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The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great
insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and
very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative
stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study
of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one
hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four
developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on
the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional
networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that
determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering
intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were
modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to
select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then
used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically
during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering
is discussed.

Grapevine (Vitis vinifera) is a commercially important
fruit crop cultivated for the production of table grapes,
juice, wine, distilled liquors, and dry raisins. In addition
to its high economic value, wine is now considered a

key source of health-promoting secondary metabolites,
especially antioxidant polyphenols such as resveratrol
(Iriti and Faoro, 2009; Yadav et al., 2009).

The economic importance of grapevine has encour-
aged many researchers to study the physiological and
molecular basis of berry development, particularly
those processes that affect wine quality (Conde et al.,
2007). The availability of high-throughput analysis
methods and a high-quality draft of the grapevine
genome sequence (Jaillon et al., 2007) has led to the
characterization of berry development at the levels of
the transcriptome (Terrier et al., 2005; Waters et al., 2005;
Deluc et al., 2007; Pilati et al., 2007), proteome (Giribaldi
et al., 2007;Negri et al., 2008; Zhang et al., 2008; Grimplet
et al., 2009b), and metabolome (Conde et al., 2007).

Berry development involves two sigmoidal growth
periods separated by a transition phase known as
veraison (Coombe and McCarthy, 2000; Carmona
et al., 2008). The first period (formation) is character-
ized by rapid cell division and growth, embryo devel-
opment, and the accumulation of malate and other
organic acids in the vacuoles (Coombe and McCarthy,
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2000; Sweetman et al., 2009). The second period (rip-
ening) is characterized by sugar accumulation, soften-
ing, and changes in color, followed by an increase in
pH and the accumulation of polyphenols and flavor
compounds (Coombe and McCarthy, 2000). Straw
wines require an additional postharvest drying (with-
ering) process to acquire the appropriate must quality
characteristics and to increase the concentration of
simple sugars. For example, cv Corvina berries un-
dergo a 3-month withering treatment under controlled
conditions for the production of straw wines such as
Amarone and Recioto. Withering has been investi-
gated at the level of the transcriptome (Zamboni et al.,
2008; Rizzini et al., 2009) and through the analysis of
certain metabolites (Bellincontro et al., 2004, 2006;
Costantini et al., 2006), but no proteomic analysis of
withering has previously been reported.

High-throughput analysis methods based on the
transcriptome, proteome, and metabolome generate
large data sets that must be related to the biological
system of interest, in this case berry development.
Within this framework, it is necessary to develop
analytical tools and strategies that allow relevant
biological processes to be described and information
to be extracted from parallel analyses carried out with
different profiling platforms. Bidirectional orthogonal
projections to latent structures (O2PLS; Trygg, 2002;
Trygg and Wold, 2003) is a multivariate technique that
has been used successfully to integrate such data sets
(Bylesjö et al., 2007, 2009). This technique can be applied
to systems-level studies carried out using either hy-
pothesis-free (discovery-driven) or hypothesis-driven
approaches (Hood et al., 2008). The former involves
defining and enumerating the elements of a system,
with data analysis leading to a hypothesis (Kell and
Oliver, 2004). The latter begins with a hypothesis,
which is tested by the capture, analysis, integration,
andmodeling of global data sets relative to phenotypic
responses when the system is perturbed in a defined
manner (Hood et al., 2008). The relative merits of
the two approaches are debated (Nabel, 2009). The
discovery-driven approach can generate new knowl-
edge if important components of the system (and their
interactions) can be identified in large omics data sets
(Saito and Matsuda, 2010).

We investigated berry development and withering
in cv Corvina at the transcriptomic, proteomic, and
metabolomic levels. Genome-wide transcriptional
analysis was carried out using a microarray containing
genomic sequences (Jaillon et al., 2007), proteomic data
were obtained by two-dimensional difference gel elec-
trophoresis (2D-DIGE), and metabolomic data were
obtained by HPLC coupled to mass spectrometry
(MS). The O2PLS-discriminant analysis (DA) tech-
nique was used to analyze each data set with respect
to the different developmental phases and withering
intervals and then to derive putative transcript, pro-
tein, and metabolite biomarkers. We used a multistep
hypothesis-free approach, in which the first step
helped to identify information contained in each data

set relevant to the development processes, the second
step allowed the identification of subgroups of
strongly correlated measured variables characterizing
these processes, and the third step involved the appli-
cation of hierarchical clustering analysis (HCA) and
the minimum spanning tree (MST) method to these
subgroups of variables in order to build simple corre-
lation networks highlighting the relationships be-
tween transcripts, proteins, and metabolites. Each
network provides a snapshot of a particular phase of
berry development or withering and describes the
correlation between variables from different data sets
involved in the corresponding underlying molecular
events. We used a hypothesis-driven approach to
study withering, which is characterized by water
stress due to dehydration. Variables from the three
withering data sets were selected based on the accu-
mulation of specific metabolites and knowledge of the
transcriptional events that characterize withering in
Corvina berries (Zamboni et al., 2008). Again, O2PLS
allowed the identification of well-correlated transcript,
protein, and metabolite variables.

RESULTS

Transcriptomic, Proteomic, and Metabolomic Data

Triplicate samples were taken from four develop-
mental time points and three withering intervals (21
samples in total). Brix values and berry weight in-
creased throughout development, but whereas Brix
values continued to increase during withering as
sugars concentrated, the total berry weight fell due
to dehydration (Fig. 1; Supplemental Table S1).

Figure 1. The seven sampling time points covering berry development
and withering. The first four sampling time points encompass berry
development, whereas the last three encompass the 3-month posthar-
vest withering process. The weight loss during withering is indicated
by the weight as a percentage of the weight during ripening. PV,
Preveraison; V, veraison; PR, preripening; R, ripening; WI, withering I;
WII, withering II; WIII, withering III. Each time point is also represented
according to the modified E-L system for grapevine growth stages
defined by Coombe (1995). [See online article for color version of this
figure.]
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Transcriptome analysis was carried out by interro-
gating a Combimatrix grapevine genome chip con-
taining 25,471 unique probes, using mRNA prepared
from each of the 21 samples. In total, 12,285 transcripts
were expressed in at least one of the sampling time
points. Proteomic data from the same 21 samples were
obtained by 2D-DIGE and subsequent data analysis
using the DeCyder software package. This analysis
revealed that of the 758 protein spots present in 80% of
all protein maps (Supplemental Data Set S8), 68 were
differentially expressed (Supplemental Data Set S1).
Untargeted metabolomic analysis by HPLC-MS re-
vealed 408 signals (Supplemental Data Set S9) that
yielded 220 successful fragmentations and 130 puta-
tive identifications, 35 of which were fragments or
artifacts (minor isotopes or adducts; Supplemental

Table S2). A schematic representation of the data set
analysis pipeline is shown in Figure 2.

Data Set Exploration

Pattern recognition by principal component analysis
(PCA) on each individual data set revealed three
clusters (Fig. 2A). Soft independent modeling by class
analogy confirmed that each of the three clusters could
be considered as a unique class, named a, b, and c (data
not shown). The score scatterplot of the PCAmodel for
the metabolome data set is shown in Figure 3, but
similar results were obtained for the transcriptome
and proteome data sets. The first principal component
split the observations of the preveraison and veraison
sampling time points (class a) from those of all the

Figure 2. Data set analysis strategies. A, Multivariate analysis applied to each data set. The structure of each data set was first
defined by unsupervised PCA revealing three main clusters (classes). O2PLS-DAwas performed on each data set to identify class-
specific variables. B, Identification of putative class-specific markers. Putative markers in classes a, b, and c were identified by a
series of three two-class O2PLS-DAs for the transcriptome, proteome, and metabolome data sets. For each series, observations in
the class of interest (e.g. a) were separated from those of the other classes (e.g. b and c), the latter identified by two permutations
of observations during the definition of first and second classes in the remaining O2PLS-DAs. C, I, Hypothesis-free approach for
data integration using a hierarchical analysis strategy. The score vectors arising from the O2PLS-DAmodels of data sets i and j are
combined by O2PLS in order to obtain the superscore vectors to integrate the two data sets. The so-called p(corr) and q(corr)
parameters that allowed us to determine which variables were correlated between the two data sets were obtained by calculating
the correlation of eachmeasured variable with respect to the superscore vectors of the corresponding block. HCAwas performed
in order to identify subsets of well-correlated variables, and MSTwas used to represent graphically the relationships between the
variables from each subset. II, Hypothesis-driven approach for data integration. Subdata sets were obtained by selecting variables
in relation to known and relevant molecular processes and were integrated using O2PLS models. The so-called p(corr) and
q(corr) parameters that allowed us to determine which variables were correlated between the two data sets were obtained by
calculating the correlation of each measured variable with respect to the superscore vectors of the corresponding block. [See
online article for color version of this figure.]
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other sampling time points, whereas the second prin-
cipal component split the preripening and ripening
observations (class b) from the three withering obser-
vations (class c).

In order to characterize each class on the basis of
class-specific variables, O2PLS-DA was performed on
each data set (Fig. 2A). Class-specific variables (more
abundant in one class than the others) were selected by
inspecting the so-called pq(corr) scatterplot obtained
by calculating the Pearson correlation between the
measured variables and the two predictive latent
components of each model [p(corr)] and that between
the dummy variables representing the classes and the
predictive components [q(corr)].

Separate lists were generated from the transcrip-
tome, proteome, and metabolome data sets (Supple-
mental Data Sets S2–S4). In the transcript data set, each
variable was identified by its tentative consensus (TC)
number and/or the coding sequence (CDS) identifier
code (www.genoscope.cns.fr), and a Gene Ontology
biological process annotation was assigned based on
BLASTP analysis of the UniProt database (Supple-
mental Data Sets S2 and S5). Class-specific transcripts
were organized into major biological process cate-
gories represented by a color code in the scatterplot
(Fig. 4A). Although the number of variables charac-
terizing each class was different, the cellular compo-
nent organization, developmental process, cellular
metabolic process, and oxidation-reduction categories
were represented predominantly by transcripts spe-
cific for classes a and c, catabolic processes by tran-
scripts specific for classes b and c, and the regulation of
biological processes by transcripts in all three classes
(Fig. 4A).

For proteins and metabolites, the color code in the
scatterplots was used only for variables regardless of
each class (Fig. 4, B and C). The protein color code was
assigned according to the Gene Ontology terms re-
vealed by the BLASTP results (Supplemental Data Set
S1), whereas for metabolites the code was assigned

according to their grouping in major chemical families
(Supplemental Table S2). The response to stimulus and
secondary metabolic process categories were repre-
sented predominantly by proteins specific for classes
b and c, oxidation reduction by proteins specific for
class a, and primary metabolic processes by proteins
in all three classes (Fig. 4B). Few metabolites were
specifically characteristic of class a, whereas a larger
number of metabolites were associated with classes
b and c (Fig. 4C). Class a mainly comprised flavan-
3-ols, proanthocyanidins, and organic acids, whereas
classes b and c included sugars, flavones, flavanones,
and acetylated and nonacetylated anthocyanins. Stil-
benes were exclusively present in class c (Fig. 4C).

Identification of Putative Biomarkers

Three distinct two-class O2PLS-DA models were
built to identify putative biomarkers for each of the
three classes (Fig. 2B). For example, to identify puta-
tive class a biomarkers, class a observations were used
as a reference whereas class b and c observations were
associated in a unique distinct class. The other two
models were similarly designed, using b and c for
the reference classes, respectively. The so called S-plot
[i.e. cov(x,tp) versus corr(x,tp)] was then used to select
putative biomarkers (Wiklund et al., 2008).

Putative biomarkers were defined as molecules in-
dicating or correlating with the physiological changes
that occur during berry development or withering.
These were further described as “increasing” if they
were more abundant in the class being considered
relative to the other two classes or as “decreasing” if
they were less abundant in the class being considered
relative to the other two classes.

By applying three consecutive O2PLS-DAs for
each data set (Fig. 2B), putative biomarkers specific
for all the three classes were identified (Table I). In the
transcriptome data set, we identified six increasing
and four decreasing biomarkers in class a, three in-
creasing and three decreasing in class b, and six
increasing and two decreasing in class c. In the
proteome data set, we identified two increasing and
three decreasing biomarkers in class a, two increasing
and two decreasing in class b, and four increasing and
four decreasing in class c. In the metabolome data set,
we identified four decreasing biomarkers but no in-
creasing ones in class a, whereas classes b and c were
characterized by six and four increasing biomarkers,
respectively, and no decreasing ones (Table I). Some
putative biomarkers yielded no information: that is,
transcripts with no sequence homology to known
proteins (“no hits found”), proteins that were not
sequenced (“not sequenced”), and metabolites that
were not identified (“not identified”).

Integration of Data Sets (Hypothesis-Free Approach)

Data integration in the hypothesis-free approach
was carried out using a hierarchical multivariate data

Figure 3. Metabolome PCA scatterplot representing 21 observations.
Different colors are used to identify samples in classes a, b, and c. PV,
Preveraison; V, veraison; PR, preripening; R, ripening; WI, withering I;
WII, withering II; WIII, withering III. [See online article for color version
of this figure.]
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Figure 4. O2PLS-DA of each data set. A, O2PLS-DA of the transcriptome data set (UV, 2+2+0, R2Y = 0.97, Q2 = 0.78). B,
O2PLS-DA of the proteome data set (UV, 2+3+0, R2Y = 0.98, Q2 = 0.75). C, O2PLS-DA of the metabolome data set (Par, 2+3+0,
R2Y = 0.97, Q2 = 0.78). In each case, the pq(corr) scatterplot is obtained by plotting the pq(corr)2 value as a function of the
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analysis strategy (Fig. 2C). The predictive scores
obtained for each data set in the class characterization
step described above were used as supervariables to
represent the three data sets. This overcame the dom-
inance effect in data integration caused by the different
number of variables in each data set (12,285 tran-
scripts, 758 proteins, and 408 metabolites). When in-
tegrating a pair of data sets, O2PLS identified the joint
covariation between the two blocks. The supervariable
arising from each data set was rotated, yielding a
useful basis to project the measured variables. Indeed,
for each block, we generated two orthogonal super-
score vectors closely correlated to those of the other
block. By calculating the correlation of each measured
variable with respect to the superscore vectors of the
corresponding block, we obtained the so-called p(corr)
and q(corr) parameters that allowed us to evaluate
which variables were correlated between the two data
sets and which were not (Bylesjö et al., 2007). Three
different kinds of variables were defined: those corre-
lating well with the first superscore vector, those
correlating well with the second superscore vector,
and those showing negligible correlation with either
vector. Data integration involved only those variables
in each block showing good correlation with one of the
two superscore vectors. A permutation test was used
to establish useful thresholds for correlation, with a
significance level of 0.95.

HCA was performed in order to identify subsets of
well-correlated variables, and MSTwas used to repre-
sent graphically the relationships between the varia-
bles from each subset. The inverse of the pair-wise
correlation was used to determine the edge distance.
In order to integrate the transcriptome and proteome
data sets, transcript variables were selected by setting
p(corr)1$ 0.83 and# –0.83 and setting p(corr)2$ 0.80
and # –0.82. The protein variables were selected by
setting q(corr)1$ 0.73 and# –0.71 and setting q(corr)2$
0.79 and # –0.75. HCA was carried out using the
selected transcript and protein variables, resulting in
15 clusters, only two of which contained both tran-
scripts and proteins (Fig. 5). Similar analysis was
carried out to integrate the metabolome and tran-
scriptome data sets and the proteome andmetabolome
data sets. In the former case, metabolite variables were
selected by setting p(corr)1 $ 0.82 and # –0.71 and
setting p(corr)2 $ 0.73 and # 20.68, whereas tran-
script variables were selected by setting q(corr)1 $
0.81 and # –0.82 and setting q(corr)2 $ 0.78 and #
–0.76. In the latter case, metabolite variables are se-
lected by setting p(corr)1 $ 0.83 and # –0.72 and
setting p(corr)2 $ 0.71 and # –0.68, whereas protein
variables were selected by setting q(corr)1 $ 0.90
and # –0.86 and setting q(corr)2 $ 0.64 and # –0.63.

In both cases, two HCAs were performed, resulting in
21 clusters for the transcript/metabolite integration,
one of which contained both transcripts and metabo-
lites, as represented by the network shown in Figure 6.
Thirteen clusters were identified for the protein/
metabolite integration, two of which contained both
proteins and metabolites, as represented by the net-
work shown in Figure 7.

To integrate all three data sets, O2PLS was carried
out to identify the joint covariation structures between
the metabolome data set and the joint covariation
structures from the transcriptome and proteome data
sets. By following the same approach proposed for
two-block integration, the two orthogonal pairs of
superscore vectors were used to calculate the p(corr)
and q(corr) parameters. On the basis of these param-
eters, we selected the sets of correlated variables
between the three data sets. Using the permutation
test, thresholds were defined for the p(corr) and
q(corr) values with a significance of 0.95. Transcript
variables were selected by setting p(corr)1 $ 0.83
and # –0.83 and setting p(corr)2 $ 0.85 and # –0.95.
Protein variables were selected by setting p(corr)1 $
0.60 and # –0.60 and setting p(corr)2 $ 0.77 and #
–0.78. Finally, the metabolite variables were selected
by setting q(corr)1 $ 0.60 and # –0.61 and setting
p(corr)2 $ 0.75 and # –0.60. HCA identified 58 clus-
ters, two of which contained transcripts, proteins, and
metabolites, as represented by the networks in Fig-
ure 8. All networks showed only positive correla-
tions between transcripts, proteins, and metabolites
(Supplemental Data Set S1, Supplemental Table S2,
and Supplemental Data Set S5, respectively).

Integration of Data Sets (Hypothesis-Driven Approach)

Withering was analyzed separately using a hypoth-
esis-driven approach to integrate data sets selected on
the basis of secondary metabolites accumulating spe-
cifically during withering and withering-specific
changes in gene expression described in a previous
investigation (Zamboni et al., 2008). Specific transcrip-
tome, proteome, and metabolome subdata sets were
selected accordingly. A 45-metabolite subdata set was
obtained by selecting all secondary metabolites be-
longing to the chemical groups clearly associated with
the withering process (Fig. 4C) such as stilbenes,
flavanones, and acylated anthocyanins (Supplemental
Data Set S4; Supplemental Table S2). We also selected a
134-transcript subdata set (Supplemental Data Set S6)
including transcripts involved in Phe synthesis (shiki-
mate pathway and terminal reactions of Phe synthe-
sis), in the synthesis of secondary metabolites (general
phenylpropanoid, stilbene, and flavonoid pathways),

Figure 4. (Continued.)
pq(corr)1 value for each variable, and the variable selected on the basis of the best pq(corr)1 and pq(corr)2 for each of the three
classes is colored according to the Gene Ontology biological process categories or chemical classes, as appropriate
(Supplemental Data Sets S1 and S2). [See online article for color version of this figure.]
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Table I. Putative class-specific biomarkers for transcript, protein, and metabolite data sets

IDa Descriptionb p(corr)c
Type of Putative

Biomarkerd

Transcripts
Class a (O2PLS-DA, UVe, 1+2+0, R2Y = 0.97 Q2 = 0.91)f

TC56559 Endo-1,3-1,4-b-D-glucanase, putative 0.98 [
TC58936 11-b-Hydroxysteroid dehydrogenase-like 0.97 [
TC59336 Putative Pro-rich protein 0.97 [
TC61079 Tubulin b-chain, putative 0.97 [
TC62885 Putative Pro-rich cell wall protein 0.97 [
TC67142 Peptide transporter-like protein 0.97 [
TC65181 Laccase, putative 20.91 Y
TC68733 Hypothetical binding protein 20.87 Y
TC70396 LYK10 20.86 Y
TC70352 Ser/Thr-protein kinase BRI1-like3 20.86 Y

Class b (O2PLS-DA, UVe, 1+3+0, R2Y = 0.98 Q2 = 0.83)f

TC62912 No hits found 0.90 [
TC60484 Putative uncharacterized protein 0.87 [
GSVIVT00011164001 Uncharacterized protein At5g10470.2 0.87 [
TC67036 Putative uncharacterized protein 20.84 Y
TC66870 No hits found 20.81 Y
TC70381 Expansin 20.81 Y

Class c (O2PLS-DA, UVe, 1+2+0, R2Y = 0.97 Q2 = 0.87)f

TC55160 Putative uncharacterized protein 0.97 [
TC62844 Pentatricopeptide repeat-containing protein

At1g80270, mitochondrial
0.95 [

TC67468 Histone H3 0.95 [
TC63796 Histone H2A 0.94 [
TC61232 F-box protein At1g23780 0.94 [
TC53432 GTP-binding nuclear protein Ran-3 0.96 [
TC56308 Cytochrome P450 20.93 Y
TC55457 No hits found 20.92 Y

Proteins
Class a (O2PLS-DA, UVe, 1+1+0, R2Y = 0.95 Q2 = 0.83)f

1211 Class IV chitinase 0.95 Y
1171 Class IV chitinase 0.95 Y
1199 Not sequenced 0.95 Y
210 Not sequenced 20.87 [
1062 Not sequenced 20.88 [

Class b (O2PLS-DA, UVe, 1+2+0, R2Y= 0.95 Q2 = 0.71)f

1917 Not sequenced 0.81 Y
1861 Not sequenced 0.77 Y
860 Not sequenced 20.73 [
421 Not sequenced 20.72 [

Class c (O2PLS-DA, UVe, 1+2+0, R2Y = 0.97 Q2 = 0.69)f

1393 Osmotin-like protein 0.87 [
1420 Not sequenced 0.87 [
1542 Not sequenced 0.82 [
1439 Thaumatin-like protein TLP 0.81 [
258 OSJNBa0006A01.15 protein 20.71 Y
1156 Not sequenced 20.70 Y

Metabolites
Class a (O2PLS-DA, Pare, 1+2+0, R2Y = 0.98 Q2 = 0.89)f

15 Peonidin 3-O-glucoside (chlorine adduct) 0.92 Y
17 Malvidin O-glucoside (chlorine adduct) 0.91 Y
65 Malvidin 3-O-glucoside derivative 0.93 Y
6 Dihexose derivative 0.94 Y

Class b (O2PLS-DA, Pare, 1+2+0, R2Y = 0.96 Q2 = 0.79)f

157 Not identified 0.74 [
197 Not identified 0.63 [
249 Not identified 0.68 [
258 Not identified 0.65 [
312 Not identified 0.79 [

(Table continues on following page.)
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and those encoding MYB, bHLH, and WD-repeat
proteins. O2PLS (UV, 2+3+0, R2X = 0.74 R2Y = 0.62)
identified 57 well-correlated variables: 27 transcripts
and 30 metabolites (Supplemental Data S6). We also
selected a 169-transcript and 11-protein subdata set
reflecting the stress response (to biotic stimuli, oxida-
tive stress, and dehydration) as well as WRKY tran-
scription factors (Supplemental Data Set S7). O2PLS
(UV, 2+3+0, R2X = 0.70 R2Y = 0.69) identified 15 well-
correlated variables: 13 transcripts and two proteins
(Supplemental Data Set S7). A schematic representa-
tion of well-correlated transcript, protein, and metab-
olite variables representing phenolic compound

synthesis and the stress responses during withering
is shown in Figure 9.

DISCUSSION

Overview

In order to achieve what is, to our knowledge, the
first holistic, systems-level analysis of grapevine de-
velopment and withering by integrating transcrip-
tomic, proteomic, and metabolomic data sets, we
used the same 21 samples representing four develop-
mental time points and three withering intervals to

Table I. (Continued from previous page.)

IDa Descriptionb p(corr)c
Type of Putative

Biomarkerd

Class c (O2PLS-DA, Pare, 1+3+0, R2Y = 0.99 Q2 = 0.87)f

7 Taxifolin deoxyhexoside 0.89 [
150 Not identified 0.90 [
18 Taxifolin hexoside (chlorine adduct) 0.91 [
324 Not identified 0.92 [
19 Tetrahydroxyflavanone O-deoxyhexoside 0.94 [

aIdentifier number of putative transcript, protein, and metabolite biomarkers. bDescription of putative transcript, protein, and metabolite
biomarkers. cp(corr) value of putative transcript, protein, and metabolite biomarkers. dIncreasing ([) or decreasing (Y)putative transcript,
protein, and metabolite biomarkers. eScaling method: UV, unit variance; Par, pareto. fParameter of each O2PLS-DA model (scaling,
components, R2, and Q2 values).

Figure 5. Transcript-protein networks.
A network representation of the two
transcript-protein clusters generated by
HCA performed on selected transcript
and protein variables from O2PLS-DA
data is shown. The length of the vari-
able interconnection is inversely pro-
portional to the pair-wise correlation
between the two variables. Black,
Transcript; gray, protein; nhf, no hits
found; ns, not sequenced. [See online
article for color version of this figure.]
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improve the consistency of microarray, 2D-DIGE,
and untargeted large-scale metabolomic analysis by
HPLC-MS. The inherent difference in data set com-
plexity (12,285 transcripts, 758 proteins, 408 metabo-
lites) reflects both the limitations of the technologies
and the hierarchical organization of biological infor-
mation (Oltvai and Barabási, 2002).

Data Set Exploration

The variability within each data set was examined
by unsupervised PCA, which showed that the first
principal component split the preveraison and ve-

raison observations from those of the other sampling
time points, and the second principal component
split the preripening and ripening observations from
those of the three withering time points. PCA thus
grouped the observations from the seven sampling
time points into three major biological classes rep-
resenting preveraison/veraison (a), preripening/
ripening (b), and withering (c; Fig. 3). Although the
preveraison and veraison stages were described as
physiologically different (Deluc et al., 2007; Pilati
et al., 2007), when studied together with ripening
and withering they are not discriminated in PCA
analysis.

Figure 6. Transcript-metabolite net-
work. A network representation of the
transcript-metabolite cluster generated
by HCA performed on selected tran-
script and metabolite variables from
O2PLS-DA data is shown. The length
of the variable interconnection is in-
versely proportional to the pair-wise
correlation between the two variables.
Black, Transcript; violet, metabolite;
nhf, no hits found; ni, not identified.
[See online article for color version of
this figure.]

Figure 7. Protein-metabolite network.
A network representation of the pro-
tein-metabolite cluster generated by
HCA performed on selectedmetabolite
and protein variables from O2PLS-DA
data is shown. The length of the vari-
able interconnection is inversely pro-
portional to the pair-wise correlation
between the two variables. Gray, Pro-
tein; violet, metabolite; ni, not identi-
fied; ns, not sequenced. [See online
article for color version of this figure.]
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Figure 8. Transcript-protein-metabolite networks. A network representation of the two transcript-protein-metabolite clusters
generated by HCA performed on selected transcript, protein, and metabolite variables fromO2PLS-DA data is shown. The length
of the variable interconnection is inversely proportional to the pair-wise correlation between the two variables. Black, transcript;
gray, protein; violet, metabolite; nhf, no hits found; ni, not identified; ns, not sequenced. [See online article for color version of
this figure.]
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Figure 9. Schematic representation of the molecular events characterizing grapevine berry withering determined by hypothesis-
driven data integration. The well-correlated variables involved in these molecular events, resulting from two O2PLS models
performed with the new transcript, protein, and metabolite data sets, were tagged with different symbols (black diamonds,
transcript; gray triangles, protein; violet circles, metabolite), and identifier numbers are shown in parentheses. Regulation of
transcription: MYB protein (TC53952, TC58746, TC60089, TC60338, TC61058, and TC65609); bHLH protein (TC52373); WD-
repeat protein (TC52291, TC55356, TC57076, TC61305, TC63183, TC67542, and GSVIVT00027473001). Phenolic secondary
metabolite biosynthesis: DHAPS, 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (TC57642); DHQS, 3-dehydroqui-
nate synthase (TC56854); EPSPS, 5-enolpyruvylshikimate-3-phosphate synthase (GSVIVT00026406001); PAL, Phe ammonia
lyase (TC69585); C4H, cinnamate 4-hydroxylase (TC70715); 4CL, 4-coumarate-CoA ligase (TC57438 and TC67505); CHS,
chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3#H, flavonoid 3#-hydroxylase; F3#5#H, flavonoid
3#,5#-hydroxylase; DFR, dihydroflavonol-4-reductase (TC51699); LDOX, leucoanthocyanidin dioxygenase (TC54858); UFGT,
UDP-Glc:flavonoid 3-O-glucosyltransferase; OMT, O-methyltransferase; 5AT, anthocyanidin-5-aromatic acyltransferase; 3MaT,
anthocyanidin 3-O-glucoside-6##-O-malonyltransferase; PF3AT, hydroxycinnamoyl-CoA:anthocyanin 3-O-glucoside-6##-O-
hydroxycinnamoyltransferase; RHATR, anthocyanidin-3-glucoside rhamnosyltransferase; STS, stilbene synthase (TC61642 and
GSVIVT00009242001); LAC, laccase (TC65181); PPO, polyphenol oxidase (TC58764); flavanone (7, 18, 19, 20, 46, 68, 69, 72,
83, and 185); acylated anthocyanidins (12, 13, 22, 35, 36, 58, 60, 81, 107, 112, 115, 127, 215, 237, 247, 280, and 380);
stilbenes (129 and 230); viniferins (38). Response to biotic stimulus: Avr9/Cf-9 rapidly elicited protein (TC58894); disease
resistance protein (NP596488 and TC67507); pathogen-related protein (TC51862). Oxidative stress: catalase (TC53791);
glutathione-S-transferase (TC53088, TC55724, TC56532, and TC66064); glutaredoxin (TC65527); nudix hydrolase (TC52130);
thaumatin-like protein (1439). Water stress: dehydration-induced protein (TC59129); trehalose synthase (TC60540); osmotin-
like protein (1393).
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O2PLS-DAwas used to determine the variability of
each data set with respect to the three biological
classes, and this showed that the transcriptome data
set was unique because of the clear separation between
class c and the other two classes in terms of shared
variables (Fig. 4A). In contrast, there was a more
distinct separation between class a and the other two
classes in the proteome andmetabolome data sets (Fig.
4, B and C), probably reflecting the temporal differ-
ences between transcription, protein synthesis, and
metabolite synthesis.

The transcriptome O2PLS-DA data generally sup-
ported previous microarray studies (Terrier et al., 2005;
Waters et al., 2005, Deluc et al., 2007; Pilati et al., 2007)
but also identified novel transcripts involved in berry
development and withering (Supplemental Text S1;
Supplemental Data Set S2). Class a (preveraison/
veraison) transcripts were predominantly involved in
photosynthesis and carbon assimilation (Terrier et al.,
2005; Waters et al., 2005, Pilati et al., 2007), protein
synthesis (Pilati et al., 2007), and sugar catabolism
(Deluc et al., 2007; Pilati et al., 2007), all of which are
known to decline in ripening fruit. Additional class a
transcripts were related to the oxidative burst that
occurs at veraison (Pilati et al., 2007). Transcripts in the
response-to-stimulus category were found in both
classes a and b, including those involved in ethylene
(class a) and gibberellin (class b) signaling, whereas
several transcripts encoding transcription factors were
found in classes b and c. Class c (withering-specific)
transcripts included those involved in cell wall metab-
olism, stress responses, aerobic fermentation, volatile
compound synthesis, and cell death, as suggested by
previous genomic studies (Zamboni et al., 2008; Rizzini
et al., 2009) and physiological investigations (Bellincontro
et al., 2004; Costantini et al., 2006; Chkaiban et al.,
2007).

The proteome O2PLS-DA data showed that proteins
involved in photosynthesis and primary/cellular met-
abolic processes were mainly associated with class a,
and their abundance declined after veraison as reported
previously (Giribaldi et al., 2007; Negri et al., 2008).
The second latent component allowed the identifica-
tion of class b and c proteins, although some annotated
proteins lay between the classes, indicating their in-
volvement in both ripening and withering (Fig. 4B).
Proteins involved in primary/cellular metabolic pro-
cesses, sugar catabolism, cellular component organi-
zation, and biogenesis were more likely to group in
class b, reflecting the activation of glycolysis and
gluconeogenesis during ripening (Sarry et al., 2004;
Negri et al., 2008). Proteins involved in the switch to
aerobic fermentation during ripening (Sarry et al.,
2004) andwithering (Bellincontro et al., 2006; Costantini
et al., 2006; Chkaiban et al., 2007) were found between
classes b and c along with those involved in the
production of flavonoids (Coombe and McCarthy,
2000).

The metabolome data set included large numbers of
semipolar compounds such as organic acids, sugars,

and phenols (Fig. 4C). The O2PLS-DA data indicated
that class a is associated with the initial synthesis of
organic acids, flavan-3-ols, and proanthocyanins. This
is in line with the accumulation of monomeric cate-
chins and tannins in berry skin during the formation
phase (Conde et al., 2007), whereas classes b and c
contained predominantly sugars, organic acids, fla-
vones, and flavanones, together with acylated and
nonacylated anthocyanins that are responsible for
the onset of color changes at veraison (Conde et al.,
2007; Braidot et al., 2008). Stilbenes clustered as class
c-specific compounds. The coumaroylation and suc-
cinylation of anthocyanins occurred during withering
along with the synthesis of stress-related secondary
metabolites such as resveratrol and viniferin (Dercks
and Creasy, 1989; Adrian et al., 1997; Zamboni et al.,
2008), as reported previously in Corvina berry skin
during wilting (Versari et al., 2001). Taxifolin, origi-
nally identified in pine (Pinus sp.) because of its
antifungal activity (Bonello and Blodgett, 2003), was
also found in class c.

Putative Biomarkers

Putative biomarkers were identified in each data
set by two-class O2PLS-DA (Table I). They comprise
transcripts, proteins, and metabolites whose relative
abundance identifies the preveraison/veraison phases
(class a), the preripening/ripening phases (class b),
and berries that have undergone withering (class c).
The putative biomarkers were observed to either in-
crease or decrease in abundance at a specific phase.

In class a, we identified eight increasing putative
biomarkers (six transcripts and two proteins) and 11
decreasing ones (four transcripts, three proteins, and
four metabolites; Table I). The increasing transcripts
included two encoding Pro-rich proteins (TC59336 and
TC62885), one tubulin b-chain (TC61079), and one
endo-1,3-1,4-b-D-glucanase (TC56559), all of which
have been implicated in cell growth (Josè-Estanyol
and Puigdoménech, 1998; Mayer and Jürgens, 2002;
Glissant et al., 2008). The expression of certain Pro-rich
protein and tubulin genes is known to be restricted to
the formation phase of berry development (Waters
et al., 2005, Grimplet et al., 2007). The two remaining
increasing transcripts encoded a peptide transporter
(TC67142) and an 11-b-hydroxysteroid dehydrogenase
(TC58936). Although 11-hydroxysteroids have yet
to be isolated from plants, an Arabidopsis (Arabidop-
sis thaliana) 11-b-hydroxysteroid dehydrogenase is
thought to be involved in the synthesis of brassinoste-
roids (Li et al., 2007), which are also required for cell
growth and division (Belkhadir et al., 2006). The two
putative increasing protein biomarkers were not se-
quenced.

The four decreasing transcripts encoded a laccase
(TC65181), a LYK10 (Lys motif receptor-like kinase 10)
homolog (TC70396), and a Ser/Thr kinase (TC70352)
as well as an unknown protein (TC68733). Plant lac-
cases are involved in phenylpropanoid metabolism
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(e.g. polymerization of lignin and resveratrol; Mayer
and Staples, 2002) as part of the stress responses char-
acteristic of ripening and withering (Deluc et al., 2007;
Pilati et al., 2007; Zamboni et al., 2008). LYK kinases
recognize peptidoglycans and chito-oligosaccharides,
and they facilitate defense responses against fungal
pathogens (Zhang et al., 2009). The Ser/Thr kinase
(TC70352) is homologous to Arabidopsis BRI1-like3,
which is involved in brassinosteroid perception and
signal transduction (Oh et al., 2009), so the grapevine
transcript may respond to brassinosteroid signaling
after veraison, even though the components of the
signaling pathway are expressed and assembled prior
to veraison (Symons et al., 2006). Two of the three
putative decreasing protein biomarkers correspond to
different isoforms of a class IV chitinase (1171 and
1211) that are also involved in the ripening/withering
stress response (Deluc et al., 2007; Pilati et al., 2007;
Negri et al., 2008; Zamboni et al., 2008; Rizzini et al.,
2009). All the putative metabolic biomarkers in class a
were shown to decrease in abundance. They com-
prised a dihexose derivative (6) and three modified
anthocyanidins (15, 17, and 65). The latter accumulate
during ripening and withering, particularly in red
cultivars (Conde et al., 2007).
In class b, we identified 10 putative increasing

biomarkers (three transcripts, two proteins, and five
metabolites) and five decreasing ones (three tran-
scripts and two proteins). Only one of the six tran-
scripts matched an annotated sequence, and this
putative decreasing biomarker corresponded to an
expansin (TC70381). Expansins are involved in cell
wall metabolism and remodeling and therefore could
conceivably be involved in both the growth that occurs
in early berry development (low-level expression) and
the cell wall reconstruction involved in withering
(high-level expression). None of the putative protein
biomarkers were sequenced, and none of the putative
metabolite biomarkers were identified.
In class c, we identified 15 putative increasing

biomarkers (six transcripts, four proteins, and five
metabolites) and four decreasing ones (two transcripts
and two proteins). Four of the increasing transcripts
may have roles in gene regulation during withering.
One matched the Arabidopsis mitochondrial pentatri-
copeptide repeat (PPR) protein (TC62884), which is
known to regulate organellar RNA processing (Saha
et al., 2007). Another matched the GTP-binding nu-
clear protein Ran-3 (TC53432), which regulates RNA
and protein transport through nuclear pores and the
assembly of the mitotic spindle (Yudin and Fainzilber,
2009). Finally, two corresponded to histones (TC63796
and TC67468) and therefore could regulate gene ex-
pression directly by controlling chromatin structure
(Pandey et al., 2008). A further increasing transcript
matched the Arabidopsis F-box protein At1g23780
(TC61232), a component of the ASK-Cullin-F-box E3
ubiquitin ligase complex involved in proteasomal deg-
radation (Risseeuw et al., 2003), indicating that protein
degradation could play an important role in withering.

Two of the putative increasing protein biomarkers were
identified, one representing an osmotin-like protein
(1393) and the other a thaumatin-like protein (1439),
both of which are known to be involved in stress
responses. The three putative increasing metabolic
biomarkers included two taxifolins (7 and 18) and a
tetrahydroxyflavanone-O-deoxyhexoside (19), which
may be involved in the withering stress response. To
our knowledge, taxifolin has never previously been
proposed as a withering biomarker and is more rep-
resentative of the process than stilbenes, which are
induced during withering (Versari et al., 2001). Two
putative increasing metabolic biomarkers were not
identified. The two decreasing transcripts encoded a
cytochrome P450 and a protein of unknown function.
The two increasing and the two decreasing proteins
were not sequenced.

Integration of Data Sets (Hypothesis-Free Approach)

Hypothesis-free data integration was achieved by
performing hierarchical multivariate data modeling
combined with HCA. The predictive latent compo-
nents arising from the class characterization step were
combined by O2PLS in the data integration process to
obtain a new base set representing the measured
variables, while a permutation procedure allowed us
to select variables from different data sets with signif-
icant pair-wise correlations.

We first integrated the transcriptome and proteome
data sets. The interaction between transcripts and
proteins whose abundance increases during ripening
and withering (Supplemental Data Sets S1 and S5,
respectively) is shown in Figure 5A, highlighting the
role of stress response genes and proteins as described
previously (Arnholdt-Schmitt, 2004; Sarnowski et al.,
2005). The network links the expression of genes for a
DNA-directed RNA polymerase (TC62354), a mito-
chondrial PPR protein (TC62844), an auxin response
gene (TC71124), and a b-1-3-galactosyl-O-glycosyl-
glycoprotein (TC57705) to an unidentified protein
(1420) and an osmotin-like protein (1393). PPR proteins
in plants play a role in organelle biogenesis and post-
transcriptional regulation (Lurin et al., 2004), and an
Arabidopsis PPR protein connects abiotic stress re-
sponses to mitochondrial electron transport (Zsigmond
et al., 2008). The grapevine mitochondrial PPR protein
transcript, therefore, could have a similar role in the
stress response during ripening and withering, along
with the osmotin-like protein, which may respond to
osmotic stress caused by increased sugar accumulation
(Qureshi et al., 2007). The b-1-3-galactosyl-O-glycosyl-
glycoprotein may modify the putative glycosylation
site present in osmotin-like proteins, as reported for
tobacco (Nicotiana tabacum; Takeda et al., 1991).

The interaction between transcripts and proteins (Sup-
plemental Data Sets S1 and S5, respectively) that are
abundant during preveraison and veraison is shown
in a second network and primarily involves cell wall
and chloroplast metabolism (Fig. 5B). Two isoforms of
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pectate lyase (235 and 258) and a gene encoding a
mannan-endo-1,4-b-mannosidase (TC68167) are associ-
ated with cell wall metabolism during berry growth
(Nunan et al., 2001; Glissant et al., 2008). The network
also includes a Rubisco large subunit-binding protein
subunit a (212), which is involved in Rubisco oligomer
assembly (Viitanen et al., 1995), flavoprotein WrbA
(1380), which is related to flavodoxins (Zurbriggen
et al., 2007), and a transcript encoding plastid carbonic
anhydrase (TC55155; Majeau and Coleman, 1991), all
of which support photosynthesis during berry for-
mation. Transcripts for the 50S ribosomal protein L19
(TC52388) and a boron transporter (TC68987) are also
present, the latter likely involved in the transport
of HCO3

2, which is a potential supplier of CO2 to
Rubisco. A transcript encoding a sphingolipid fatty
acid a-hydroxylase (GSVIVT00029816001) is also found
in this network. Sphingolipids in theplasmamembrane
and tonoplast play a signaling role in guard cell closure
and cell death (Chen et al., 2008). The presence in the
network of transcripts encoding an auxin-responsive
protein (TC56885) and an indole-3-acetic-acid 14 tran-
scription factor (TC70800) suggests a role for auxin
signaling in the repression of ripening (Davies and
Bottcher, 2009). Auxin levels are high during berry
formation, and auxin treatment delays berry ripening
(Deytieux-Belleau et al., 2007; Davies and Bottcher,
2009).

Figure 6 shows the network representing the inte-
grated transcriptome and metabolome data sets, de-
scribing the molecular events taking place during
ripening and withering (Supplemental Table S2 and
Supplemental Data Set S5, respectively). Most of the
transcripts belong also to the network shown in Figure
5A (see above), but the transcript-metabolite network
adds further information. The presence of a transcript
encoding histone H3 (TC67468) suggests transcrip-
tional regulation in response to stress (Pandey et al.,
2008), supported by the presence of another transcript
encoding a pathogenesis-induced protein (TC69633).
Metabolites (7 and 19) linked to these processes in-
clude flavanones (Bonello and Blodgett, 2003) and
coumaroyl-anthocyanins (13, 12, 22, 35, 58, and 107). A
LysC-like BEACH protein transcript (TC59250) pro-
vides possible links to cytokinesis, contractile vacuole
function during osmoregulation (Gerald et al., 2002;
De Lozanne, 2003), endosome and lysosome activity
(Kypri et al., 2007), vesicle and membrane fusion
(De Lozanne, 2003; Saedler et al., 2009), and mem-
brane trafficking (Khodosh et al., 2006). The grape-
vine LysC-like BEACH protein could facilitate the
compartmentalization of coumaroyl-anthocyanins
through membrane trafficking.

The integrated proteome and metabolome data sets
(Supplemental Data Set S1 and Supplemental Table S2,
respectively) are represented by the network shown in
Figure 7, and this also describes the molecular events
taking place during ripening and withering, highlight-
ing the involvement of a stress response (Deluc et al.,
2007; Pilati et al., 2007; Zamboni et al., 2008). In fact,

this network includes an osmotin-like protein (1393),
two isoforms of a class IV chitinase (1171 and 1211),
and two stress-related metabolites: tetrahydroxyflava-
none-O-hexoside (19) and resveratrol hexoside (230).
As discussed above, osmotin-like proteins respond to
osmotic stress, presumably due to sugar accumulation
(Qureshi et al., 2007), and chitinases are induced by
dehydration (Grimplet et al., 2009b). Flavanone com-
pounds such as tetrahydroxyflavanone-O-hexoside
could fulfill a similar role to stilbenes in response to
stress (Langcake and Pryce, 1976; Dercks and Creasy,
1989). The two chitinases are positively correlated
with glycosylated anthocyanidins such as malvidin-
O-glucoside (65 and 17) and a peonidin-O-glucoside
(15), which are known to accumulate during ripening
and withering (Coombe and McCarthy, 2000; Conde
et al., 2007). The network also contains additional
modified anthocyanidins (280, 376, and 380) as well as
dihexose derivatives (6, 37, 194, and 287).

Figure 8 presents the networks derived by integrating
all three data sets (Supplemental Data Sets S1 and S5;
Supplemental Table S2). Figure 8A shows the network
of variableswhose abundance increases during ripening
and withering. Many of the variables in this network
are also featured in the protein-metabolite network
shown in Figure 7 and are not discussed further here.
Additional variables unique to this network include
a malvidin-coumaroyl-hexoside derivative (112), a
peonidin-3-O-glucoside (3), and a malvidin-3-O-glu-
coside (17), which is positively linked to the class IV
chitinase (1211) mentioned above but also to a thau-
matin-like protein (1357) known to be involved in
biotic stress responses (Ng, 2004). The class IV chitinase
(1211) is also positively correlated with two stress-
related transcripts encoding a laccase (TC65181) and a
LYK10 kinase (TC70396), which may transduce stress
responses during ripening and withering.

Figure 8B shows the network of variables that are
abundant during the preveraison and veraison phases.
Many of the components are also present in the tran-
script-protein network shown in Figure 5B and will not
be discussed further here. Like the network in Figure
5B, they predominantly reflect cell wall and chloroplast
metabolism. Additional variables involved in cell wall
metabolism include transcripts encoding glucomannan
4-b-mannosyltransferase 2 (TC70833), xyloglucan en-
dotransglucosylase/hydrolase 8 (TC64184), endo-1,3-
1,4-b-D-glucanase (TC56559; Liepman et al., 2005;
Glissant et al., 2008), and three Pro-rich proteins
(TC59336, TC54702, and TC62885). The genes encod-
ing these proteins are expressed predominantly dur-
ing berry formation (Glissant et al., 2008). There are
indications that cell wall metabolism during berry
formation involves pectin degradation by pectate
lyase (258) followed by hemicellulose reassembly
mediated by xyloglucan endotransglucosylase and
b-1,4-glucanase (Glissant et al., 2008). The expression
of Pro-rich proteins before veraison could boost the
levels of these proteins during the subsequent ripening
phase, reinforcing the cell wall while it undergoes
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extensive remodeling (Nunan et al., 2001). Cellulose
synthesis is likely to take place during this phase of cell
wall remodeling, as shown by the presence of tran-
scripts encoding glucomannan 4-b-mannosyltransferase
2 and chitinase, the latter required for primary and
secondary wall synthesis (Zhang et al., 2004). The
cellulose content of cell walls may increase during
ripening in some fruit (Glissant et al., 2008), although
in grapevine the cellulose content of the berries in-
creases after veraison but declines thereafter (Vicens
et al., 2009). The network presented in Figure 8B,
therefore, reveals a very dynamic system including
molecular events linked to the first phase of berry
growth (e.g. photosynthesis) as well as the induction
of molecular changes that will have a physiological
effect later in development (e.g. the oxidative burst
marking veraison).
Photosynthetic variables include the above-men-

tioned Rubisco large subunit-binding protein subunit
a (212) but also four isoforms of oxygen-evolving
enhancer protein 1 (1062, 1063, 1066, and 1070) and a
transcript encoding PSII reaction center W protein
(TC53868), which may be essential for the stability of
PSII (Sugihara et al., 2000). In addition, it includes two
isoforms of a plastid polyphenol oxidase (1748 and
1754) that potentially regulates photosynthesis (Dry
and Robinson, 1994; Kuwabara, 1995). Another tran-
script linked to chloroplast metabolism encodes a
plastid plastocyanin (TC65998) whose role may be to
facilitate electron transport between the cytochrome
b6f complex and PSI (Sugawara et al., 1999). A further
linked transcript encodes a protein homologous to
tobacco NTMTP1Aa, which confers zinc and cobalt
tolerance in yeast mutants, sequestering metals into
vacuoles (Shingu et al., 2005). Heavy metals such as
zinc, cadmium, cobalt, nickel, and mercury interact
with PSII and inhibit its activity (Ghirardi et al., 1996).
The transporter encoded by this grapevine transcript,
therefore, could protect PSII by sequestering heavy
metal ions in the vacuole. Two heat shock proteins
(1857 and 1910) and a transcript encoding a cucumber
(Cucumis sativus) heat shock protein 70 (TC62058)
could help to stabilize old and newly synthesized
proteins at veraison (Negri et al., 2008).
Additional transcripts in the network encode catalase

(TC70144), a detoxifying enzyme, and glutathione-S-
transferase (TC67754), which balances the oxidized and
reduced forms of glutathione (Pilati et al., 2007). This
suggests that the forming berry begins to adapt to the
anticipated oxidative burst that occurs during the rip-
ening phase. The expression of two transcripts that
encode dehydration-induced proteins (TC62685 and
TC63341) may indicate that berries activate other stress
response mechanisms at this stage. TC63341 corre-
sponds to Vvdr22, a dehydration-responsive gene in-
volved in abiotic stress tolerance that is expressed
in grapevine cell suspension cultures in response to
abscisic acid particularly in combination with Suc
(Hanana et al., 2008). The tubulin b-chain 6 transcript
(TC61079) indicates that the cell division and enlarge-

ment in berry formation may involve cytoskeleton
modifications. The transcripts encoding a ubiquitin
carrier protein (TC57527) and an AAA-type ATPase
(TC63977) indicate that proteolysis or its regulation
may be an important component of berry formation
(Kedzierska, 2006). The metabolites in the network
reflect the genes and proteins that are active during
berry growth. Two modified hydroxycinnamic acid
derivatives, a dihydroxybenzoyl-caffeic acid derivative
(119) and a feruloyl pentoside (348), are present in the
network, reflecting the accumulation of hydroxycin-
namic acids in skin and flesh during berry formation as
precursors of volatile phenols (Conde et al., 2007). A
trihydroxy-dimethoxy-flavanone-O-hexoside (331) and
flavonol quercetin-O-hexoside (393) are also present in
the network, the latter reflecting the biphasic nature of
flavonol biosynthesis in grapevine berries (one during
flowering, another 3–4 weeks after veraison; Mattivi
et al., 2006).

Integration of Data Sets (Hypothesis-Driven Approach)

Hypothesis-driven data integration (Fig. 9) indicated
that withering involves transcriptomic, proteomic, and
metabolomic changes representing a stress response to
dehydration and eventual pathogen attack. Themetab-
olome data set showed that stilbenes (38, 128, and 230),
flavanones (7, 18, 19, 20, 46, 68, 69, 72, 83, and 185), and
acylated anthocyanins (12, 13, 22, 35, 36, 58, 60, 81, 107,
112, 115, 127, 215, 237, 247, 280, and 380) are the
predominantmetabolites that accumulate duringwith-
ering,with stilbenes andflavonones already implicated
in stress responses (Dercks and Creasy, 1989; Adrian
et al., 1997; Versari et al., 2001; Bonello and Blodgett,
2003) and a similar role likely for acetylated anthocy-
anins. The treatment of Merolt grapevine with benzo-
thiadiazole increases the synthesis of trans-resveratrol
and anthocyanins, particularly malvidine-3-glucoside
and its acylatedderivates, and thus enhances resistance
to Botrytis cinerea (Iriti et al., 2004). The acetylated
anthocyanins that accumulate during withering are
mostly coumarate derivates that are important inwine-
making because they influence pigmentation and in-
crease light absorption, thus affecting red wine color
(Iriti et al., 2004). Acylation can also increase anthocy-
anin activity (Yoshimoto et al., 2001). The accumulation
of nutritionally valuable and health-promoting sec-
ondary metabolites such as stilbenes and modified
anthocyanins in berries in response to a technical
process such as postharvest withering has a positive
impact on wine quality.

Figure 9 also shows that the accumulation of stilbenes,
flavanones, and acylated anthocyanins correlates with
the accumulation of certain transcripts encoding en-
zymes involved in their synthesis, such as three enzymes
in the shikimate pathway (3-deoxy-D-arabino-heptulos-
onate-7-phosphate synthase [TC57642], 3-dehydroqui-
nate synthase [TC56854], and 5-enolpyruvylshikimate-3-
phosphate synthase [GSVIVT00026406001]), and others
involved in general phenylpropanoid metabolism (Phe
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ammonia lyase [TC69585], cinnamate 4-hydroxylase
[TC70715], and 4-coumarate-CoA ligase [TC57438 and
TC67505]). The phenylpropanoid pathway provides
coumaroyl-CoA, a precursor for stilbene and flavo-
noid synthesis. The synthesis of stilbenes such as
resveratrol (129 and 230) and «-viniferin (38) correlates
with the expression of stilbene synthase (TC61642 and
GSVIVT00009242001), laccase (TC65181), and poly-
phenol oxidase (TC58764), the latter possibly involved
in the oxidative dimerization of resveratrol to viniferins
(Breuil et al., 1999; Pezet et al., 2003). No transcript
or protein variables related to flavanone synthesis
increased in abundance during withering, although
anthocyanin biosynthesis genes such as dihydroflavo-
nol-4-reductase (TC51699) and leucoanthocyanidin di-
oxygenase (TC54858) could promote the accumulation
of acylated anthocyanins during the same process even
if transcripts involved in the anthocyanin acylation
were not modulated (i.e. anthocyanidin-5-aromatic ac-
yltransferase, anthocyanidin 3-O-glucoside-6##-O-ma-
lonyltransferase, hydroxycinnamoyl-CoA:anthocyanin
3-O-glucoside-6##-O-hydroxycinnamoyltransferase, and
anthocyanidin-3-glucoside rhamnosyltransferase). How-
ever, the accumulation of flavanones and coumarated
anthocyanins was clearly shown not only by HPLC-
electrospray ionization-MS but also by quantitative
HPLC-diode array (data not shown). The production
of these classes of secondary compounds, therefore, may
involve enzymes that are already active during ripening
and do not need to be induced specifically during
withering.

The hypothesis-driven approach also identified four
well-correlated transcripts characteristic of the wither-
ing process, encoding an Avr9/Cf-9 rapidly elicited
protein (TC58894), two disease resistance proteins
(NP596488 and TC67507), and a pathogen-related pro-
tein (TC51862). The up-regulation of similar transcripts
was also reported in the previous amplified fragment
length polymorphism-transcriptional profiling analy-
sis of withering (Zamboni et al., 2008) and in ripening
berries under water-deficit conditions (Grimplet et al.,
2007). Further variables associated with stress re-
sponses included a dehydration-induced transcript
(TC59129), a trehalose synthase transcript (TC60540),
and an osmotin-like protein (1393). The osmotin-like
protein (1393), already identified as a putative class c
biomarker and as a component of a network describing
withering and the last phase of ripening, was also
identified using our hypothesis-free approach (Fig. 5A)
and is probably a response to the increased sugar
concentration (Qureshi et al., 2007). The transcript en-
coding a trehalose synthase (TC60540) is probably in-
volved in this process too (Garg et al., 2002). The
induction of transcripts encoding catalase (TC53791),
glutathione-S-transferase (TC53088, TC55724, TC56532,
and TC66064), glutaredoxin (TC65527), nudix hydrolase
(TC52130), and a thaumatin-like protein (1439) is likely
to be a response to the oxidative stress burst that occurs
during withering (Zamboni et al., 2008). This involves a
different catalase and different glutathione-S-transfer-

ases to those identified during berry formation using
the hypothesis-free approach (Fig. 8B).

The hypothesis-driven approach also identified tran-
scripts encoding new transcription factors of the MYB
(TC53952, TC58746, TC60089, TC60338, TC61058, and
TC65609), bHLH (TC52373), and WD-repeat families
(GSVIVT00027473001, TC52291, TC55356, TC57076,
TC61305, TC63183, and TC67542), which have previ-
ously been implicated in the transcriptional regulation
of genes involved in the synthesis of flavonoids (Matus
et al., 2008, 2010; Czemmel et al., 2009; Mahjoub et al.,
2009; Terrier et al., 2009; Hichri et al., 2010). These
transcripts could be candidates for functional analysis,
with the aim of dissecting the regulation of these clas-
ses of secondary compounds in grapevine. However,
the hypothesis-driven approach did not identify tran-
scripts encoding WRKY proteins, which are also in-
volved in coordinating responses to abiotic and biotic
stresses (Pandey and Somssich, 2009).

Comparison of Hypothesis-Free and
Hypothesis-Driven Approaches

The hypothesis-free and hypothesis-driven strate-
gies for data integration highlighted similar molecular
mechanisms underlying the withering process and
identified similar variables predominantly among the
metabolic data set. The correlation between metabo-
lites that accumulate during withering and transcripts
encoding enzymes involved in their synthesis was
observed only with the hypothesis-driven approach,
suggesting that such relationships may be masked in
the hypothesis-free approach by the larger, unselected
data sets. The hypothesis-free approach cannot only
identify correlations between variables involved in a
same molecular process but also those acting at the
same stage of development. The hypothesis-free ap-
proach can provide the greatest insight when there is a
large number of variables and therefore a high density
of information (Nabel, 2009). Therefore, these ap-
proaches should be regarded as complementary rather
than alternatives, and for the optimum results they
should be applied iteratively (Kell and Oliver, 2004).

CONCLUSION

The transcriptome, proteome, and metabolome of
grapevine berries were analyzed during development
and withering, and three data sets were obtained.
Class-specific variables and putative increasing and
decreasing biomarkers were identified for each data
set using the O2PLS-DA approach.

Our results revealed that the multivariate O2PLS
technique, which has previously been applied in a
limited context known as OPLS to analyze the struc-
ture of metabolomic andmetabonomic data sets and to
identify putative biomarkers in such studies, can also
be a useful approach for the analysis of transcriptomic
and proteomic data sets, which have distinct charac-
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teristics. This technique allowed us to identify not only
metabolites but also transcripts and proteins as puta-
tive biomarkers, which were then analyzed in terms of
the molecular events characterizing grapevine berry
development and withering. O2PLS is an efficient
analysis technique for the identification of known
and putative transcript, protein, and metabolite bio-
markers of different biological systems linked to de-
velopmental processes or environmental interactions.
In the hypothesis-free strategy, we applied a hierar-

chical approach to data integration based on the
O2PLS technique and composed of three levels. The
first level identifies the information contained in each
data set corresponding to the grapevine berry devel-
opment and withering processes by using O2PLS-DA
and three classes recognized by PCA. By this ap-
proach, we obtained a subspace spanned by two latent
variables for each data set containing only the infor-
mation related to grapevine berry development and
withering. In the second level, the reduced data sets
were compared by O2PLS and a permutation test was
applied to select significant, well-correlated subsets of
measured variables. These two steps were used to
reduce the space to be analyzed in the third level, in
which networks were built by applying HCA andMST
on the subsets of variables previously selected. HCA
was used to construct networks of correlated tran-
scripts, proteins, and metabolites, and a thorough
analysis of the results (focusing on the biological
function of each of the variables) produced a holistic
view of each network. These networks provide, to our
knowledge, the first comprehensive systems-level pic-
ture of berry development and withering and have
allowed us to identify major features of each phase by
correlating gene expression, protein activity, and the
resulting metabolic profiles. Such “static” networks,
grouping transcripts, proteins, and metabolites on the
basis of profile correlation, are the starting points for
the construction of “dynamic” networks, where spe-
cific perturbations allow the identification of linked
elements that take part in the same molecular process.
We used a hypothesis-driven approach to identify

transcript, protein, and metabolite variables involved
in the molecular events underpinning withering,
which predominantly reflected a general stress re-
sponse. This revealed the correlation between varia-
bles in different data sets related to the same process
(i.e. secondary metabolite accumulation and genes
encoding enzymes involved their biosynthesis).
Our results have confirmed the molecular events

that are known to characterize grapevine berry devel-
opment andwithering, but the application of powerful
systems biology approaches has also provided new
insights into these processes. We can confirm that
berry formation involves active cell wall metabolism
and photosynthesis, whereas ripening and withering
are characterized by the induction of stress responses.
Novel findings include the discovery that carbonic
acid acts as a putative supplier of CO2 to Rubisco and
that sphingolipid fatty acids act as signals during the

first berry growth phase. Berry ripening and withering
are characterized by the accumulation of secondary
metabolites such as acylated anthocyanins, whose
compartmentalization correlates with the expression
of a BEACH transcript, but we also found that with-
ering involves the activation of specific osmotic and
oxidative stress response genes and the specific pro-
duction of acylated anthocyanins, stilbenes, and taxi-
folin. Our identification of stage-specific functional
networks of linked transcripts, proteins, and metabo-
lites, therefore, has provided important insights into
the key molecular processes that determine the quality
characteristics of wine.

MATERIALS AND METHODS

Plant Material and Sampling

Grapevine (Vitis vinifera cv Corvina, clone 48) berries were sampled during

the 2006 growing season at four developmental time points and at three

additional time points during the 91-d postharvest withering process (Fig. 1).

The four developmental time points were 59 (E-L 33), 71 (E-L 35), 98 (E-L 36),

and 112 (E-L 38) d after fruit set, corresponding to preveraison, veraison, early

ripening, and late ripening, and the three withering time points (WI, WII, and

WIII) were 35, 56, and 91 d after harvest (Supplemental Table S1). Three

biological replicates were taken at each time point, resulting in a total of 21

observations. Each biological replicate comprised a pool of deseeded berries

from five clusters collected from five different plants. Mean Brix degree values

(Supplemental Table S1) were recorded at each sampling stage using a PR-32

bench refractometer (Atago). The postharvest withering phase was analyzed

by collecting berry clusters and storing them in the special room (fruttaio)

normally used for this process at room temperature and a relative humidity

not exceeding 65%. Berry weight was determined by averaging the weight of

400 berries, and percentage weight loss in withering berries was calculated

using ripening berries as a reference (Fig. 1). The pools of deseeded berries

from each of the 21 samples were used for RNA, protein, and metabolite

extraction.

Transcriptome Analysis

Transcriptome analysis was carried out using a Combimatrix Vitis vinifera

chip, produced by the Plant Functional Genomics Center, University of

Verona. The chip carries 24,571 nonredundant probes randomly distributed

in triplicate across the array, each comprising a 35- to 40-mer oligonucleotide

designed using the program Oligoarray 2.1 (Rouillard et al., 2003). The source

of sequence information included TC sequences derived from the Dana-

Farber Cancer Institute (DFCI) Grape Gene Index (http://compbio.dfci.

harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=grape) release 5.0 (19,062

probes), singletons based on 3# poly(A) tail sequences (1,904 probes), ESTs

(55 probes), and genomic sequences produced by the International Grape

Genome Project (Jaillon et al., 2007) with no TC matches (3,490 probes). Nine

bacterial oligonucleotide sequences provided by Combimatrix, 40 probes

designed on seven Ambion spikes, and 11 probes based on Bacillus anthracis,

Haemophilus ducreyi, and Alteromonas phage sequences were used as negative

controls.

RNAwas isolated according to Rezaian and Krake (1987) and quantified by

spectrophotometry (ATI Unicam). An aliquot of each RNA sample was also

analyzed using an Agilent 2100 Bioanalyzer. Total RNA (1 mg) was amplified

using the SuperScript Indirect RNA Amplification System (Invitrogen) to

incorporate amino-allyl UTP (aRNA) and was fluorescently labeled with Alexa

Fluor 647. The purified labeled aRNA was quantified by spectrophotometry

as above. A 3-mg sample of labeled RNAwas hybridized to the array according

to the manufacturer’s recommendations (http://www.combimatrix.com/

support_docs.htm). The array was scanned with a ScanArray 4000XL (Perkin-

Elmer). TIFF images were exported to the Microarray Imager 5.8 (Combima-

trix) for densitometric analysis. A scale normalization was applied to raw data

(Smyth and Speed, 2003). Probe signals were then filtered on median values

calculated on the negative probes, considering only those probes with signal
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higher than median negative values for at least one of the seven sampling time

points and for all three biological replicates taken at each sampling time point.

Probe signals were then filtered according to the coefficient of variation

calculated using the signals of the replicates of each probe, setting a threshold

of 0.5. All microarray expression data are available at the Gene Expression

Omnibus under the series entry GSE20511 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token=rjetpeisaacakji&acc=GSE20511).

Proteome Analysis

Samples were prepared according to Tsugita and Kamo (1999) with some

modifications (Di Carli et al., 2009). Extracted proteins were purified using

the Clean-Up kit (GE Healthcare) and quantified using the DC Protein

Assay (Bio-Rad). Two-dimensional gel electrophoresis was carried out

using the GE Healthcare DIGE system. Purified proteomes were covalently

labeled using the CyDye DIGE Fluor (Cy2, Cy3, and Cy5) according to the

manufacturer’s instructions and analysis carried out as described previ-

ously (Di Carli et al., 2009). A random design with 12 gels and a dye-swap

approach was used to avoid labeling artifacts and ensure statistical signif-

icance. For the first-dimensional separation, immobilized pH gradient strips

(pH 4–7/18 cm) containing solubilized protein samples were passively

rehydrated as recommended, and isoelectric focusing was performed on an

IPGphor unit (GE Healthcare) at 20�C with a 50-mA current limit per strip

and a program setting of 3 h at 300 V, 1 h at 500 V, 6 h at 1,000 V, and 5 h at

8,000 V (analytical gels) or a 60-mA current limit per strip and a program

setting of 10 h at 200 V, 3 h at 300 V, 1 h at 500 V, 6 h at 1,000 V, and 5 h at 8,000

V (preparative gels). After focusing, proteins were reduced, alkylated, and

separated in the second dimension by 12.5% SDS-PAGE using 18-cm 3 20-

cm 3 1-mm gels on the Ettan DALT-12 system (GE Healthcare). Separated

CyDye-labeled proteins were visualized by scanning with a Typhoon 9410

Imager (GE Healthcare). To compare protein spots across gels, a match set

was created from the images of all 12 gels. The statistical analysis of protein

level changes between different maturation stages was performed using the

DeCyder-BVA (for Biological Variation Analysis, version 6.5; GE Health-

care) software module. A one way-ANOVA was used for univariate anal-

ysis. Protein spots with a statistically significant variation (P # 0.05)

showing a greater than 1.5-fold difference in volume between samples

were considered to be differentially expressed and were selected for further

analysis by MS. In-gel reduction using iodoacetamide and digestion with

trypsin was followed by MS/MS analysis. All liquid chromatography(LC)-

MS/MS experiments were performed using an Eksigent NanoLC-1D Plus

(Eksigent Technologies) HPLC system and an LTQ Orbitrap mass spec-

trometer (ThermoFisher) as described by Deery et al. (2009). MS data were

then submitted to the Mascot search algorithm (Matrix Science) and

searched against the National Center for Biotechnology Information Vir-

idiplantae (Green Plants) database (419,956 sequences) using a fixed mod-

ification of carbamidomethyl and a variable modification of oxidation.

Metabolome Analysis

Powdered samples were extracted with three volumes of ice-cold meth-

anol containing 0.1% formic acid. An HPLC system (Beckman Coulter System

Gold 127, Solvent Module) with a Rheodyne sample injector, coupled online

with a Bruker ion-trap mass spectrometer (Esquire 6000) equipped with an

electrospray ionization source, was used for LC-MS analysis. The system was

fitted with a 150-3 2.1-mmAlltima HP C18 3-mm column and a 7.5-3 2.1-mm

guard column (Alltech Associates). Two solvents were used for separation: 5%

(v/v) formic acid/5% (v/v) acetonitrile in water (solvent A) and 100%

acetonitrile (solvent B). After injecting 5 mL of sample at a flow rate of

200 mL min21, a solvent gradient was established from 0% to 10% B in 5 min,

from 10% to 20% B in 20 min, from 20% to 25% B in 5 min, and from 25% to

70% B in 15 min; a 20-min equilibration followed each analysis, which was

carried out in duplicate (for detailed procedures and technical data, see

Supplemental Text S1). The column, the flow rate, the solvents, and the

gradient solvent for HPLC-diode array analysis were the same as used for

LC-MS analysis above, although with an injection volume of 20 mL. Chroma-

tography data were extracted using metAlign software (http://metAlign.nl;

RIKILT Institute of Food Safety). The data matrix was processed (Supple-

mental Text S1) to provide 408 molecular parent ion signals. For compound

identification, mass-to-charge ratio values and fragmentation patterns (MS/

MS andMS3) were comparedwith those of appropriate commercial standards.

When direct comparison was impossible due to the lack of appropriate

commercial standards, fragmentation patterns were compared with those

reported in the literature (Supplemental Text S1). Matrix effects for all

compounds were evaluated as described by Cavaliere et al. (2008).

Statistical Methods

O2PLS is a multivariate projection method that is able to find relation-

ships between two data blocks (X and Y). O2PLS decomposes the systematic

variation in the X-block (or Y-block) into two model parts: a predictive part,

which models the joint X-Y correlated variation, and an orthogonal part,

which is not related to Y (or X). The latent structures of the joint X-Y

correlated variation can be used to identify small groups of correlated

variables belonging to the two different blocks. This was achieved by

evaluating the similarity between each variable and the predictive latent

components of the X-Y O2PLS model by means of their correlation. In order

to set the significance threshold for the similarity, a permutation test was

carried out, and data integration was performed on each small group of X-Y

variables with significant correlation. O2PLS was also used to perform DA.

O2PLS-DA allowed the identification of latent variables that were able to

yield a parsimonious and very efficient representation of the process. A

hierarchical strategy of analysis based on these latent variables allowed us

to integrate the data sets. In order to define the number of latent components

for OPLS(-DA) models, we applied partial cross-validation and a permu-

tation test to highlight overfitting. Multivariate data analysis was performed

by using SIMCA P+ (Umetrics).

Transcript Annotation

Class-specific transcripts, putative transcript biomarkers, and transcripts

identified using the hypothesis-free data integration approach were ana-

lyzed using BLASTN (Altschul et al., 1997) to link corresponding TCs in the

DFCI Grape Gene Index Releases 5.0 and 6.0 (http://compbio.dfci.harvard.

edu/tgi/cgi-bin/tgi/gimain.pl?gudb=grape). For Release 6.0 TCs and 8.43
CDS that did not match Release 5.0, BLASTP analysis (Altschul et al., 1997)

was performed against the UniProt database (http://www.uniprot.org/)

using the 8.43 CDS predicted protein sequences and an E-value cutoff of

1028. Biological process Gene Ontology terms (http://www.geneontology.

org/) were assigned to each probe using the BLASTP results.

Manual gene annotation, correspondences between the DFCI Grape Gene

Index Release 5.0 and the predicted 8.43 genome CDS, and grapevine

molecular networks described by Grimplet et al. (2009a) were used to select

transcripts for the hypothesis-driven data integration approach.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Sampling time points during berry development

and postharvest withering.

Supplemental Table S2. Identified metabolites.

Supplemental Data Set S1. Sequenced and identified protein spots.

Supplemental Data Set S2. Class-specific transcripts.

Supplemental Data Set S3. Class-specific proteins.

Supplemental Data Set S4. Class-specific metabolites.

Supplemental Data Set S5. Annotated transcripts.

Supplemental Data Set S6. The 134-transcript and 45-metabolite data sets

related to secondary metabolism generated using the hypothesis-driven

approach, showing well-correlated variables identified by O2PLS.

Supplemental Data Set S7. The 169-transcript and 13-protein data sets

related to defense responses generated using the hypothesis-driven

approach, showing well-correlated variables identified by O2PLS.

Supplemental Data Set S8. Proteome data set.

Supplemental Data Set S9. Metabolome data set.

Supplemental Text S1. Supplemental Discussion and Supplemental Ma-

terials and Methods.

Zamboni et al.

1456 Plant Physiol. Vol. 154, 2010



ACKNOWLEDGMENTS

We thank Pasqua Vini e Cantine (Verona, Italy) for allowing us to sample

material from its vineyard.

Received May 31, 2010; accepted September 8, 2010; published September 8,

2010.

LITERATURE CITED

AdrianM, Jeandet P, Veneau J, Weston LA, Bessis R (1997) Biological activity

of resveratrol, stilbenic compound from grapevine, against Botrytis cinerea,

the causal agent for gray mold. J Chem Ecol 23: 1689–1702
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S, Karlsson J, Moritz T, Wingsle G, Trygg J (2009) Integrated analysis of

transcript, protein and metabolite data to study lignin biosynthesis in

hybrid aspen. J Proteome Res 8: 199–210

Carmona MJ, Chaı̈b J, Martı́nez-Zapater JM, Thomas MR (2008) A

molecular genetic perspective of reproductive development in grape-

vine. J Exp Bot 59: 2579–2596

Cavaliere C, Foglia P, Gubbiotti R, Sacchetti P, Samperi R, Laganà A
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