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   Abstract 

 Acute kidney injury (AKI) is a common and serious con-
dition, currently diagnosed by functional biomarkers, such 
as serum creatinine measurements. Unfortunately, creati-
nine increase is a delayed and unreliable indicator of AKI. 
The lack of early biomarkers of structural kidney injury has 
hampered our ability to translate promising experimental 
therapies to human AKI. The recent discovery, translation 
and validation of neutrophil gelatinase-associated lipocalin 
(NGAL), possibly the most promising novel AKI biomarker, 
is reviewed here. NGAL may be measured by several meth-
ods both in plasma and urine for the early diagnosis of AKI 
and for the prediction of clinical outcomes, such as dialysis 
requirement and mortality, in several common clinical sce-
narios, including in the intensive care unit, cardiac surgery 
and renal damage due the exposition to toxic agent and drugs, 
and renal transplantation. Furthermore, the predictive prop-
erties of NGAL, may play a critical role in expediting the 
drug development process. A systematic review of literature 
data indicates that further studies are necessary to establish 
accurate reference population values according to age, gen-
der and ethnicity, as well as reliable and specifi c decisional 
values concerning the more common clinical settings related 
to AKI. Furthermore, proper randomized clinical trials on 

renal and systemic outcomes comparing the use of NGAL vs. 
standard clinical practice are still lacking and accurate cost-
benefi t and/or cost-utility analyses for NGAL as biomarker 
of AKI are also needed. However, it is important to note that 
NGAL, in the absence of diagnostic increases in serum crea-
tinine, is able to detect some patients affected by subclinical 
AKI who have an increased risk of adverse outcomes. These 
results also suggest that the concept and defi nition of AKI 
might need to be reassessed.  

   Keywords:    acute kidney injury;   creatinine;   neutrophil 
gelatinase-associated lipocalin (NGAL);   renal disease;   renal 
function.    

   Introduction 

 The pathophysiological mechanisms related to the acute kid-
ney injury (AKI), have progressively gained interest in the 
last years  (1, 2) . Indeed, despite the progressively increasing 
advances in diagnosis and treatment, renal injury represents 
an important risk factor for the development of serious com-
plications as well as an independent mortality risk in hos-
pitalized patients  (3, 4) . The lack of reliable biomarkers of 
the early structural kidney injuries results in an unacceptable 
delay in the clinical diagnosis, which strongly limits a prompt 
therapeutic approach  (4, 5) . 

 Although blood creatinine is commonly used as an index 
of renal function, creatininemia is primarily a marker of 
glomerular fi ltration and cannot be considered an ideal 
biomarker for the estimation of kidney injury, because it is 
insensitive and unreliable to diagnose renal tubular injury 
in the absence of signifi cant reduction in the glomerular 
fi ltration rate (GFR)  (1, 2, 5 – 7) . Indeed, blood creatinine 
increases only after half of the kidney function is lost, which 
may take some days after the renal insult has occurred  (6, 7) . 
Delay in detection also means delay in intervention in the 
early periods of renal injury when appropriate management 
strategies can be instituted before irreversible renal dam-
ages occurs. Consequently, more reliable biomarkers than 
creatinine are necessary for both an accurate evaluation of 
renal function and an early detection of AKI  (1, 2, 7, 8) . An 
ideal biomarker for AKI should be non-invasive to measure, 
using urine or blood, rapid and inexpensive, amendable 
to clinical assay platforms and able to report results while 
damage is limitable. From a clinical standpoint, it should be 
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associated with a known mechanism of renal injury, able to 
identify tubular damage or other primary locations of kidney 
damage, sensitive to establish an early diagnosis, with high 
gradient to allow risk stratifi cation, specifi c to intrinsic AKI 
(vs. pre-renal) and able to discern AKI from chronic kidney 
disease, and the increase should be proportional to degree 
of damage. Finally, the results should predict clinical out-
comes and effi cacy of therapies and expedite drug develop-
ment process. 

 Many biomarkers have been suggested for an accurate and 
early detection of AKI, as reported in Table  1    (1, 2, 7) . Among 
these biomarkers, only for cystatin C and NGAL, reliable 
and automated assay methods are commercially available 
 (7) . Moreover, the recent guidelines from the Acute Dialysis 
Quality Initiative (ADQI)  (2)  reported that only NGAL and 
cystatin C are most likely to be integrated into clinical prac-
tice in the near future. 

 The aim of this review article is to discuss the analytical 
characteristics of assay methods for NGAL and the clinical 
relevance of this biomarker in accordance with the prin-
ciples of the evidence-based laboratory medicine. For this 
purpose, in September 2011, a computerized critical litera-
ture search limited to the English language in the National 
Library of Medicine (i.e., PubMed access to MEDLINE 
citations, http://www.ncbi.nlm.nih.gov/PubMed/), using 
the keywords:  “ NGAL ” ,  “ NGAL assay ” , and  “ Kidney 
Injury ” , has been carried out. In the fi rst part of this review 
article, we discuss the most important biochemical and 
physiological issues of NGAL and the analytical charac-
teristics and performance of NGAL assay methods. In the 
second part of the review, we will consider the pathophysi-
ological and clinical relevance of NGAL measurement 
according to the principles of evidence-based laboratory 
medicine.  

 Table 1      Novel biomarkers proposed for the detection of renal 
injury  (1, 2, 7) .  

Biomarker Related injury

Cystatin C Proximal tubule injury
KIM-1 Ischemia and nephrotoxins
NGAL Ischemia and nephrotoxins
NHE3 Ischemia, pre-renal, post-renal AKI
Cytokines (IL-6, IL-8, 
IL-18)

Toxic, delayed graft function

N-acetyl-b-(D)
glucosaminidase

Tubule injury

Actin-actin 
depolymerising factor

Ischemia and delayed graft function

 α -GST Proximal tubule injury, acute rejection
 π -GST Distal tubule injury, acute rejection
L-FABP Ischemia and nephrotoxins
Netrin-1 Ischemia and nephrotoxins, sepsis
Keratin-derived 
chemokine

Ischemia and delayed graft function

   GST, glutathione S-transferase; IL, interleukin; KIM, kidney in-
jury molecule; L-FABP, L-type fatty acid binding protein; NGAL, 
neutrophil gelatinase-associated lipocalin; NHE, sodium-hydrogen 
exchanger.   

  NGAL: main biochemical and physiological 

characteristics 

 NGAL (also known as human neutrophil lipocalin, lipocal-
in-2, siderocalin, 24p3, or  LCN2 ) is a small molecule of 178 
amino acids that belongs to the superfamily of lipocalins, 
which are proteins specialized in binding and transporting 
small hydrophobic molecules  (8 – 11) . The lipocalins share a 
molecular organization comprising eight  β -strands arranged 
in a complex  β -barrel structure delineating a calyx shape, 
which represents their binding site  (9, 10) . NGAL, like the 
other lipocalins, is able to bind some ligands, including the 
siderophores. Interactions with iron-binding siderophores 
give NGAL its characteristic bright red color and modulates 
most of its biological effects  (8 – 11) . 

 The biological activity of NGAL is mediated by means of 
bonds with specifi c surface receptors, including the 24p3R, a 
brain-type organic cation transporter, and the megalin multi-
scavenger complex, found mainly on the brush-border surface 
of renal tubular cells  (12, 13) . After interaction with these 
receptors, NGAL is internalized inside the cell as a protein 
alone (Apo-NGAL) or a complex with iron-binding sidero-
phores (Holo-NGAL) (Figure  1  ). Holo-NGAL is captured 
inside endosomal vesicles and transported within the cyto-
plasma, where it can release the siderophore-iron complex, 
thus activating iron-dependent specifi c pathways. Conversely, 
Apo-NGAL, after being internalized in the cell, is able to 
capture cellular iron and export it to the extracellular space 
(Figure 1). This results in depletion of iron cellular pools 
that, under particular conditions, may even lead to apoptosis. 
Due to its specifi c binding to bacterial siderophores, NGAL 
is also able to exert a bacteriostatic effect on several strains of 
bacteria by its ability to capture siderophores in extracellular 
space and so to deplete the bacterial iron supply  (10, 14, 15) . 
Therefore, NGAL represents a critical component of innate 
immunity to bacterial infection  (15) . 

 NGAL seems to have more complex activities than just 
its antimicrobial effect. Indeed, NGAL shows complex 
interactions with several other receptors and ligands, such 
as hepatocyte growth factor and some gelatinases (like as 
matrix metalloproteinase-9, MMP-9) and extracellular pro-
tein kinases  (8 – 11) , which are involved in several biologi-
cal responses, such as cell proliferation and differentiation 
 (14) . The expression of NGAL rises 1000-fold in humans and 
rodents in response to renal tubular injury, and it appears so 
rapidly in the urine and serum that it is useful as an early bio-
marker of renal failure  (14)  (Figure  2  ). Induction of NGAL 
may limit tubular injury by modulating various cellular 
responses, such as proliferation, apoptosis, and differentia-
tion, but the specifi c mechanisms for such an action are not 
well understood yet  (14) . 

 Human NGAL was identifi ed and isolated from secondary 
granules of human neutrophils  (17) . NGAL mRNA is nor-
mally expressed in a variety of adult human tissues (including 
bone marrow, uterus, prostate, salivary gland, stomach, colon, 
trachea, lung, liver and kidney), which may constitutively 
express the NGAL protein at low levels  (18) . In neutrophils 
and urine human NGAL occurs as a monomer, with a small 
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 Figure 1    Schematic representation of action mechanisms of NGAL. 
 NGAL interacts on the cell membrane with specifi c receptors (24p3R and megalin) as a complex with iron-siderophores (Holo-NGAL) or alone 
(Apo-NGAL)  (10 – 12) . After internalization, Holo-NGAL is able to release the iron it carried into the cytoplasm, leading to iron accumulation 
and regulating specifi c iron-dependent gene pathways  (10 – 15) . Endosomal NGAL captures iron via a hypothetical intracellular siderophore, 
which is followed by recycling to the extracellular space  (14) . NGAL then may be destroyed within the cell or recycled outside as Apo-NGAL. 
Most protective effects attributed to this protein probably are realized through mechanisms based on iron-dependent gene regulation  (10, 14, 
15) . Moreover, Apo-NGAL can capture intracellular iron-siderophores and transport these to the extracellular space, thus depriving the cell of 
its iron reserves. This probably represents the way NGAL exerts strong antibacterial properties and under particular conditions may promote 
cellular apoptosis  (10, 14, 15) .    
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 Figure 2    Clinical usefulness of biomarkers of early acute kidney injury. 
 The urinary and/or circulating levels of biomarkers of early acute kidney injury, such as NGAL, are increased in the urine or serum of 
patients within 6 h after the kidney injury; while blood creatinine increases only after half of the kidney function is lost, which may take 
some days after the renal insult has occurred  (6, 7) . Moreover, recent data suggest that NGAL assay is also able to detect patients with only 
subclinical or modest renal damage, which may be not revealed by signifi cant variations in renal function test, such as serum creatinine 
or GFR  (16) .    
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percentage of dimers and trimers, and it also occurs as a com-
plex with 92-kDa human neutrophil type IV collagenase, also 
called gelatinase B or MMP-9. The binding of some activated 
transcription factors (such as the nuclear factor NF-kB) to the 
promoter region of the NGAL gene could explain the induc-
ible expression of NGAL in several of the non-hematopoietic 
tissues  (18) . Moreover, the NGAL gene may be induced by 
a number of tumor-promoting agents, including SV40 and 
polyoma virus, phorbol esters, the transforming factor Neu, 
hepatocyte growth factor, retinoic acid, glucocorticoids and 
NFkB transcription factor  (8) . These effects may explain 
because NGAL is markedly induced in a number of human 
cancers, where it often represents a predictor of poor prog-
nosis  (8) .  

  Assay methods for NGAL measurement: 

analytical characteristics and performance 

 Only few studies, which accurately evaluated and/or compared 
the analytical characteristics and performance of NGAL assay 
methods, are currently available in the literature (Table  2  ). 
Furthermore, the majority of the clinical studies report insuf-
fi cient data on the analytical performance of the method used 
for NGAL assay. This lack of information does not allow an 
accurate evaluation and/or comparison of the analytical effi -
cacy and reliability of NGAL measurement, especially when 
the methods used are manual, not standardized assays [such 
as enzyme-linked immunosorbent assay (ELISA) or immune 
blotting systems] expressly set up in the laboratory for the 
purpose of the study (Table 2). 

 The fi rst analytical procedures set up for measurement of 
NGAL in blood or urine samples were based on ELISA  (19, 
23)  or immunoblotting systems  (27)  (Table 2). In general, these 
are manual, not standardized methods, which are not recom-
mended for clinical routine, but only for research studies  (19, 
20, 22, 23, 25, 27, 28) . The measurement of NGAL in serum, 
plasma and urine samples can be also performed by means 
of a commercially available ELISA kit (NGAL Rapid ELISA 
KIT 037, Antibodyshop ELISA kit, BioPorto Diagnostics) 
using both a manual procedure  (20, 25)  or several chemistry 
analyzers  (28) . Pedersen et al.  (25)  have recently evaluated 
the analytical performance of this ELISA kit, using the man-
ual procedure for the measurement of NGAL in both urine 
and plasma samples. A point-of-care test (POCT) method 
(Triage  ®   Bioste, Alere Health) is a commercial fl uorescence-
based immunoassay for a rapid measurement (approximately 
30 min) of NGAL in EDTA anti-coagulated whole blood or 
plasma samples  (21, 29, 30) . This POCT method has a detec-
tion limit at 60 ng/mL and the upper limit of the working 
range at 1300 ng/mL  (21, 30) . 

 More recently, a CMIA (chemiluminscent microparticle 
immunoassay) method became commercially available, using 
the automated platform ARCHITECT (Abbott Diagnostics) 
for the measurement of NGAL in urine samples  (26, 29, 30) . 
The assay involves a microparticle reagent prepared by cova-
lently attaching an anti-NGAL antibody to paramagnetic par-
ticles and a conjugate reagent prepared by labeling a second  Ta
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anti-NGAL antibody with acridinium. The assay calibrators 
are prepared with recombinant human NGAL, at concentra-
tions 0, 10, 100, 500, 1000 and 1500 ng/mL, respectively. 
The analytical characteristics of this CMIA method have been 
recently evaluated by Grenier et al.  (26) . In particular, this 
method showed a close linear regression with an ELISA kit 
(AntibodyShop NGAL Rapid ELISA Kit, BioPorto, Denmark) 
throughout all NGAL concentration interval tested, ranging 
from 2 to 1500  μ g/L (R  =  0.994, n  =  100; ARCHITECT  =  0.93 
ELISA + 4.2)  (26) . Moreover, the imprecision at the lower 
limit of working range (i.e., 2  μ g/L) was   <  20 %   (26) . 

 Cavalier et al.  (29)  recently compared the analytical char-
acteristics and performance of POCT Triage  ®   method with 
those of CMIA method on the ARCHITECT platform. The 
coeffi cient of variation   (CV) values did not exceed 6 %  for the 
CMIA method throughout the range tested (from 22.5 to 1315 
 μ g/L), while for the POCT Triage  ®  , the CV ranged from 4.9 %  
to 15.6 %  at concentrations of 722 and 117  μ g/L, respectively 
 (29) . However, it is important to note that these two methods 
use different matrix samples: urine for CMIA and plasma for 
POCT Triage  ®  , respectively. Therefore, these results should 
be considered with care while a higher degree of precision is 
expected using a fully automated platform. In conclusion, a 
true comparison between the two testing methods is diffi cult 
to perform, also because a new version of the Triage  ®   POCT 
assay, with enhanced sensitivity, will become available very 
soon  (31) .  

  Biological variation of NGAL measurement 

 Delanaye et al.  (32)  recently evaluated the biological variation 
of NGAL and the ratio between NGAL and creatinine values 
measured with the CMIA method in urine samples of 20 healthy 
subjects. Each subject collected the fi rst-catch morning urine 
on ten different open days. Next, a second urine sample was 
randomly collected on the same day at any time. The biologi-
cal variation of the fi rst morning urine, expressed as CV of 
both absolute NGAL and NGAL/creatinine ratio values, were 
calculated at 84 %  and 81 % , respectively (p  <  0.05), while for 
the second urine random samples, the CVs were 124 %  and 
88 % , respectively (p  <  0.05). Delanaye et al.  (32)  recommend 
the use of NGAL to creatinine ratio values (especially for ran-
dom urine samples) in order to improve the intra-individual 
variation observed in urinary NGAL measurements. 

 To provide a better assessment of the variability of urine 
NGAL, Grenier et al.  (26)  collected spot urine samples from 
13 healthy volunteers, 2 – 4 times per day for 3 – 5 days. Also 
in this study, the absolute urinary NGAL values and the 
ratio between urinary NGAL and creatinine with the CMIA 
method were measured. The results of this study showed 
that the predominant part of the variation occurred between 
specimens and not between days or individuals, while the 
contribution of the test method precision to the variance was 
small (  <  0.5 % ). 

 From a clinical point of view, it is important to note that 
the biological variation of measurement of NGAL in urine 
specimens remains very high even after the correction for 

creatinine values. Obviously, this large intra-individual varia-
tion of urinary NGAL may affect its diagnostic accuracy as 
a biomarker of AKI. As a result, Delanaye et al.  (32)  sug-
gested that NGAL samples must be doubled in longitudinal 
follow-up before asserting that NGAL is really increasing. 
However, an important limitation of these studies  (26, 32)  are 
that the variations of urinary NGAL values were measured 
only in healthy subjects, while the  “ true ”  variation of urinary 
NGAL in patients with AKI is not known. To the best our 
knowledge, there are no data regarding the biological varia-
tion of NGAL in serum or plasma specimens, and this has a 
defi nite impact on the clinical value of results.  

  NGAL measurement: reference values 

 Unfortunately, at the present time there are no available 
international recommendations or guidelines concerning the 
quality specifi cations for NGAL assay. For these reasons, we 
reported in this review, both in the text and the tables, the 
serum or urinary NGAL values, expressed in the same mea-
surement units (usually ng/mL or  μ g/L) of the original articles. 
Of course, an international standardization for the measure-
ment units for NGAL assay is mandatory. We would like to 
suggest the  μ g/L for the measurement of NGAL assay. 

 There are no studies intentionally set up with the aim 
to accurately evaluate the reference values of NGAL mea-
surement in blood or urine specimens using large reference 
populations, stratifi ed according to age, gender and ethnicity. 
However, some authors reported  “ normal values ”  measured in 
relatively large groups, including apparently healthy subjects, 
enrolled in a clinical study as a control group. As an example, 
Stejskal et al.  (23)  measured NGAL with an ELISA method 
(Table  3  ) in serum samples of adult, non-obese subjects. The 
NGAL values observed in the 53 men (mean: 86.3  μ g/L; SD: 
43.0  μ g/L; median: 78.8  μ g/L) were not signifi cantly differ-
ent from those found in the 83 women (mean: 88.9  μ g/L; SD: 
38.2.0  μ g/L; median: 80.0  μ g/L). 

 Furthermore, some information on the  “ expected normal 
values ”  is usually reported in the product inserts of the com-
mercial NGAL assays, distributed by the manufacturers. The 
expected range of NGAL normal values of Triage NGAL Test, 
as reported by the manufacturer, was determined by collecting 
blood EDTA samples from 120 apparently healthy individu-
als (24 females and 96 males, age range 18 – 83 years)  (30) . 
The non-parametric reference range upper limit (95th percen-
tile) of the population tested was 149 ng/mL with a 90 %  con-
fi dence interval ranging from 100 to 194 ng/mL  (30) . The kit 
insert of the CMIA assay, distributed by Abbott Diagnostics 
 (45) , reports a value of 132  μ g/L as the 95th percentile of 
NGAL values measured in 196 blood donors. The distribu-
tion of NGAL values is highly asymmetric and approximates 
a log-normal distribution. 

 To our knowledge, there is no reliable literature data con-
cerning the reference range of NGAL measured in urine or 
blood samples in pediatric age. Huynh et al.  (24)  recently 
reported NGAL values measured by an immunoblotting pro-
cedure (Table 2) in 706 samples collected from 50 neonates 
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with very low body weight at birth (from 790 g to 1490 g). The 
median, 95th and 99th percentiles, and range of pooled urinary 
NGAL values were 5 ng/mL, 50 ng/mL, 120 ng/mL, and 2 – 150 
ng/mL, respectively. Of note, in this study, greater variability 
and higher quantile levels of urinary NGAL were observed in 
females vs. males. The reason for this signifi cant difference 
between genders for urinary NGAL values in neonates is not 
known. However, Huynh et al.  (24)  suggested that the gender-
dependent values may be due to the contamination by stool or 
vaginal secretion containing NGAL-secreting cells.  

  NGAL measurement: in vitro stability and assay 

interferences 

 Several data indicate that NGAL is stable either in plasma 
or urine samples if stored for a long time (some months) at 
−80 ° C  (25, 26, 46) , but not at  – 20 ° C, and this should be con-
sidered when performing studies on repository specimens. 
Additionally, NGAL is suffi ciently stable in urine if stored 
at 4 ° C for up to 7 days  (26) . Moreover, several freeze-thaw 
procedures do not affect the NGAL measurement in plasma or 
urine samples  (25, 26) . 

 Grenier et al.  (26)  reported that the average recovery of 
NGAL assay in urine specimens, measured with the CMIA 
method, ranged from 94 %  to 105 %  when testing for analyti-
cal interference from acetone, ascorbic acid, albumin, biliru-
bin, creatinine, ethanol, glucose, hemoglobin, NaCl, oxalic 
acid, ribofl avin, or urea. This assay was also insensitive to 
sample pH ranging from 4 to 9. 

 Pedersen et al.  (25)  reported that the most important fac-
tor that may affect NGAL measurements in plasma with an 
ELISA method (Table 2) is the presence of hemolysis. Indeed, 
in this study a direct relationship was observed between 
degree of hemolysis and NGAL increase, Pedersen et al. 
also reported that postoperative blood samples from patients 
undergoing cardiac surgery tend to hemolyze at a higher fre-
quency compared with preoperative samples. The same study 
reported a high inter-assay variation for urine than plasma 
samples. They suggested that this difference could be caused 
by the presence of sedimentation factors in urine, which can 
infl uence the assay imprecision. These results underline the 
importance of centrifugation of urine samples prior to NGAL 
assay with ELISA methods. 

 Another factor to be taken into account is the production 
of NGAL by neutrophils  (17)  in urinary tract infections, as 
antibodies raised against renal NGAL may recognize also leu-
kocyte NGAL  (47) . Due to the fi ndings that some NGAL may 
be released from neutrophils during the preparation of serum, 
it may be preferable to use plasma (rather than serum), and 
urine should be centrifuged to remove neutrophils in cases 
of urinary tract infection. Indeed, Decavele et al.  (48)  were 
able to demonstrate that urinary WBC counts are signifi cantly 
correlated with urinary NGAL values, while bacterial counts 
were not. The presence of NGAL originating from urinary 
neutrophils that participate in the antibacterial iron deple-
tion strategy of the innate immune system may explain this 
fi nding.   Ta
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  NGAL measurement: pathophysiological 

considerations 

 From a clinical point of view, the use of NGAL assay is 
currently suggested for the diagnostic and/or prognostic 
evaluation of AKI syndromes, also including patients with 
cardio-renal syndrome related to heart failure  (1, 2, 16, 33 – 44, 
49 – 68) . The rationale for these clinical applications of NGAL 
assay is strictly associated to pathophysiological mechanisms 
responsible of AKI (Figure 2). 

 AKI refers to a common syndrome that results from mul-
tiple causative factors and occurs in a variety of clinical set-
tings, with clinical manifestations of different degrees of 
severity, ranging from a minimal elevation in serum creati-
nine to anuric renal failure  (1, 2, 8) . AKI is a common clini-
cal situation in hospitalized patients, in particular in critical 
care and surgical perioperative settings. These patients often 
suffer a worse clinical outcome, including prolonged hospi-
talization, the need for admission to the intensive care unit, 
the need for dialysis, development of chronic kidney disease, 
and an increased mortality. The incidence of AKI in hospital-
ized patients is estimated at a staggering 5 %  – 7 % , while in 
the intensive care units it is even higher (approx. 25 % )  (8) . 
Despite recent improvement in outcomes over time, reported 
incidence and mortality rates are still high though they vary 
widely in the literature, with incidence ranging from 1 %  to 
31 %  and mortality from 28 %  to 82 %   (1, 2, 8) . 

 The term AKI has largely replaced that of acute renal fail-
ure; as the latter designation overemphasizes the failure of 
kidney function and fails to account for the diverse molecular, 
biochemical and structural processes that characterize the AKI 
syndrome  (8) . Indeed, the pathogenesis of AKI involves the 
complex interaction between vascular, tubular, and infl amma-
tory factors  (69, 70) . The kidney is believed to be highly sus-
ceptible to injury related to ischemia and/or toxins resulting in 
vasoconstriction, endothelial injury, and activation of innate and 
acquired infl ammatory immune responses  (69, 70) . This suscep-
tibility derives, in part, from the association between vascular 
supply to the outer medulla, where tubular cells are vulnerable 
to ischemia/hypoxia, and the natural functional response of the 
nephron to fi lter, concentrate, and potentially reabsorb many 
substances from the tubular lumen that may predispose to local 
epithelial cell toxicity  (69, 70) . The most common nephrotoxic 
agents have been described by Bagshaw et al.  (69) . 

 Injured kidney tubular cells produce and secrete several 
biological substance associated to innate and acquired infl am-
matory immune responses, including NGAL  (69, 70) . In the 
kidney, after ischemic or nephrotoxic AKI in animal models, 
transcriptome profi ling studies identifi ed NGAL to be one of 
the most up-regulated gene, and proteomic analyses revealed 
NGAL to be one of the most highly induced proteins  (71 – 74) . 
These studies stimulated several groups of investigators to 
evaluate NGAL as a non-invasive biomarker in human AKI 
 (8) . As a result, a huge number of studies have now implicated 
NGAL as an early diagnostic biomarker for AKI in common 
clinical situations  (16, 33 – 44, 49 – 68) . 

 The genesis and sources of plasma and urinary NGAL fol-
lowing an acute kidney injury require further clarifi cation. 

Although plasma NGAL is freely fi ltered by the glomeru-
lus, it is largely reabsorbed in the proximal tubules by effi -
cient megalin-dependent endocytosis  (75) . Thus, any urinary 
excretion of NGAL should occur only when there is a con-
comitant proximal renal tubular injury that precludes NGAL 
reabsorption and/or increases  de novo  NGAL synthesis. With 
respect to plasma NGAL, the kidney itself does not appear 
to be a major source  (75) . In animal studies, direct ipsilateral 
renal vein sampling after unilateral ischemia indicates that the 
NGAL synthesized in the kidney is not introduced effi ciently 
into the circulation, but is abundantly present in the ipsilat-
eral ureter  (14) . However, recent fi ndings indicate that NGAL 
mRNA expression is increased in distant organs after acute 
kidney injury  (76) , especially the liver and lungs. As a result 
over-expressed NGAL protein released into the circulation 
may constitute a distinct systemic pool  (75) . Indeed, NGAL 
is an acute phase reactant and may be released from neutro-
phils, macrophages and other immune cells into circulation 
following kidney damage. Furthermore, any decrease in GFR 
resulting from AKI would be expected to decrease the renal 
clearance of NGAL, with subsequent accumulation in the sys-
temic circulation. However, the relative contribution of these 
mechanisms to the rise in plasma NGAL after AKI remains to 
be determined.  

  Clinical relevance of NGAL measurement 

according to the principles of evidence-based 

laboratory medicine 

 In Tables 3 and  4  , we have summarized the data from several 
studies that evaluated the diagnostic accuracy of NGAL test-
ing in blood (Table 3) and urine (Table 4) samples in differ-
ent clinical conditions associated to AKI syndromes. Only the 
studies that assessed the diagnostic accuracy according to evi-
dence-based laboratory medicine principles were taken into 
consideration. A large variation of diagnostic accuracy was 
reported in these studies, with area under the curve (AUC) 
values ranging from 0.54 to 0.96 for NGAL in blood samples 
(Table 3) and from 0.61 to 0.98 for urine samples (Table 4). 
This shows some studies reported a good or excellent diag-
nostic accuracy of the NGAL assays, while other ones evi-
denced a very poor or not signifi cant discrimination between 
patients with or without AKI. These very large differences in 
the results reported are probably due to both the low number 
of patient enrolled in some studies and to the evaluation of dif-
ferent clinical settings. Considering these limitations, a recent 
meta-analysis  (49)  was performed in order to evaluate more 
precisely the diagnostic accuracy of NGAL as a biomarker of 
AKI. Using a hierarchical bivariate generalized linear model 
to calculate the diagnostic odds ratio (DOR) and sample 
size-weighted area under the curve (AUC), for the receiver-
operating characteristic, Hasse et al. analyzed data from 19 
studies and 8 countries involving 2538 patients, of whom 487 
(19.2 % ) developed AKI  (49) . Considering all data as a whole, 
the DOR and AUC of NGAL measurements to predict AKI 
was 18.6 and 0.815, respectively. A separate analysis accord-
ing to the different clinical setting has been also carried out: 
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in cardiac surgery patients, the DOR and AUC of NGAL was 
13.1 and 0.775; in critically ill patients, 10.0 and 0.728; and 
after contrast infusion, 92.0 and 0.894. The diagnostic accu-
racy of plasma/serum NGAL (DOR 17.9, AUC 0.775) was 
similar to that of urine NGAL (DOR 18.6 and AUC 0.83). 
Finally, this study indicated age to be an effective modifi er of 
NGAL value with better predictive ability in children (DOR 
25.4 and AUC 0.930) compared with adults (DOR 10.6 and 
AUC 0.782)  (49) . 

 This meta-analysis indicated that NGAL assay may be also 
a useful prognostic tool with regard to the prediction of renal 
replacement therapy initiation (DOR 12.9 and AUC 0.782) 
and in-hospital mortality (DOR 8.8 and AUC 0.706)  (49) . 
The prognostic accuracy of NGAL assay was confi rmed by a 
more recent meta-analysis  (16) , which analyzed pooled data 
from 2322 critically ill patients with predominantly cardio-
renal syndrome from ten prospective observational studies of 
NGAL. This analysis indicates that in the absence of diagnos-
tic increases in serum creatinine, NGAL detects patients with 
likely subclinical AKI, who have an increased risk of adverse 
outcomes. 

 In the last few years, a progressively increasing number 
of studies suggested that NGAL is a useful diagnostic and 
prognostic biomarker in the specifi c setting of cardio-renal 
syndrome  (1, 2) , including patients with chronic or acute 
heart failure  (61 – 68) . In particular, some studies  (61 – 64, 66)  
reported that NGAL, measured in urine or plasma samples, 
is as sensitive early marker of renal injury, including patients 
with chronic heart failure with reduced eGFR, even when 
serum creatinine is normal  (61) . Moreover, recent studies 
indicated that NGAL is also a prognostic marker in patients 
with heart failure  (63, 64, 67, 68) . In elderly patients, higher 
levels of plasma NGAL are related to the clinical severity of 
congestive heart failure, the highest levels being reached in 
patients with NYHA functional class IV, and were associated 
with higher mortality  (63) . More recently, the GALLANT 
multicenter, prospective study  (68)  assessed the utility of 
plasma NGAL, alone and in combination with BNP, as an 
early risk marker of adverse outcomes in 186 patients (61 %  
male) in acutely decompensated heart failure. In this study, 29 
events (readmissions for acute hart failure and all-cause mor-
tality) were observed at 30 days (16 % ). Patients with events 
had higher mean levels of NGAL than those without (134 
ng/mL vs. 84 ng/mL). The area under the AUC was higher 
for NGAL (0.72) than BNP (0.65), serum creatinine (0.57), or 
eGFR (0.55). In multivariable analyses, NGAL signifi cantly 
predicted events, BNP only approached signifi cance, while 
neither serum creatinine nor eGFR were signifi cant. 

 Although these data, taken as a whole  (61 – 68) , suggest a 
relevant role for NGAL as biomarker of AKI in patients of 
heart failure, further studies are needed to accurately evalu-
ate the diagnostic and prognostic relevance of this biomarker 
in this specifi c clinical setting, as the majority of the above 
reported studies enrolled a small group of patients  (61 – 66)  
and/or used an inadequate statistical analysis, according to 
the evidence-based laboratory medicine principles. Indeed, 
only the GISSI-heart failure trial  (68)  has enrolled an ade-
quate number of cases (2130 patients with heart failure) for a  Ta
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reliable statistical evaluation of the prognostic accuracy and 
the clinical outcome. As a result, the effi ciency and effi cacy of 
the use of NGAL assay in the specifi c setting, including only 
patients with heart failure, are, at present time, not well dem-
onstrated, while studies reporting the cost-benefi t analysis are 
completely lacking. 

 Another relevant fi eld for the clinical application of NGAL 
assays is the renal transplant setting  (77 – 86) . Patients under-
going renal transplantation, especially from deceased donors, 
often experience a delayed graft function (DGF) that is the 
main risk factor for reduced allograft survival, and currently 
DGF is diagnosed by measuring serum creatinine, thence 
with the same problems, especially in timing, experienced 
for the diagnosis of AKI. NGAL expression was shown  (77)  
to be signifi cantly increased in cadaveric than in living renal 
allografts (2.3  ±  0.8 vs. 0.8  ±  0.7 by an  “ ad hoc ”  scoring sys-
tem) and there was a strong correlation between NGAL stain-
ing and peak postoperative serum creatinine, which occurred 
days later (R  =  0.86, p  <  0.001). Parikh et al.  (78).  suggested a 
possible improvement in DGF diagnosis by measuring NGAL 
and IL-18 in urine, with an AUC of 0.9 for both markers. The 
same two markers were evaluated also by Hall et al.  (83) , who 
reached the conclusion that the levels of both markers on the 
fi rst day after transplant were predictors of dialysis initiation 
and recovery of graft function after 3 months. Kusaka et al. 
 (79)  reported NGAL measurement in plasma as a good pre-
dictor of DGF recovery. However, subsequent studies either 
on plasma  (80 – 82, 85)  or urine  (84, 86)  NGAL yielded con-
fl icting results, with AUCs ranging from 0.63 to 0.97 and the 
lowest value was obtained in the only study  (86)  conducted 
on a large number of patients (n  =  598).  

  NGAL measurement: state-of-art 

and prospective remarks 

 By now, a huge number of clinical studies (Tables  3  –5) and 
systematic reviews indicate that NGAL should be considered 
a reliable diagnostic and prognostic biomarker for kidney 
injury  (2, 7, 8, 16, 33 – 44, 49 – 85) . However, reference ranges, 
adjusted for age, gender and ethnicity, as well as reliable cut-
off values, calculated on large patient population, for ruling 
in and out of AKI syndromes, are still lacking. Furthermore, 
proper randomized clinical trials on renal and systemic out-
comes comparing the use of NGAL vs. standard clinical 
practice are still lacking and accurate cost-benefi t and/or 
cost-utility analyses are needed in order to demonstrate that 
NGAL assay is able to improve diagnostic algorithms and/or 
outcome of patients, as well as to reduce the cost of clinical 
care. 

 Some authors  (8, 32, 75)  have compared the possible clini-
cal impact of NGAL assays, as a biomarker of acute renal 
injury, to that of cardiac troponins I (cTnI) and T (cTnT) on 
acute coronary syndromes. However, it is important to note 
that while cTnI and cTnT are biomarkers absolutely specifi c 
for cardiac tissue  (87) , NGAL is not a biomarker specifi c 
for renal tissue, because it is produced and secreted by sev-
eral other tissues (including bone marrow, uterus, prostate,  Ta
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salivary gland, stomach, colon, trachea, lung, liver and kid-
ney)  (8) . Therefore, while an increase in circulating levels of 
cTnI and cTnT always indicates a cardiac damage  (87) , an 
increase in NGAL may be due to damage or altered functional 
activity of other organs and tissues (such as immune com-
petent cells) different to renal tissue. NGAL assays in urine 
samples may improve specifi city compared to that in blood 
(serum or plasma), but the evidences reported so far do not 
confi rm this hypothesis  (49) . However, it is important to note 
that NGAL assays, in the absence of diagnostic increases in 
serum creatinine, are able to detect some patients, affected 
by subclinical AKI, who have an increased risk of adverse 
outcomes  (16) . These results may indicate that the concept 
and defi nition of AKI (currently still based on the measure-
ment of serum creatinine and urinary fl ow)  (1, 2)  might need 
reassessment  (16) .     
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