bandwidth requirements for
periodic transmission of frames or packets can vary widely. Figure 1 shows bandwidth
utilization data from three different sections of a video conference. Figure 2 gives a
histogram of the bandwidth usage over the course of a 60 minute video conference. The
median bandwidth utilization is around 500 to 600 kbps; however, the requirements can
reach values in excess of 5000 kbps when there is a scene change, action, or camera
motion. If one wanted to guarantee adequate bandwidth for all frames, then one would
have to treat this task as having 5000 kbps bandwidth requirements, a worst-case
utilization nearly 10 times the average case utilization.

If a system is serving multiple tasks with highly variable computation requirements,
and if one treats those tasks as having less their worst-case utilization, then it is possible
that there could be a peak utilization time at which all tasks are simultaneously operating
at their peak level. This would mean that some, if not all, of those frames would be lost
due to inadequate bandwidth, and there would be a system failure according to the hard-
deadline criterion. If the hard-deadline formulation is appropriate, then one must live with
low levels of average-case utilization.
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Figure 1. Video-conference bandwidth usage.

Fortunately, for many applications such as the video conference example, not all
deadlines must be met, and some job loss is permissible. Often the actual requirements
are for a certain QoS, for example adequate audio and video
quality for the user. Some frame or packet lateness (even loss) can be tolerated and
may even go unnoticed by the user. When this is the case, the performance criterion
should be altered.

There have been many formulations of the soft real-time scheduling problems. These
include: (1) mixtures of hard-deadline periodics with aperiodic tasks having no deadlines
(discussed in Section 2.5), (2) hard-deadline aperiodic tasks (discussed in Section 5), (3)
the imprecise computation model (discussed in Section 2.6), (4) the extended periodic
task model in which tasks have stochastic execution times and are guaranteed a minimum
execution time (Gardener, 1999), (5) stochastic rate-monotonic analysis in which
aperiodic tasks have hard deadlines, stochastic execution times, and must meet quality-
of-service requirements (discussed in Section 4.3.1), and (6) aperiodics with stochastic
arrivals, execution times, and deadlines and a bound on the fraction of tasks that can miss
their deadline (discussed in Section 4.4). Finally, models have been developed that assign
to each task a utility value that is a function of the quality of service provided to that task.
This is, in turn, related to the resources allocated to the task. One possible dimension of
quality of service is the timeliness of the completion of the task. This is discussed in
Section 4.2.

One common formulation of the soft real-time scheduling problem assumes those tasks
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Figure 2. Video-conference bandwidth usage histogram.

have deadlines and a lateness constraint. The lateness constraint can take many forms and
can be a composite constraint. If we define o(x) to be the long run fraction of jobs that
miss their deadline by more than x time units, then lateness constraints are typically of the
form o(x) < f8. For example, for the firm deadline case, we require that «(0) < 8 for some
value of f3, that is, we limit the fraction of tasks that miss their deadline to some value f.
Here missing a deadline by any amount is considered to be a failure, and the fraction of
such cases must be bounded by some value f. The quantity o(— c0) gives the fraction of
tasks that are never completed (including those that were never accepted for processing).
One could also specify a bound on this quantity. In general, one could require a(x;) < f3;,
1 <i<m for a set of time values {x,, ..., x,,} and constraint specifications {f,,..., f5,}.
With such a lateness constraint specification, one can now take the stochastic nature of
task arrivals and computation times into account. This leads to the concept of average-
case schedulability, the largest average workload that can be processed while still
meeting the lateness constraint.

The soft real-time criterion opens up the possibility of having a predictable system
with much higher levels of utilization than can be achieved under the hard real-
time task formulation. Of course, this increased utilization level can be obtained only at
the cost of either some missed deadlines or some jobs denied access to the system, or
both.
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4.2. Resource Allocation Among Soft Real-Time Tasks

Section 4.1 presented the example of a video-conference application and showed the
large variation in bandwidth requirements associated with such applications. This
application has processing, bandwidth, and timing requirements; however, it is possible
to vary the task’s resource requirements by varying the quality of service provided to it.
One can select varying levels of video and audio quality and can permit a certain amount
of packet lateness. Changes in these parameters can reduce the resource requirements at
the cost of reduced quality of service.

Recently, new methodology has been introduced to capture the possibility of a trade-off
between task resource requirements and the quality of service provided. This can be done
in many contexts, for example trading off task lateness against increased average-case
schedulability or energy usage against audio or video quality.

One can also consider the semantic importance or utility of a particular aperiodic task.
For example, in target tracking it is important to treat tracks associated with nearby
hostile targets differently from distant tracks of friendly targets. This could be done by
assigning different utility to tasks as a function of their semantic importance (for
example, hostile/friendly or near/distant). One could also differentiate tasks by assigning
them to different priority or service classes.

One can combine the resource-QoS trade-offs and the semantic importance through an
appropriate utility function-based approach. For each task, one can associate a user-
assigned utility function that captures the user benefit as a function of the set-points
assigned to that application. One can separately determine the resources required to
obtain each of the set-points. These two can be combined to obtain the utility as a
function of the resources allocated to the task. If a utility function is defined for each task
giving the utility derived as a function of the resources applied, then one can determine
the resource allocations across all the tasks currently ready for processing to maximize
the total system-wide utility. The QoS Resource Allocation Methodology (Q-RAM)
(Rajkumar et al., 1998) consists of algorithms designed to obtain near optimal resource
allocations for a set of tasks to which resources must be assigned. Q-RAM allows for the
possibility of multiple QoS dimensions including task timing requirements for real-time
tasks.

4.3. Alternative Task Models

In Section 4.1, we noted that there are a variety of task models associated with soft real-
time scheduling. Some of those models have already been discussed under the topic of
fixed-priority scheduling in Sections 2.5 and 2.6 and under the topic of dynamic-priority
scheduling in Sections 3.2-3.2.3. There is also the extended periodic task model of
Gardener (1997). In this section we consider another such model: the stochastic rate-
monotonic scheduling model.
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4.3.1. Stochastic Rate-Monotonic Scheduling (SRMS)

SRMS was developed by Atlas and Bestavros (1998a, 1998b) and is designed for use in
systems in which periodic tasks have highly variable execution times, quality-of-service
requirements, and firm rather than hard deadlines. SRMS is designed to maximize
resource utilization and to minimize the use of resources on tasks that will miss their
deadlines.

The SRMS workload model is based on periodic tasks with variable execution times.
Each task 7, 1 <i<n, is defined by a triplet (P;,f;(x),Q;), 1 <i<n, where P; is the
task’s period, f;(x) is a probability density function describing the task’s resource
utilization requirement, and Q, is the task’s requested QoS. The tasks are assumed to have
firm deadlines meaning that the task must be completed by the deadline, which is
assumed to be equal to the period; however, a certain fraction of tasks are permitted to
miss their deadline. In particular, Q; specifies an upper bound on the long-run fraction of
jobs from 7; that can miss their deadline. Given f;(x) and Q; it is possible to determine the
minimum resource allocation, ag;, for each of the jobs of 7; that will ensure the QoS
requirement is met.

Atlas and Bestavros (1998a) present an approach for harmonic task sets. They define
the concept of a superperiod. Assume that the periodic tasks are arranged in order of
decreasing priority (increasing period). Then the superperiod of t; is the period of the
next lower priority task, P; , |, with the superperiod of 7, defined to be co. They take g; to
be the resource allocation to 7; over its superperiod. In the case of a periodic task set,
there will be a multiple number of jobs of t; that will arrive during the superperiod.
Having a resource allocation for this set of jobs rather than for each individual job allows
for smoothing of the utilization over a set of jobs and ultimately for more jobs being
admitted and processed to completion within their deadline.

The authors define a set of tasks 7y,..., 7, to be schedulable under SRMS if 7; is
guaranteed to receive a; units of resource over its superperiod, where a; satisfies the QoS
requirement Q; for 1 <i < n. Because rate-monotonic priorities are assumed and the task
set is harmonic, the schedulability criterion is 2?21 ;’,— < 1. Atlas and Bestavros (1998a)
provide examples of the methodology, present comparisons with alternative scheduling
methods, and give extensions of the basic SRMS methodology. The case of non-harmonic
periods is addressed in Atlas and Bestavros (1998a).

4.4. The Fully Stochastic Case

We next turn to the case in which jobs from soft real-time tasks have stochastic
interarrival times, computation times and deadlines. Assume all jobs are processed to
completion and there is a constraint on the long-run fraction of jobs that miss their
deadline. In this fully stochastic case, it is difficult to provide an exact analysis of the
average-case schedulability. Recently, Lehoczky and coauthors (Doytchinov et al., 2001;
Kruk et al., 2004; Lehoczky, 1996, 1997a, 1997b, 1998; Yeung and Lehoczky, 2001)
developed an approximation method to compute the fraction of late tasks for the heavy
traffic case in which the system has high average-case utilization. The method is called
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Real-Time Queueing Theory (RTQT), because it is an extension of traditional queueing
theory in that it takes the timing requirements of tasks explicitly into account, and its
performance metric is the fraction of the offered load that completes within its deadline.

RTQT is developed under the assumption that Earliest Deadline First (EDF) is used as
the scheduling algorithm. Interestingly, the results obtained for EDF systems can be used
to provide results for FIFO, processor sharing, and fixed-priority schemes. RTQT was first
introduced by Lehoczky (1996). The single queue case was put on a firm mathematical
foundation in the paper by Doytchinov et al. (2001). The theory has also been extended to
the case of open queueing networks with multiple independent traffic flows (Kruk et al.,
2004).

The analysis of real-time queues scheduled using EDF requires that deadline
information be kept for every task. For RTQT, each task’s lead time (time remaining
until the task’s deadline elapses) is kept. The addition of these lead-time variables results
in a high dimensional state space. As a result, the analysis of the general problem is
analytically intractable. Fortunately, excellent approximations are available in the heavy
traffic case (p — 1) where p is the traffic intensity, that is, the long-run task arrival rate
times the long-run average task computation time. The heavy traffic case is the most
important for real-time systems, since if one can accurately approximate the behavior of
the system in this case, it will provide a bound for any lighter traffic case. Heavy traffic
queueing theory is a well developed theory. RTQT adds the analysis of real-time tasks to
this theory.

Traditional queueing theory studies the workload process, {W(¢), >0} or the queue
length process, {Q(t), t > 0}. Here, W(¢) is equal to the sum of all remaining computation
times of all tasks still in the system at time ¢. Similarly Q(¢) equals the number of tasks in
the system at time . The workload process decreases linearly at unit rate until the system
is empty or until a new task arrives, at which time it jumps by an amount equal to the
computational requirement of the arriving task.

Heavy traffic queueing theory considers a sequence of queueing systems indexed by
some parameter n— o0. That is as n increases, the traffic intensity of the corresponding
queueing system is assumed to increase to 1. For the n-th system assume that p*) =
1 — y/+/n for some constant y > 0. If one considers a scaled version of the workload and
the queue length processes where time is scaled by n and the processes are scaled by /n,
then these converge to drifted reflected Brownian motion processes. Specifically, if
W (£) and Q") (¢) represent the workload and queue length of the n-th system at time ¢,
then W (1) = W (nr)/\/n = W*, and Q" (t) = Q" (nt)/\/n = uW*, where W* is a
reflected Brownian motion with drift — 7y and some scale parameter 6, and symbolizes
weak convergence.

Much is known about this limiting process, so many features of the system
performance can be approximated using facts about Brownian motion. While we only
describe the single node case, the ideas extend to networks with the Brownian
motion process being replaced by a multi-dimension Brownian motion restricted to an
orthant.

RTQT provides an approximation to the long-run fraction of tasks that are late. It also
allows one to estimate the fraction of tasks with lead times less than x for any time x as a
function of the current queue length. For example, if x =0, this estimates the fraction of
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tasks in the queue that are late. These quantities can also be estimated given the current
workload. The estimates depend upon the current workload and the scheduling policy.

Suppose the jobs arrive with stochastic deadlines drawn from a cumulative distribution
function G(x) and suppose at a moment in time the workload is given by W(¢). Let the
frontier, F(t), be defined by W(r) = fP?Z) (1 — G(u))du. Then, if tasks are scheduled
according to the EDF queue discipline, the fraction of tasks having current lead times
greater than x is given by ufnﬁxwt)’x) (1 — G(u))du, where u~! is the mean task
execution time.

When the frontier falls below 0, the tasks departing the queue have negative lead times,
hence they are late. Since the frontier, F(¢), is determined by the equation
W(t) = f;c(;> (1 —G(x))dx, and lateness is associated with F(r) <0, one can equiva-
lently express the condition for lateness in terms of the workload,
W(t) > [, (1 — G(x))dx = E(D), the mean task deadline.

It follows that RTQT predicts that under the EDF scheduling policy, arriving tasks will
miss their deadline when the workload exceeds the mean of the deadline distribution. If
we assume that the workload can be approximated by a drifted reflected Brownian motion
process, then the stationary distribution of that process is given by an exponential
distribution with some parameter 6 involving the means and variances of the interarrival
distribution and computation time distribution. The probability that such a Brownian
motion process exceeds any level, L, is given by e~ .. Consequently, for the single
node case, RTQT predicts that P(Lateness) = P(W(t) > E(D))=e ") or
log(P(Lateness)) = — 0E(D). Hence the logarithm of the lateness probability is linear
in the mean deadline. Figure 3 presents the results of a simulation study showing how
lateness varies with the mean deadline. The different curves are results for different
computational time probability distributions, ranging from low variability to moderate
variability (exponential) to high variability (file sizes on the Internet). The linearity of the
curves confirms the reasonableness of the RTQT prediction.

4.5. Future Research Involving Soft Real-Time Systems

While many advances have been made in real-time scheduling over the last 25 years,
important research problems remain. In this section we highlight three broad research
areas, each of which applies to most of the approaches discussed in this section: (1) the
need to introduce practical system aspects into the soft real-time task models, (2) the need
to develop new analytic methods to predict the performance of systems processing soft
real-time tasks, (3) the need to introduce control mechanisms into the models to optimize
the performance of the systems.

4.5.1. Refinement of Models to Include Important System Effects
One of the achievements of the last 25 years of scheduling theory was the evolution from

a basic theory for idealized systems to a theory that included many important system
effects such as blocking due to task synchronization, precedence constraints, or lack of
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Figure 3. Task lateness as a function of mean deadline.

preemption, mode changes, operating system overhead, and architectural details. At this
point, much of the analytic work associated with soft real-time tasks has been done under
idealized assumptions.

Consider, for example, the introduction of blocking effects. The early work on real-
time scheduling assumed that all real-time tasks, both hard and soft, were independent. It
will be necessary to develop new scheduling algorithms to handle the case in which all
tasks may experience blocking effects such as task synchronization. As presently defined,
aperiodic servers such as the sporadic server may become blocked when the task using its
capacity becomes blocked. If the server keeps its capacity while it is blocked, then it can
become more invasive than the sporadic server which may lead to missed periodic
deadlines. If its capacity is lost due to blocking, then it will lead to longer aperiodic
response times. New server algorithms may be needed and new analytic techniques must
be developed. None of the other models described in this section gives a serious analysis
of the problems that arise in estimating soft real-time task response in the presence of
blocking effects.

The analyses of some models, such as the extended periodic task model of Gardener
(1999) and RTQT, use queueing theoretic methods to predict real-time performance. It
will be challenging to extend these analyses to include some of the system effects
described above. In addition, much research remains in the real-time network case. In the
RTQT analysis of networks of real-time queues, the assumption is made that tasks have
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independent processing times at different nodes in the network. This assumption may be
unrealistic as it seems more reasonable to assume that the computation times are
positively correlated. For example, if the processing times are associated with the size of
a packet or file, then as the file moves from node to node, if the computation requirements
are large at one node for this task, they are likely to be large at another node. If there is
such a positive correlation effect, it is likely that it would lead to poorer performance than
would be predicted by an independence formulation. Thus, new methods are needed to
handle the case in which dependencies of this sort occur.

4.5.2. The Need for New Analytic Methods

Real-time scheduling theory has been most fully developed for the case of predicting
whether a set of hard-deadline periodic tasks will meet their deadlines given a certain set
of assumptions about the task set and the system. Fewer analytic results are available to
predict the performance of soft real-time tasks, either the fraction of those tasks that will
meet their timing requirements if they have deadlines or the delay incurred by aperiodic
tasks if they do not. For example, consider the case of aperiodic server algorithms
designed to offer enhanced response to aperiodic tasks while still ensuring that the
deadlines of hard-deadline periodic tasks are still met. Few analytic results are known for
this case, even assuming that there are no blocking effects and all overhead is neglected.
It may be possible to derive approximations in the heavy traffic case using some of the
ideas exploited by RTQT.

On the other hand, while the RTQT approach does appear to be promising, it does have
significant limitations. For example, for RTQT to offer accurate predictions of the
lateness behavior of real-time tasks, it is necessary for the individual tasks to comprise a
small part of the total workload. The situation in which the system is processing a
relatively small number of relatively large tasks does not lend itself to the type of analysis
used in RTQT. The theory offers accurate results when the queues are relatively long, and
the tasks in the queues have relatively short execution times. RTQT takes advantage of
the ‘‘averaging effect’’ of processing a large number of tasks. When a few tasks are
involved, each must be individually considered to accurately determine lateness.

In general, each of the models and associated analytic techniques mentioned in this
section must be generalized in order to realize the ultimate goal of building a
comprehensive theory in which one can make accurate predictions about the real-time
performance of a representative system carrying a fairly general workload.

4.5.3. Introduction of Control Mechanisms

An important area of research is the introduction of control mechanisms to real-time
systems to improve real-time performance and to allow the system to adapt to changes in
the environment, the workload, or to changes in the system architecture due to failures.
The use of feedback control to improve the performance of soft real-time tasks is
addressed in the following section of this article, so we make only a few comments here.
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Generally, the performance criterion for soft real-time tasks is minimizing their delay,
when they do not have explicit deadlines, or minimizing the fraction of tasks that do not
meet their timing requirements (including those never admitted to the system). In much
of the current work, scheduling and admission control policies are based on the
assumption that the computation requirements of each task (their C) is known. Actually,
there are only a few situations in which C is observable, for example, when it is constant
or when the task involves a file of known size. Usually, a task has a variable execution
time that is not known. Consequently, admission control policies and scheduling policies
based on knowledge of task execution times often cannot be accurately implemented.
There is a need to develop new policies that do not depend on this knowledge.

In addition, it will be useful to consider scheduling policies other than fixed and
dynamic-priority policies such as RM and EDF. These policies are designed to optimally
deal with hard-deadline periodic tasks, but other policies might be considered for
handling the soft-deadline aperiodic tasks. For example, it is known in standard queueing
contexts (for example, M/M/1) that the Shortest Remaining Processing Time (SRPT)
policy gives the smallest mean response time of any policy. Of course, SRPT requires
knowledge of the computation times, and this policy does not deal with the case in which
there are hard-deadline tasks in the system as well. Nevertheless, alternative scheduling
policies should be considered. Moreover, some consideration should be given to the
development of admission control policies that will optimize system performance.

5. Feedback Scheduling

The increased complexity of embedded applications beyond what can be efficiently
captured and analyzed by detailed low-level schedulability models calls for a
fundamentally different approach to real-time system modeling that captures and
controls macroscopic behavior. In this approach, models attempt to describe the
aggregate behavior of a system directly in much the same way flow equations capture the
aggregate behavior of a flow without synthesizing it from the dynamics of individual
particles. It is observed that real-time performance of computing systems can generally
be inferred from the behavior of resource queues (such as the scheduling queue,
communication port queues, and semaphore queues). At a high level, a queue is an
integrator of request flows, which can be modeled by a difference equation and is
therefore amenable to control-theoretic analysis (Franklin et al., 1994) offered by
feedback control theory.

Feedback is a powerful concept that has played a pivotal role in the development of
many areas of engineering. It has several advantages. Feedback can make a system robust
towards external and internal disturbances and uncertainties. Using feedback, it is
possible to create linear behavior out of non-linear components and to modify the
dynamic behavior of a system. The advantage of using feedback in conjunction with real-
time scheduling is that precise schedulability models are no longer needed. Instead, the
system can adapt its load and resource allocation dynamically in a controlled and
analyzable manner to achieve the desired temporal behavior. Feedback requires the use of
actuators manipulated by a controller to act on the system and change its performance. In
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real-time computing, most actuators change either the enqueue or the dequeue rates of
components (called enqueue actuators and dequeue actuators respectively), resembling
valves in a flow control system.

Enqueue actuators might perform admission control or redirection of input requests to
another server. Dequeue actuators manipulate the resources available to the server or
change the resource requirements of requests (e.g., by changing the quality of service).
Eliminating the need for precise low-level models, and improving the ability to adapt to
unpredictable load and resource fluctuations are the two main advantages of the feedback
scheduling approach.

Initial efforts in applying feedback control to computing systems borrowed their
theoretical foundations directly from prior control literature. Successful control schemes
were developed for high-performance servers (Diao et al., 2001; Gandhi et al., 2001),
multimedia streaming (Nahrstedt, 1995; Zhang et al., 2001), real-time databases
(Amirijoo et al., 2003), web storage systems (Lu et al., 2002), network routers
(Keshav et al., 1993), active queue management schemes (Hollot et al., 2001a, 2001b),
and processor architecture (Skadron et al., 2001) to name a few. General-purpose
resource management middleware frameworks, such as ControlWare (Zhang et al., 2002)
and IBM’s AutoTune Agents (Diao et al., 2003), were developed that embody a control-
theoretic paradigm for software performance tuning. Simple feedback controllers were
also proposed as a way to manage software complexity (Chandra and Sha, 1999) based on
the assertion that a primitive but more reliable emergency backup entity could
significantly improve the reliability of a complex primary system (Sha, 2001). The
proliferation of feedback control approaches for software performance management led
to a textbook on the topic, where feedback control is explained by software examples
(Hellerstein, 2004). A good survey of feedback-scheduler co-design is found in Arzén
et al. (2000).

While simple application of control theory in scheduling has proved beneficial, much
more work is needed to develop precise foundations for this approach. In the following
subsections, we highlight some key challenges and current efforts to solve them in
feedback control scheduling, then conclude with a discussion of open problems.

5.1. Delay Control

Consider the problem of controlling the delay of a server to adhere to a specification.
Delay control is akin to level control in a water tank. The simplest delay control loop is to
measure the current delay then adapt (e.g., by changing the resource allocation) in the
direction that causes the delay to approach its set point. Approximating this loop by a
level control loop allows using textbook techniques to analyze its convergence properties
and set controller parameters for the desired settling time.

Unlike a water tank, however, the delay control loop is event driven, since changes in
measured response-time values and their averages occur only at discrete event times
(such as the instances when requests are dequeued). Measurements of interest have an
event-based statistical nature that depends in part on the statistics of the request arrival
process. The underlying statistical relationships are known to be non-linear from
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queueing theory. Existing stochastic control techniques are inapplicable because they
assume additive external noise that is derived from white noise using a linear filter, which
is not the case with non-linear stochastic queueing dynamics. Moreover, requests in a
queue may be scheduled using any of a wide range of scheduling policies that are difficult
to model in a control loop. Hence, delay control opens interesting opportunities for
integrating traditionally disjoint theoretic foundations such as control, queueing, and
scheduling theory in order to understand and control software timing properties.

To accommodate the non-linearity offered by queueing dynamics, it was proposed in
Sha et al. (2002) to augment feedback control with prediction such that future delay
fluctuations are anticipated and corrected before they occur. From queueing theory, we
know that for an M/M/1 queue with arrival rate / and service rate u, the long-term
average queueing time for the clients is D = (1/u — A). The above equation can be
solved for u that achieves a desired delay D. The resulting u is enforced by the dequeue
actuator. A proportional controller was shown to be sufficient for eliminating any residual
errors. One problem with queueing-theoretic models, however, is that queueing theory
describes relations between long-term averages only. In the short term, delay and rates
may fluctuate. Unlike physical processes, statistical properties (such as probabilities) are
not directly measurable. Too small a sample gives us inaccurate estimation of the
statistics even if the traffic is stationary during measurement. Too large a sample size
gives us inaccurate estimates when the arrival pattern changes.

An enhanced prediction scheme proposed by Henriksson et al. (2004) computes the
needed service rate from actual measurements of recent delay and queue length. In
general, the integration of feedback control with model-based prediction derived from
characteristic software performance models remains one of the most interesting problems
in developing feedback scheduling algorithms.

5.2. Priority Scheduling

The most common performance metric addressed in previous feedback priority-based
scheduling literature is the deadline miss ratio. It is desired to ensure that no deadlines are
missed. The basic control loop architecture is the same as that of the basic delay control
loop, except that the set point is defined on the deadline miss ratio.

Several challenges are immediately apparent. First, classical control theory does not
have a notion of priorities. Hence, modeling the relation between delays (at a given
priority level) and system inputs is not straightforward. Second, ideally, the desired miss
ratio is zero. However, zero is also the saturation limit of the miss ratio sensor (since the
miss ratio cannot be negative). Said differently, the deadline miss ratio does not provide a
useful feedback signal when the system is underutilized. Control loops that operate at or
near saturation points of their components are necessarily non-linear. To address this
problem, control loops were proposed that measure both miss ratio and average system
utilization (Lu et al., 2002), quantifying both underutilization and overload. Adaptive
control techniques have been proposed to adapt to miss ratio non-linearities (Wei and Yu,
2003).
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Unfortunately, in the case of aperiodic tasks, average utilization (the average
percentage of time a processor is busy) is not a good metric for predicting deadline
misses. For example, two very short aperiodic tasks with unschedulable deadlines can
arrive at an idle processor and miss their timing constraints while the average utilization
could be arbitrarily small. The research question becomes, how to derive predictors that
quantify the proximity of an aperiodic task system to the boundary of schedulability, and
hence alert to possible deadline misses before they occur? A recent answer to this
question lies in synthetic utilization* bounds (Abdelzaher et al., 2004). It is shown in
(Abdelzaher et al., 2004) that all aperiodically arriving tasks are guaranteed to meet their
deadlines under an optimal fixed-priority policy as long as U(f) < 2 — /2, regardless of
the individual task arrival times, computation times, and deadlines. A control loop that
keeps synthetic utilization just below this bound does not suffer the miss ratio saturation
problem mentioned above and will ensure system timeliness. Excursions above the bound
predict possible future deadline misses. Extensions of this predictive metric to non-
independent tasks and resource pipelines are found in Abdelzaher et al. (2004).

5.3. Multi-Class Resource Partitioning

The lack of priority support in control theory literature led to resource partitioning
approaches that eliminate priority queues altogether from the feedback scheduling
problem. These approaches commonly use a two-tier architecture for feedback-based
delay guarantees. The top layer allocates a separate partition of the server resource to
each traffic class together with its own FIFO queue as done, for example, in Pradhan
(2002), and Levy et al. (2003). If the underlying resource is indivisible, such as the CPU
or a single-channel communication link, the bottom layer implements a logical resource
partitioning abstraction to be used by the upper layer. For example, in Abeni and Buttazzo
(2001) an adaptive reservation strategy is proposed for controlling the CPU bandwidth
reserved to a task based on QoS requirements. A two-level feedback control is used to
combine local application level mechanisms with a global system-level strategies. In
Buttazzo and Abeni (2002), feedback is used in combination with elastic scheduling to
estimate the actual load and adapt task periods to reach a desired utilization factor,
without forcing the user to provide execution time bounds. The effect of the bottom-level
scheduler must be accounted for in control loop design. For example, it was shown that a
WEFQ scheduler introduces a delay into the control loop since weight changes are applied
only to timestamps of future arrivals and not requests already enqueued (Zhang, 2004).

In general, the multi-class resource partitioning problem can be viewed as a
constrained optimization problem where some problem-specific notion of utility is
maximized by adapting per-class resource allocation subject to resource constraints. A
non-linear formulation of this optimization problem based on queueing models is
presented in Levy et al. (2003), where a notion of web cluster utility is maximized by
resource allocation. In Lawrence et al. (2001), a linear formulation is presented, which
uses optimal feedback control to achieve the best allocation of CPU shares to periodic
tasks.
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A robust (non-linear) H_, control model is derived in Ball et al. (1999) for a single-
server multi-class queueing system, where the objective is to determine which class
(flow) to schedule next on the server resource. The optimality criteria of the resulting
schedule, however, do not include delay metrics.

Mapping the original per-class performance specification to a feedback control
problem is not always straightforward. Multiple mappings may be possible with complex
trade-offs. For example, one very commonly proposed performance specification in
multi-class systems is the weighted fairness guarantee. In this problem, the ratio of some
performance metrics across different classes is specified instead of absolute values,
creating coupling between per-class control loops. Formally, it is required that
D; 1(k)/Di(k) =c; /c;,i=1,..., N1, where D;(k) is the average performance (e.g.,
delay) of traffic class i at time k, and ¢; is a constant per-class weighting factor
representing the user’s relative performance specifications. In Lu et al. (2001b) a solution
uses per-class control loops, where error ¢;(k) of class; at sampling time & is given by the
expression e;(k) = c,—/E;V:l ¢; —D;(k)/>_;_, D;(k). The controller computes a corre-
sponding correction Ab; to the current resource allocation b;. In Lu et al. (2003), the
average of D, (k)/cy, D,(k)/cy,...,Dy(k)/cy is taken as the common set point letting
individual ratios converge to their average. In Lu et al. (2001a), the performance error of
consecutive class pairs is defined as e;(k) = ¢; . /¢; — D; . (k)/D;(k). While all three
mappings allow loop convergence to the specification, the most appropriate mapping is
not immediately obvious without a more fundamental analysis of the properties of the
resulting control loops.

5.4. Feedback Scheduling of Control Systems

An important special case is where the computing system being controlled is itself a set of
digital control loops. The objective for the feedback scheduler is to dynamically adjust
the CPU utilization of the controller tasks. The feedback scheduling problem is stated as a
optimization problem where the objective is to maximize the global control performance
of the physical system subject to resource and schedulability constraints.

Feedback is needed for the scheduler because of the uncertainty associated with the
WCET estimation. The actuators in the feedback scheduler loop modify the CPU
utilization of individual controller tasks. The task period is a natural actuation knob. For a
controller implemented on input—output form it is generally more difficult to change the
sampling period than for a controller that is realized on state-space form. In certain cases
it may be necessary to use a Kalman filter to estimate the values of the state at the new
sampling instants. Controller parameters may need to be adjusted when the task period is
changed. An alternative actuation knob is the execution time of the controller. This can
be done using a multiple-versions approach or using an anytime approach, for example,
in model-predictive controllers (MPC) in which an quadratic optimization problem is
solved iteratively in every sample. The sensor is usually a measurement of the actual
CPU utilization. In order to avoid control actions caused by outliers, a low-pass filter may
be included to calculate the average utilization over a period of time. Such filters are an
important source of loop dynamics. Different controller structures can be combined in
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feedback scheduling of control systems. A pure feedback scheme is reactive in the sense
that the feedback scheduler will only remove a utilization error once it is already present.
By combining the feedback with feedforward, a pro-active scheme is obtained (for
example, Cervin et al., 2002). The feedforward path is used to allow controller tasks to
inform the scheduler that they are changing their desired amount of resources and to give
the scheduler the possibility to compensate for this change before any overload has
occurred. The feedforward path can be also be used for dynamic task admission.

54.1. Performance Optimization

The idea to treat the scheduling problem as a performance optimization problem was first
put forth in Seto et al. (1996). The key observation is that a digital controller can give
satisfactory performance within a range of sampling periods. Hence, the task period must
not be treated as a given parameter. Instead, stating the performance of each controller as
a function of its sampling rate, the objective is to maximize the overall performance
subject to a schedulability constraint. If the performance functions are convex and
decreasing functions of the task rates, this leads to a convex optimization problem.

Stating the scheduling problem as an optimization problem, a suitable performance
metric must be used. In Seto et al. (1996), the control performance is expressed by cost
functions, commonly found in optimal control problems. Using a quadratic cost function,
the performance of each controller is described by J;(T;) = [(x"Q,x + u” Q,u)dt, where
T; is the task period, x is the plant state, u is the control signal, and Q, and Q, are
weighting matrices. The optimization problem is stated as ming, _  XJ;(h) subject to a
schedulability constraint. In Seto et al. (2001) and Chandra et al. (2003), algorithms are
proposed that optimizes the expected control performance under the constraint that the
task set is schedulable.

The optimization problem can also be solved on line by means of feedback to the
scheduler. For this purpose, a model of the scheduler is needed from a control
perspective. The dynamics involved in feedback scheduling are often of low order or
even purely static. The reason for this is obvious. If a task is given more or less CPU time
the total utilization will change as soon as the next job of the task is started. Often the
dynamics in the feedback loop comes from the filtering in the sensor. A consequence of
this is that it is often enough with very simple control strategies in the feedback
scheduler.

In Eker et al. (2000) and Cervin et al. (2002) it was shown that a simple linear rescaling
of a set of nominal task periods in order to meet the utilization set-point is optimal with
respect to the overall control performance under certain assumptions. It holds if the cost
functions are quadratic, J;(h;) = o; + B;h?, or linear, J;(h;) = o; + 7;h;. The advantage of
this is a simple and fast calculation that can easily be applied on line. The linear rescaling
also has the advantage that it preserves RM ordering of the tasks and, thus, avoids any
changes in task priorities in the case that rate.monotonic fixed-priority scheduling is used.
Linear or quadratic functions are quite good approximations of true cost functions in
many cases. If the task set includes both tasks with quadratic cost functions and tasks
with linear cost functions, the solution is not as simple, although it is still computable.
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5.4.2. Isolating the Scheduling and Control Subsystems

A control task generally consists of three main operations: input data acquisition
(sampling), control algorithm computation, and output signal transmission (actuation).
The timing of the input and output actions is critical to the performance of the controller.
Ideally, the sampling should be jitter-free, and there should be zero delay between reading
the input and writing the output.

The seminal Liu and Layland (1973) only concerns the scheduling of the control
computations. It is assumed that the input and output actions are handled by external
functions. The scheme introduces a delay of one period in all control loops closed over
the computer. This delay must be accounted for in the control design.

In modern systems, the input and output actions are often triggered by software. If the
operations are carried out within the task body, considerable amounts of jitter may result.
From a control-theoretic perspective, it is useful to distinguish between sampling jitter
(variation in the input instant) and input—output jitter (variation in the delay from input to
output). The timing parameters of distributed control loops are further discussed in
Torngren (1998).

From a design point of view, there is a fundamental trade-off between delay and jitter.
Using hardware functions or dedicated, high-priority input and output tasks, it is possible
to exchange jitter for delay. Both delay and jitter degrade the control performance, and it
cannot be said which is worse is general. It is, however, easier to predict the performance
degradation due to a constant delay. Furthermore, it is straightforward to account for the
delay in the control design.

Eliminating the jitter greatly simplifies the performance optimization problem, since it
creates a separation between the control and scheduling subsystems. This approach is
taken in the Giotto programming language (Henzinger et al., 2001); I/O and com-
munication are time-triggered and assumed to take zero time, while the computations in-
between are assumed to be scheduled in real-time. The drawback with the Giotto
approach is that a minimum of one sample input—output delay is introduced in all control
loops. This problem is remedied in the Control Server (Cervin and Eker, 2003). A control
server creates the abstraction of a control task with a specified period and a fixed input-
output delay shorter than the period. Individual tasks can be combined into more complex
components without loss of their individual guaranteed fixed-delay properties. The single
parameter linking the scheduling design and the controller design is the task utilization
factor. The proposed server is an extension of the constant bandwidth server (Abeni and
Buttazzo, 1998).

Where isolation is not achieved, controllers must tolerate or account for scheduling
effects. There are two control design approaches to the problem of scheduling-induced
jitter. The first approach is to design the controller to be robust against jitter. The second
approach is to actively compensate for the timing variations in each period. Examples of
the latter approach are found in (Nilsson et al., 1998; Marti et al., 2001; Lincoln, 2002). It
is also possible to reduce the delay and/or jitter by using more detailed scheduling
models. For instance, it is possible to treat the reading of the input, the control
computation, and the writing of the output as subtasks. This approach has been
investigated in Cervin (1999), Balbastre et al. (2000).
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5.5. Challenges

In summary, the application of feedback control to computing offers several important
challenges for future research. Computing systems are generally event driven. Much of
the classical feedback control theory assumes time-driven systems. Event arrival in
computing systems is a stochastic process. It is often desired to control the properties of
that stochastic process. Techniques such as stochastic control are powerful in minimizing
the effect of additive noise but assume that the underlying (noise-free) system is both
linear and deterministic. Neither of these assumptions holds in computing systems. The
non-stationarity of the input process poses further challenges with respect to performance
measurement. The optimal choice of the observation window size is complicated by
trade-offs between measurement accuracy and system ability to adapt to changes in
stochastic input patterns.

Modeling of priority-based systems for purposes of feedback control is another
fundamental challenge. Additional research is needed to relate per-task metrics (such as
meeting individual deadlines) to aggregate metrics (such as flavors of utilization) that
abstract the notion of priorities away from the feedback controller. Mapping performance
specifications into control loops remains an open problem. High-level specifications
might entail complex relations between low-level system outputs that are the controllable
parameters. Satisfying such complex relations may require extensions to the analysis and
design of scheduler control loops. Architectures where computing systems control
physical processes present two types of control loops that need to be jointly co-designed.
One controls the allocation of computing system resources and one controls the actual
external processes. The complex interactions between the two call for new foundations
for scheduler design based on optimizing joint metrics that span both the computing and
physical system domains.

While a plethora of individual feedback scheduling problems have been addressed, the
main challenge remains in generalizing feedback control solutions to a comprehensive
theory for performance management in software systems. This section illustrated some of
the most important challenges and the current state of the art.

6. Further Extensions of Scheduling Models

Real-time scheduling theory was originally developed for periodic tasks with hard
deadlines. Over the years, substantial generalizations of this basic task set model have
been considered. Other scheduling models for addressing application-specific timing
constraints that cannot be directly modeled by Liu and Layland’s basic task set model
have also been studied by many researchers. We survey some of these contributions
below.

The Multi-frame model (Mok and Chen, 1997) was invented to more accurately model
periodic tasks whose execution time varies from period to period. An example of such
applications is a video stream in a multimedia application where the size of a video frame
varies according to some pattern that depends on the encoding scheme of the video
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stream. The simple periodic task model is too pessimistic because a conservative
execution time specification must use the largest frame size. This problem is solved in the
multi-frame model by allowing a sequence of numbers to be specified as the execution
time in successive periods of a periodic task. The variation in the per-period execution
time can be represented by a finite vector with the understanding that the execution time
of successive periods is to be generated by repeating the finite vector ad infinitum.
Schedulability bounds for the multi-frame model can be found in Mok and Chen (1997).
Further generalization of the multi-frame model is discussed in Baruah (2003).

Although the periodic (Liu and Layland, 1973) and sporadic (Mok, 1983) task models
have been the most widely studied notions of recurrent execution, event occurrences in
reality often are neither periodic nor sporadic. For example, in an application that services
packets arriving over a network, packet arrivals may be highly jittered. A scheduling
scheme that assumes periodic or sporadic arrivals complicates the design of such an
application. Rate-based scheduling schemes (Jeffay and Goddard, 1999) are more
seamlessly able to cope with jitter. In such schemes, there is no restriction on a task’s
instantaneous rate of execution, but an average rate is assumed. In multiprocessor
systems, rate-based execution can be ensured by using scheduling algorithms that also
ensure a property called proportionate fairness (Pfairness) (Baruah et al., 1993). Under
Pfairness, each task is required to make progress so that its allocation error is always less
than one quantum, where ‘‘error’’ is determined by comparing to an ideal fluid system.

In research on rate-based uniprocessor scheduling, Jeffay and colleagues (Jeffay and
Goddard, 1999, 2001; Jeffay and Lamastra, 2000) derived necessary and sufficient
conditions for determining the feasibility of a rate-based task set and demonstrated that
earliest-deadline-first scheduling is optimal for both preemptive and non-preemptive
execution environments, as well as hybrid environments wherein tasks access shared
resources. Baruah and colleagues originated work on Pfair scheduling and showed that
Pfair scheduling algorithms can be used to optimally schedule periodic tasks on
multiprocessors (Baruah et al., 1993). Srinivasan and Anderson extended this work by
showing that sporadic and rate-based tasks can also be optimally scheduled (Holman and
Anderson, 2002). Other extensions to early work on Pfair scheduling include techniques
for reducing task migrations (e.h., Moir and Ramamurthy, 1999), for ensuring
synchronization requirements (e.g., Holman and Anderson, 2002), for supporting soft-
and non-real-time components (e.g., Srinivasan and Anderson, 2003; Srinivasan et al.,
2002), for adaptively changing task share allocations at runtime (e.g., Anderson et al.,
2003), and for reducing scheduling overheads (e.g., Chandra et al., 2001; Holman and
Anderson, 2004; Jackson and Rouskas, 2003).

The Pinwheel model was invented to capture the requirements of sensor data
acquisition tasks that must be executed sufficiently frequently so that the system can be
assured that the sensor data is never too stale, that is, the sensor data value maintained by
the system is always sufficiently close to the value of the real-world object being sensed.
This requirement can be captured by representing sensor tasks as Pinwheel tasks. A set of
n Pinwheel tasks is a multi-set of n integers A = {a,,4a,, ..., a,}. A successful schedule
S is an infinite sequence jj, j,, ... over the index set {1,2,...,n} such that any
subsequence of a;(i < n) consecutive entries in S must contain at least one of the index i.
Intuitively, this ensures that the i-th sensor task must be executed at least once in any
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interval of length ;. The Pinwheel scheduling problem has been surveyed in Chen and
Mok (2004). Related work in distance-constrained scheduling can be found in Han and
Lin (1992).

Several other interesting variations on the periodic task model have been proposed,
which cannot be decribed here due to space constraints. Examples include Gardener’s
extended periodic task model (Gardener, 1999), and the hyperperiodic task model of
Aggarwal and Chraibi, (1993, 1995, 1996).

A number of real-time data-flow models have also been considered by various authors
to capture data/buffer-driven constraints. These models are designed to capture the
requirements of applications where there are no explicitly specified deadlines but rather,
deadlines are induced by the flow of data through a network of operators, and the
processing of data must be completed by each operator before input/output buffer
overflow occurs. The severity of the timing constraints depends on the availability of
buffer space at the input/output edges of each operator. These applications are typical of
signal processing and message-based transaction systems. Examples of work that treats
real-time data-flow models are Mok (1987) and Goddard and Jeffay (2000).

More recently, there has been substantial interest in investigating ways to extend real-
time scheduling solutions to an open system environment. In an open environment,
multiple real-time applications must share the same execution platform where each
application may have its own set of real-time tasks specified in any of a number of real-
time task scheduling models. The difficulty in real-time scheduling is compounded by the
constraint that there may not be any single entity that has knowledge of all the scheduling
models of the applications and their associated task parameters, and thus a global
scheduler that schedules all the tasks in all the applications is not possible. An open
system environment can be supported by a two-level scheduler. A resource-level
scheduler is responsible for allocating time to the applications each of which claims a
“‘reserve’’, and every reserve is to be allocated its budgeted time within a guaranteed
latency bound. An application-level scheduler schedules tasks sharing a reserve
according to the algorithm chosen for the tasks whenever their reserve is allocated
time. The goal is for the two-level scheduling to provide the tasks sharing the reserve
with timing isolation, protects them from ill effects of resource contention, enables the
real-time performance of the tasks to be tuned and verified without regard to how tasks
not sharing the reserve are scheduled. The open system problem was first treated in Deng
and Liu (1997) where the Liu and Layland task model is assumed for all applications. An
alternative approach has been proposed by Mok and Feng (2002). These authors regard
the resource allocation problem as that of scheduling each individual application on a
dedicated (virtual) processor but the dedicated processor may run at a non-constant speed.
They introduced the concept of an RTVP (Real-Time Virtual Processor) which requires
the speed variation of a virtual processor to be constrained by a jitter bound. RTVPs can
be implemented by scheduling a physical processor to respect the jitter bounds of the
RTVPs, each of which consumes a specified fraction of the physical processor. RTVP
does not pose any restriction on the scheduling model that may be assumed by any
application. An application-specific scheduler that meets the timing constraints of the
tasks in the application on a dedicated (real) processor will also meet the same timing
constraints when the application is run on an RTVP as long as the schedule generated by
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the application-specific scheduler has sufficient time slacks to tolerate the supply jitter of
the RTVP on which the application runs.

A dual development is the notion of a composite task that modularizes a service
supported by several tasks. The two key ideas are (1) to combine and abstract the
collective real-time requirements of a component as a single real-time requirement, called
scheduling interface and (2) to compose independently analyzed local timing properties
under their local schedulers into a global timing property under a global scheduler. Shin
and Lee (2002) introduced an approach to use the standard Liu and Layland periodic
model as a scheduling interface model to develop a compositional real-time scheduling
framework. They addressed the scheduling interface derivation problem by abstracting a
set of periodic tasks under EDF or RM scheduling as a periodic scheduling interface.
Using this framework, each component exports its periodic scheduling interface to the
system and the system treats the component as a single periodic task. Using the same
technique as for the scheduling interface derivation problem, they also addressed the
scheduling interface composition problem by composing a set of periodic interfaces
under EDF or RM scheduling as a single periodic interface. They presented schedulability
conditions to check exactly if a set of periodic tasks is schedulable under EDF and RM
scheduling over the worst-case supply of a periodic resource (i.e., a periodically
partitioned resource).

In cases where the workload may not be known until run time, dynamic planning-
based schedulers have been proposed that focus on dynamically performing feasibility
checks on the fly. A task is guaranteed by constructing a plan for task execution whereby
all guaranteed tasks meet their timing constraints. In a distributed system, when a task
arrives at a site, the scheduler at that site attempts to guarantee that the task will
complete execution before its deadline, on that site. If the attempt fails, the scheduling
components on individual sites cooperate to determine which other site in the system has
sufficient resource surplus to guarantee the task. To construct a schedule, a heuristic
function, H, which synthesizes various characteristics of tasks affecting real-time
scheduling decisions is used. H is applied to at most £ tasks that remain to be scheduled
at each level of search. The task with the smallest value of function H is selected to
extend the current partial schedule. If a partial schedule is found to be infeasible, it is
possible to backtrack and then continue the search. If the value of k is constant (and in
practice, k will be small when compared to the task set size n), the complexity is linearly
proportional to n, the size of the task set (Ramamritham et al., 1990). While the time
complexity is proportional to n, the algorithm may be programmed so that it incurs a
fixed worst-case cost by limiting the number of H function evaluations permitted in any
one invocation of the algorithm. The algorithm was also extended to handle many
different situations and types of requirements (Zhao and Ramamritham, 1987a; Zhao et
al., 1987b; Ramamritham and Stankovic, 1984; Ramamritham et al., 1989; Stankovic et
al., 1985). This algorithm was implemented as part of the Spring kernel (Stankovic and
Ramamritham, 1991).

Unlike the scheduling of a processor, a network needs to be scheduled in a distributed
fashion. Zhao et al. was among the first to show how to implement distributed deadline
driven scheduling in a network setting (Zhao and Ramamritham, 1986, 1987). During the
1990s, the switched networks (e.g., ATM networks and switched Ethernets) became



144 SHA ET AL.

popular due to their capacity and flexibility. Li et al. showed how to guarantee the end-to-
end delays in these types of wide area networks (Li et al., 1997). The methodology was
based on network calculus techniques. Unlike traditional schedulability analysis
techniques, this new method uses functions to model arrivals and services of real-time
requests. The model is hence highly flexible and can work with many kinds of arrival
patterns and service disciplines The resulting outcomes are highly effective and efficient
admission control algorithms for modern switched networks. Further developments along
this line can be found in Ng et al. (1997).

Because of the large variety of timeliness requirements found in real-time applications,
a worthy goal is to find canonical representations of timing constraints and to seek
general solutions to the constraints. Towards this end, there has been some work in
formalizing the general real-time scheduling problem as some sort of constraint
satisfaction problems. However, due to the infinite horizon of real-time scheduling
problems, the corresponding specification of the constraints involves not a finite but
infinite set of constraints and so the constraint representation language must be powerful
enough to specify infinite constraint sets. In Mok et al. (1996), a first-order logic RTL
(Real-Time Logic) was used to specify timing constraints that are made up of the logical
combination of simple timing constraints where a simple timing constraint specifies a
distance relation between the occurrences of two events, such as the start and completion
of a task execution. This language is sufficiently powerful to specify, for example, a wide
variety of timing constraints that are typically imposed on cyclic-executive-type
schedulers such as those found in the Boeing 777 AIMS (Air Information Management
System). Solution techniques involving fast backtrack and incremental constraint
satisfaction were introduced in Mok et al. (1996). Related work in composing real-
time schedulers to combine cyclic executive and sporadic task models can be found in
Wang et al. (2003).

7. Challenges Ahead

We have reviewed some of the major real time scheduling results in the past 25 years.
Looking at the big picture, we have witnessed the changing trends in real-time systems.
The system architecture has changed from a federated system architecture to an
integrated system architecture and then to system of systems. Each shift has brought
about enormous challenges to the available technological infrastructure.

In a federated architecture, a system is characterized by a collection of private
hardware resources, a small number of high volume high variability sensor data streams
on dedicated links, loosely coupled distributed actions, and hardware-based isolation and
protection. Under this type of architecture, the task in managing shared resources is
mainly how to handle periodic data flow driven by signal processing and control. The
existing real-time computing infrastructure has served most practitioners well for this
type of application.

In an integrated system architecture, sensors, communication channels and processors
are extensively shared. The large number of possible configurations becomes a challenge
for system architects. The current generation of schedulability analysis tools offer
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inadequate support for system architects. They must manually create the alternative
options and then check the schedulability of each option. They would like to have tools to
automatically search the design space and perform sensitivity analysis regarding the
uncertainty of task parameters. During the system engineering phase, the values of task
parameters are often educated guesses. Finally, from the perspective of runtime
reconfiguration, dynamic priority scheduling theory has potential advantages. In addition
to the potential of higher schedulability, the feasibility analysis of dynamic priority
scheduling is often faster. We are looking forward to the maturing and subsequent use of
dynamic scheduling theory in practice.

In modern integrated systems, there are substantial high volume and high variability
imaging data streams. Depending on the nature of applications, they have either hard or
soft end-to-end deadlines. If the images are used for steering a vehicle, they will have a
hard end-to-end deadline and tight jitter tolerance. Such hard-deadline streams pose
challenges to traditional scheduling theory using worst-case assumptions. The large
execution time variability causes inefficiency. There are many algorithms developed to
capture the unused cycles to improve local aperiodic response times. How to effectively
use such transient surpluses along a path to improve end-to-end responses requires more
studies. The soft real-time image data streams also pose challenges to the statistical
approach. As discussed in Section 4.1, the processing times of an imaging data stream at
nodes on its path are positively correlated, not independent. In addition, on congested
resources such as shared buses, an image data stream can consume a significant fraction
of a shared resource, instead of consuming a small fraction of a shared resource that
allows the use of the law of large numbers.

A system of systems is often a large distributed system, where keeping distributed
views and actions timely and consistent is at the heart of collaborative actions. Ideally, we
would like to keep distributed views, state transitions and actions consistency with each
other. In business systems, the consistency of a distributed system is managed by atomic
operations. Simply put, atomic operations wait for every working component to be ready
and then commit the operations. However, this may not be viable for real-time systems.
The train must leave the station without waiting for every passenger to board the train.
However, those components that are left behind with outdated views and states must
quickly catch up and re-synchronize themselves with the system. If more and more
components fall out of synchronization, the system of systems will fall apart. How to
handle the interactions between timing constraints, consistency requirements, and re-
synchronization in a large distributed system is a challenge. As a networked embedded
system of systems grows larger and the coordination becomes tighter, so will be the
impact of this technological challenge. The re-synchronization loop is a form of feedback
control. As discussed in Section 5, feedback is a powerful technique which has yet to be
fully exploited in the control of the behavior of computing systems in the face of
uncertainty.

Another characteristic of a system of systems is that a wide variety of real-time, fault
tolerance and security protocols are used in different systems, because most of the
systems of systems are integrated, not built from scratch. It is well known that perfectly
fine medicines when taken alone can react badly when taking together. Priority inversion
is an example of pathological interaction between independently developed synchroniza-
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tion protocol and priority scheduling protocol. This is not an easy problem to solve
because the scope of modern technologies is so large and complex. To advance any area,
one must specialize. As a result, we have specialized real-time, fault tolerance, security
communities focussing on improving the results in one dimension with little attention on
how separately developed protocols may interact. We need to create a forum for the co-
development/integration of real-time, fault tolerant, security, communication and control
protocols. Research is needed to formally verify that protocols do not invalidate each
others’ pre-conditions when they interact.

Looking ahead, much remains to be done in the creation of a new real-time computing
infrastructure for modern real-time systems. It will be an exciting time!
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Notes

1. The original description of the Sporadic Server in Sprunt et al. (1989) contained a defect, that led to several
variations. See Liu (2000) for details.

2. It was shown by Tia et al. (1996) that there are situations in which it is better to preserve spare capacity rather
than use it immediately; and as a consequence optimal performance is not attainable.

3. We recall that the laxity (or slack time) is the difference between the absolute deadline and the estimated
worst-case finishing time.

4. Also known as instantaneous utilization.
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