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Abstract— This paper investigates an event condition for
event-driven controllers based on Lyapunov functions. Con-
sidering that constant values of a Lyapunov function define
contour curves that form closed regions around the equilibrium
point, in this paper we present a sampling mechanism that
enforces job executions (sampling, control algorithm computa-
tion and actuation) each time the system trajectory reaches a
given contour curve. By construction, the sequence of generated
samples is stable in the discrete Lyapunov sense. However, in
order to ensure that the system trajectory will tend to zero
as time tends to infinity, it must be ensured that the sequence
of samples is infinite. We provide conditions to ensure this
property. The approach is illustrated by simulated examples.

I. INTRODUCTION

Computing and communication capabilities are being em-

bedded in all types of objects and structures in the physical

environment, creating the so-called cyber-physical systems

(CPSs) [1]. For these systems, sensing and control of phys-

ical entities, that is, feedback control loops, require new

paradigms like breaking the notion that sample times have

to be equidistant, constant, and synchronized [2]. This may

lead a more efficient use of networks and processors while

ensuring or maximizing control performance, as well as a

better adaptation of networked applications to different and

dynamic time scales.

In this line, recent research has provided diverse the-

oretical results suggesting that for several control loops

sharing limited computing resources, a key design aspect

is to efficiently select the controllers’ sampling periods,

e.g. [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].

These results indicate that controllers’ execution rates must

be different from those provided by the standard periodic

sampling approach, either tackling the problem of sampling

period selection using feedback scheduling techniques or

event-driven control techniques.

Within the context of event-driven control systems, in

this paper we investigate a new sampling scheme based on

Lyapunov functions. A set of contour curves of the Lyapunov

function define a discretization in a energy space domain,

and the system trajectory can move between them without

requiring control actions. Control jobs are only activated each

time the trajectory intersects a contour curve.

Recently, event-driven control systems have been receiving

increased attention. Controller jobs are triggered following
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Fig. 1: Lyapunov sampling mechanism

different mechanisms, such as diverse forms of level-crossing

mechanisms [5], [6], [7], [10], or state or self-triggered

mechanisms [3], [4]. However, none of them has presented

a sampling mechanism based on Lyapunov functions as we

do, although some closely related work can be found in [15].

A. Key points and problems to be solved

Figure 1 illustrates the proposed sampling mechanism.

In the figure, the Lyapunov function is represented in the

(x1, x2) plane by ellipses (contour curves) of constant energy.

Jobs executions, represented by circles, are only enforced

each time the system trajectory (solid line) intersects a

contour curve from outside to inside, i.e., decreasing the

system energy. Therefore, by construction, the generated

samples are stable in the discrete Lyapunov sense. We call

this triggering mechanism “Lyapunov sampling”.

Although the generated sequence of samples is stable in

the Lyapunov sense, i.e. decreasing energy at each sample,

the stability of the continuous dynamics are not guaranteed.

That is, from the sequence of samples, it cannot be ensured

that the system trajectory will tend to zero as time progresses

because the sequence of samples can be finite, as we will

further illustrate in the paper.

Note also that ensuring an infinite sequence of samples

implies that all sampling intervals are bounded. This facili-

tates the assessment of the controller computational demand,

thus permitting the feasibility analysis of a set of concur-

rent event-driven controllers [16]. In addition, if sampling

intervals can be predicted, more efficient techniques can be

applied to the design of the controller.

Problem 1: The first problem to be solved is to ensure

that the Lyapunov sampling mechanism produces an infinite

sequence of samples.
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The application of the Lyapunov sampling mechanism

requires dedicated hardware logics to check the system tra-

jectory and check whether the control job must be activated.

However, if the next activation time can be computed at each

job execution, the dedicated hardware is no longer required.

Jobs will follow a self-triggered model [17] because each job

will determine the release of its next job.

Problem 2: The second problem to be solved is to find

a technique that allows a self-triggered scheme for the

Lyapunov sampling mechanism.

B. Paper contribution and structure

The contribution of this paper is to present a novel

execution rule for event-driven control systems intended to

drive the system to a neighborhood of the equilibrium.

The rest of this paper is structured as follows. Section II

presents the preliminaries and illustrates some of the con-

cepts outlined earlier. Section III presents the Lyapunov

sampling mechanism that ensures stability of the system

trajectory, thus solving Problem 1. The feasibility of comput-

ing a key parameter of the introduced sampling mechanism

is discussed in Section IV. Section V addresses the self-

triggered approach for the Lyapunov sampling, addressing

Problem 2. And Section VI concludes the paper.

II. PRELIMINARIES

A. Event-driven control system model

We consider the continuous control system

ẋ(t) = f(x(t), u(t)) (1)

where x ∈ R
n denotes the state and u ∈ R

m the input.

Let

∀t ∈ [ti, ti+1) u(t) = k(x(ti)) = k(xi) (2)

be the control updates given by a feedback controller k :
R

n → R
m using only samples of the state at discrete instants

t0, t1, . . . , ti, . . . . (3)

With (2), the closed loop system becomes

ẋ(t) = f(x(t), k(xi)). (4)

B. Lyapunov sampling

Definition 1: Let V : R
n → R be a (local or global)

Lyapunov function in the classical sense, i.e., continuous

and positive definite. We call Ls the set of sequences of

samples obtained from evaluating system (4) in the sampling

instants (3) given by the Lyapunov sampling triggering

mechanism

V (x(ti+1)) = ηV (x(ti)) , η ∈ R
+. (5)

From Eq. (5), we notice that for small values of η we

expect large sampling periods. In fact, small values of η mean

that we set the next sampling instant when the Lyapunov

function has decreased more significantly with respect to the

current value.

For a given initial condition x0, Ls(x0) represents a

particular sequence generated as indicated previously.
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(a) Sample sequence and continuous dynamics
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Fig. 2: Stable sequence and stable dynamics

Lemma 1: By construction, it follows that SLs ∈ Ls

is the subset of sequences that are stable in the discrete

Lyapunov sense if η in the Lyapunov sampling triggering

mechanism (5) is restricted to

0 < η < 1. (6)

Note that V is not required to guarantee stability in the

continuous Lyapunov sense for the closed loop continuous

system (4). In addition, no restriction is set on the controller

law k(·).

Lemma 1 guarantees stable sampling sequences. However,

nothing is ensured about the stability of the continuous-time

dynamics (4) when xi ∈ SLs(x0).

C. Illustrative examples

In this section we present two examples that illustrate

two opposite behaviors for the double integrator continuous

time dynamics when the samples are stable in the discrete

Lyapunov sense.

Example 1: Throughout the paper, we will illustrate the

different results using a simple double integrator system

ẋ = Ax + Bu

where

A =

[

0 1
0 0

]

, B =

[

0
1

]

.

The Lyapunov function is

V (x) = xT Px
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(a) Sample sequence and continuous dynamics
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(b) Energy at the sampling instants

Fig. 3: Stable sequence and unstable dynamics

where

P =

[

1.1455 0.1
0.1 0.0545

]

.

The initial condition is

x0 =

[

0
−3

]

.

And control updates are given by the linear state feedback
gain

L =
ˆ

−10 − 11
˜

.

Example 2: Consider the simulation setting of Example 1

with the Lyapunov sampling mechanism (5) with η = 0.8,

that is, samples are taken when V (x(ti+1)) = 0.8V (x(ti))
holds. Figure 2 (a) plots the closed loop continuous-time

trajectory and the sequence of generated samples (circles) on

top of the contour curves. And Figure (b) plots the energy

V (xi) at each sample. As it can be observed, the sequence

of samples is stable and the trajectory is stable. Due to image

resolution, only 25 samples are shown. However, as the time

progresses, more samples are taken, driving the trajectory

toward zero.

Example 3: Consider the simulation setting of Example 2

with η = 0.65. Figure 3 (a) and (b) plot the same information

as before. As it can be observed, although the sequence

of samples is stable in the discrete Lyapunov sense, the

continuous-time trajectory is unstable. Note that the sequence

of samples is finite, and from the sixth sample, no further

samples are taken.

These examples illustrate the problems outlined previously

in Section I-A. Next section presents the sampling mecha-

nism that generates an infinite sequences of samples, thus

ensuring stability of the continuous-time dynamics, called

“stable Lyapunov sampling”.

III. STABLE LYAPUNOV SAMPLING

Looking at Figure 3 (a), from the last sample, we have to

determine the energy decrease produced by the system tra-

jectory up to the point it starts gaining energy again. Placing

a contour curve passing for that point would have ensured a

new sample. Therefore, for any initial condition, i.e. current

state, we have to determine the bound on energy decrease

produced by the system trajectory that still guarantees the

occurrence of the next sample.

And intuitively, this strongly relates to η. In fact, in this

section we derive further restrictions for η in (5) in such a

way that the generated sequence of samples is infinite.

Definition 2: Let x(t, x0) be the solution of (4), when

u(t) = k(x0), where x0 is a given initial condition. Let

the function V ∗ : R
n → R

V ∗(x0) = min
t

V (x(t, x0)) ∀t ≥ 0 (7)

denote the minimum achieved energy without changing the

control signal for any initial condition. And let t∗ : R
n → R

t∗(x0) = min(arg min
t

V (x(t, x0))) (8)

be the time at which the minimum energy is achieved.

We assume that the minimum in (7) exists.

Taking into account the initial energy V (x0) and the

minimum achieved energy V ∗(x0) given by (7) for any initial

condition, we are interested in finding the minimum distance

between them, that is,

min
x0

V (x0) − V ∗(x0), (9)

which is always a positive quantity by construction. Normal-

izing (9), we obtain

min
x0

1 −
V ∗(x0)

V (x0)
. (10)

The previous minimum will occur when
V ∗(x0)
V (x0)

is maximum.

Let the function η̂ : R
n → R be

η̂(x0) =
V ∗(x0)

V (x0)
. (11)

Definition 3: Let

η∗ = max
x0

η̂(x0). (12)

be the energy gain factor that minimizes (9). Note that by

construction, 0 ≤ η∗ ≤ 1.

Example 4: Figure 4 illustrates the concept given by defi-

nition 2 in the context of example 2. In Figure 4 we plot V(·)
for two initial conditions, namely x1

i and x2
i (with solid and

dashed lines respectively). In this case, both initial conditions

belong to the same contour curve V (x) = 0.015. As it can be

seen, for x1
i the minimum energy is V ∗(x1

i ) = 0.005 and the

time it occurs is t∗(x1
i ) = 0.117s. For x2

i , V ∗(x2
i ) = 0.003

and t∗(x2
i ) = 0.103s. Looking at definition 3, and by

only considering these two initial conditions, observe that
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Fig. 4: Looking for the minimum achieved energy

η̂(x1
i ) = 0.33 and η̂(x2

i ) = 0.2. Therefore, with this example,

η∗ = 0.33. Note that 0.33 generates a denser discretization

of contour curves than 0.2. However, the computation of η∗

must be for any initial state.

Theorem 1: For any x0, if η∗ < η < 1 then SLs(x0) is

an infinite sequence.

The theorem presents the stable Lyapunov sampling mech-

anism, which is based on restricting η in the Lyapunov sam-

pling condition (5) in such a way that the space discretization

given by the set of contour curves ensures infinite samples.

Proof: To prove that SLs(x0) is an infinite sequence,

we will prove that for any sample xi ∈ SLs(x0), the next

sample xi+1 ∈ SLs(x0) exists.

The event is activated according (5). From (5) let the

continuous function G : R → R be

G(t) = V (x(t)) − ηV (xi). (13)

We are interested in the roots of G, i.e., when (5) holds.

• For t = ti, i.e., at the current state, G(ti) > 0. Note

that

G(ti) = V (x(ti)) − ηV (xi)

= V (xi) − ηV (xi)

= (1 − η)V (xi).

Since V (xi) > 0 and 1 − η > 0, G(ti) > 0.

• For t = t∗(xi), i.e., at the time the minimum energy is

achieved, G(t∗) < 0. Note that

G(t∗(xi)) = V (x(t∗(xi))) − ηV (xi)

= V ∗(xi) − ηV (xi)

< V ∗(xi) − η∗V (xi)

= V ∗(xi) − max
x0

V ∗(x0)

V (x0)
V (xi)

≤ V ∗(xi) − max
xi

V ∗(xi)

V (xi)
V (xi)

≤ V ∗(xi) −
V ∗(xi)

V (xi)
V (xi)

= V ∗(xi) − V ∗(xi)

= 0.
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Fig. 5: Sampling intervals

Due to Bolzano theorem, if G(ti) > 0 and G(t∗) < 0 and

taking into account that G is continuous in [ti, t
∗], it ∃t ∈

(ti, t
∗), namely ti+1 such that G(ti+1) = 0, i.e., the event is

activated and the next sample xi+1 is taken.

Corollary 1: If the sequence of samples is infinite, a

maximum sampling interval exists and it is bounded by

t∗ − ti.

Example 5: From the Example 2, we can find numerically

that η∗ = 0.7818, which is given by any initial condition

that points into the direction [0.5069 − 0.8620]. Remind

that for Figure 2, with stable dynamics, η∗ < η = 0.8, and

for Figure 3, with unstable dynamics, η∗ > η = 0.65, which

corroborates the restrictions in η imposed in the theorem. The

bound on the maximum sampling interval is t∗−ti = 2.9216.

For illustrative purposes, Figure 5 shows the beginning of the

sequence of sampling intervals for the Example 2. The x-axis

is simulation time (note that only 1.5s are displayed), and

the y-axis is the sampling interval in seconds. Each sampling

interval is represented by a vertical line, separated by its

value. Hence it can be noticed that denser controller job

activations occur when the heights are shorter. Surprisingly,

sampling periods evolve from short values to high values,

settling to a given value of 0.052s, being all of them shorter

than the derived bound.

IV. COMPUTATION OF η∗ FOR LINEAR SYSTEMS

In example 5 we indicated that η∗ was found numerically.

It is important to note that computing η∗ for non-linear

systems is not trivial because it is a non-convex problem.

For linear systems, although being also non-convex, some

simplifications can be performed. This permits to derive a

feasible numerical algorithm for finding η∗.

Hence, restricting our interest to linear systems and linear

controllers, and aligned with some results presented in [18],

the following two scaling lemmas hold.

Lemma 2: The system solution with constant input scales

with a given initial condition, i.e.

x(t, cx0) = cx(t, x0) , c ∈ R. (14)

Proof: Given the system solution

x(t, x0) = eAtx0 +

∫ t

0

eAsdsLx0,
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Algorithm 1: Computation of η∗

begin
η∗ = 0
for θ ∈ [0; π] do

x =
[

sin(θ) cos(θ)
]T

V ∗ = computeV ∗(x)
V = xT Px

if V ∗

V
> η∗ then

η∗ = V ∗

V

end

it can be easily seen that

x(t, cx0) = eAtcx0 +

∫ t

0

eAsdsLcx0

= c(eAtx0 +

∫ t

0

eAsdsLx0)

= cx(t, x0).

Lemma 3: The energy in terms of the Lyapunov function

scales with a given system solution, i.e.

V (x(t, cx0)) = c2V (x(t, x0)) , c ∈ R. (15)

Proof: Given the energy

V (x(t, x0)) = x(t, x0)
T Px(t, x0),

it can be easily seen that

V (x(t, cx0)) = x(t, cx0)
T Px(t, cx0)

= c2x(t, x0)
T Px(t, x0)

= c2V (x(t, x0)).

These two lemmas permit deriving the following proposi-

tion.

Proposition 1: The energy gain factor η̂(x0) defined in

(7) is constant along rays through the origin, i.e.

η̂(x0) = η̂(cx0) , c ∈ R. (16)

Proof: From (7) and (11), η̂(·) can be written as

η̂(x0) =
min

t
V (x(t, x0))

V (x0)
.

Therefore, it can be seen that

η̂(cx0) =
min

t
V (cx(t, x0))

V (cx0)

=
min

t
c2V (x(t, x0))

c2V (x0)

= η̂(x0).

Taking into account Proposition 1, searching for η∗ re-

quires only working with the states belonging to the unit

hypersphere rather than the full state space because states
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Fig. 6: Values of η̂(·) for states lying in the unit circle

lying in the same ray will provide the same value for η̂(·).
Even more, due to the linear systems symmetry, we only

have to explore half hypersphere.

For illustrative purposes, Algorithm 1 shows a simple

numerical procedure for finding η∗ for two-dimensional

systems, where the only search space is the angle θ. Its

extension to higher order systems is straightforward.

Example 6: Following the previous example, Figure 6 il-

lustrates the previous search algorithm in the [0, 2π] interval.

It plots η̂ as a function of the state orientation. As it can

be seen, the maximum value of η̂ is η∗ = 0.7818, and the

announced symmetry can be perfectly observed.

V. APPROXIMATED COMPUTATION OF THE

NEXT ACTIVATION TIME

We are interested in deriving a closed expression that each

controller job can use to compute the next job activation

time. This will remove the need for the dedicated hardware

checking whether the Lyapunov sampling condition holds.

The approach here presented borrows the methodology

used in [16] where the approximated computation of the next

activation time was addressed for an event-driven condition

defined on the error with respect to the sampled state.

Consider that

ẋ(t) = f(x(t, xi), ui) (17)

is the state variation in the time instant t when the input

remains constant. The event condition is

V (x(t, xi)) − ηV (xi) = 0 (18)

where for easy explanation, V (·) is restricted to quadratic

Lyapunov functions, i.e.

V (x(t, xi)) = x(t, xi)
T Px(t, xi). (19)

We are interested in finding the minimum t by which (18)

holds. Consider the Taylor expansion of x(·)

x(t, xi) =
∑

n

1

n!

dnx(t, xi)|t0
dtn

(t − t0)
n. (20)
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V (x(t, xi)) − ηV (xi) = 0
x(t, xi)

T Px(t, xi) − ηV (xi) = 0
(
∑

n
1
n! (A + BL)nx(t, xi)|t0(t − t0)

n
)T

P
(
∑

n
1
n! (A + BL)nx(t, xi)|t0(t − t0)

n
)

− ηV (xi) = 0
(

∑

n
1
n! (x(t, xi)|t0)

T ((A + BL)n)T (t − t0)
n
)

P
(
∑

n
1
n! (A + BL)nx(t, xi)|t0(t − t0)

n
)

− ηV (xi) = 0
∑

n,m
1

m!n! (x(t, xi)|t0)
T

((A + BL)m)
T

P (A + BL)nx(t, xi)|t0(t − t0)
n+m − ηV (xi) = 0

(22)

For linear systems

dnx(t, xi)|t0
dtn

= (A + BL)nx(t, xi)|t0 (21)

Recovering (18), we have (22), that in a neighborhood of

t = 0 is

∑

n,m

1

m!n!
xT

i ((A + BL)m)
T

P (A + BL)nxit
n+m

−ηV (xi) = 0. (23)

Equation (23) is a polynomial of degree 2n for a n

order approximation. It can be easily solved for a first order

approximation, which yields to a second order equation. In

any case, the smallest positive root is the next activation time.

Hence, the Lyapunov sampling mechanism permits to adopt

a self-triggered scheme for the controller implementation.

The presented method for computing the next activation

times, since it uses a Taylor approximation, could provide

with times longer than the ones required to retain stability

of the system. One possible approach to avoid this problem

could be to use a more conservative (bigger) η∗ in the

implementation. This would have a double benefit. First,

it would decrease inter-sampling times and therefore the

likelihood of having longer times than the ones required to

retain stability would be eliminated. And second, it would

reduce the truncation error. However this has the handicap of

increasing the computation demand. Future work will deal

with this issue.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel sampling approach for

event-driven control systems based on Lyapunov functions.

The stable Lyapunov sampling mechanism has been intro-

duced. From a theoretical point of view, it ensures infinite

samples and therefore, ensures stability for the closed loop

trajectory. A technique for finding a self-triggered scheme for

the Lyapunov sampling mechanism has also been presented.

However, the limitations of the adopted technique require

looking for alternative techniques in order to achieve a more

accurate and robust self-triggered scheme.

Future work will focus on the computational demand

of the introduced sampling mechanism. First, it must be

assessed whether the novel sampling scheme is able to reduce

the controllers’ computational demand compared to the case

of periodic controllers, while providing similar performance.

Second, free parameters in the Lyapunov sampling scheme,

such as the Lyapunov function or the controller can be

studied in depth with respect to the resulting controller

computational demand.

Finally, future work will also consider the implementation

of the Lyapunov sampling mechanism using either dedicated

hardware or a suitable self-triggered paradigm.

REFERENCES

[1] J.A. Stankovic, I. Lee, A. Mok, R. Rajkumar, ”Opportunities and
obligations for physical computing systems”, IEEE Computer Volume
38, Issue 11, pp. 23 - 31, Nov. 2005.
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