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The international trade network (ITN) has received renewed multidisciplinary interest due to recent advances in
network theory. However, it is still unclear whether a network approach conveys additional, nontrivial information
with respect to traditional international-economics analyses that describe world trade only in terms of local
(first-order) properties. In this and in a companion paper, we employ a recently proposed randomization method
to assess in detail the role that local properties have in shaping higher-order patterns of the ITN in all its possible
representations (binary or weighted, directed or undirected, aggregated or disaggregated by commodity) and
across several years. Here we show that, remarkably, the properties of all binary projections of the network can
be completely traced back to the degree sequence, which is therefore maximally informative. Our results imply
that explaining the observed degree sequence of the ITN, which has not received particular attention in economic

theory, should instead become one the main focuses of models of trade.
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I. INTRODUCTION

The network of import-export trade relationships among
all world countries, known in the literature as the International
Trade Network (ITN) or the World Trade Web (WTW), has
received a renewed multidisciplinary interest in recent years
[1-13], due to impressive advances in both empirical and the-
oretical approaches to the study of complex networks [14—16].
A number of robust patterns in the structure of this network
have been empirically observed, in both its binary (when only
the presence of a trade interaction is considered, irrespective
of its intensity) and weighted (when also the magnitude of
trade flows is taken into account) description. These stylized
facts include local properties as well as higher-order patterns.
Local properties involve direct (first-order) interactions alone,
resulting in simple quantities such as node degree (the number
of trade partners of a country), node strength (total trade
volume of a country), and their directed-network analogues
(i.e., when these statistics are computed taking into account
edge [trade] directionality). Higher-order characteristics are
more complicated structural properties that also involve indi-
rect interactions, i.e., topological paths connecting a country
to the neighbors of its neighbors, or to countries farther
apart. Examples include degree-degree correlations, average
nearest-neighbor indicators, and clustering coefficients, to
name just a few of them.

In general, local and higher-order topological properties
are not independent of each other. In particular, even if
one assumes that the network is formed as the result of
local constraints alone, with higher-order properties being
only the mere outcome of a specification of these con-
straints, it turns out that so-called structural correlations are
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automatically generated. Structural correlations sometimes
appear as complicated patterns that might be confused with
genuine correlations involving higher-order statistics, and
interpreted as the presence of an additional level of topological
organization. Therefore, in any real network it is important to
characterize structural correlations and filter them out in order
to assess whether nontrivial effects due to indirect interactions
are indeed present.

In the specific case of the ITN, this problem is particularly
important to assess whether the network formalism is really
conveying additional, nontrivial information with respect to
traditional international-economics analyses, which instead
explain the empirical properties of trade in terms of country-
specific macroeconomic variables alone. Indeed, the standard
economic approach to the empirics of international trade
[17] has traditionally focused its analyses on the statistical
properties of country-specific indicators like total trade, trade
openness (ratio of total trade to GDP [gross domestic product]),
number of trade partners, etc., that can be easily mapped
to what, in the jargon of network analysis, one denotes as
local properties or first-order node characteristics. Ultimately,
understanding whether network analyses go a step beyond with
respect to standard trade theory amounts to assess the effects
of indirect interactions in the world trade system. Indeed,
a wealth of results about the analysis of international trade
have already been derived in the macroeconomics literature
[17] without making explicit use of the network description,
and focusing on the above country-specific quantities alone.
Whether more recent analyses of trade, directly inspired by
the network paradigm [1-12], are indeed conveying additional
and nontrivial information about the structure of international
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import-export flows crucially depends on the answer to the
above question. Some network-inspired studies have already
tried to address this problem, but with ambiguous results.
In some cases, it was suggested that local properties are
enough to explain higher-order patterns [3,6,18], while in
others the opposite conclusion was reached [19]. However,
previous analyses of the ITN focused on heterogeneous rep-
resentations (either binary [2,3] or weighted [6,10,19], either
directed [4,5,20] or undirected [2,3], either aggregated [2,3,10]
or disaggregated [13] in separate commodities) and using
different data sets, making consistent conclusions impossible.

In this and in a companion paper [21], we explicitly
address this problem and exploit a recently proposed analytical
method [22] to obtain, for any given topological property
of interest, the value of the corresponding quantity averaged
over the family of all randomized variants of the ITN that
preserve the observed local properties. This allows us to
identify empirical deviations from locally induced structural
correlations. Null models are used in our exercises to uncover
significant features of the network and to understand to which
extent some network statistics are sufficient to explain other
network statistics. Our analysis is not, however, involved in
explaining the underlying causal mechanisms shaping the
network. Therefore, throughout this and its companion paper,
we shall use the term “explaining” in a weak sense. For
example, finding that a local network statistics X “explains” a
higher-order network statistics Y in our null model will signal
the presence of a strong correlation between the two statistics,
so that X can be sufficient to fully reproduce Y in the network.
Of course, we do not aim at using our null model to identify
subtle causal links between X and Y, which in the real-world
may be caused, e.g., by some omitted variables that cause in a
proper way the high observed correlation between X and Y.

In this first paper, we focus on the ITN as a binary
network. We find that higher-order patterns of all binary
(either directed or undirected) projections of the ITN are
remarkably well explained by local properties alone (the
degree sequences). This result is robust to different levels of
commodity aggregation: Even if with an increasing scatter,
the degree sequence preserves its complete informativeness as
more disaggregated and sparser commodity-specific networks
are considered. Moreover, we perform a temporal analysis and
check the robustness of these results over time. Therefore we
obtain, for the first time in this type of study, a detailed and
homogeneous assessment of the role of local properties across
different representations of the trade network, using various
levels of commodity aggregation, and over several years.
From an international-trade perspective, our results indicate
that binary network descriptions of trade can be significantly
simplified by considering the degree sequence(s) only. In other
words, in any binary representation of the ITN, the degree
sequence turns out to be maximally informative, since its
knowledge conveys almost the entire information about the
topology of the network.

In the companion paper [21], we show that the picture
changes completely when considering the ITN as a weighted
network. We find that the ITN is an excellent example of a
network whose local topological properties cannot be deduced
from its local weighted properties. These results highlight
an important limitation of current economic models of trade,
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which do not aim at explaining or reproducing the observed
degree sequence but focus more on the structure of weights
[23]. In other words, standard models of trade in economics
have been focusing only on explaining the (positive) flow
between any two countries, disregarding to a great extent
theories that are able to account for the determinants of the
creation of a link (i.e., the transition from a zero trade flow to
a positive trade flow). The observed extreme informativeness
of the degree sequence leads us to conclude that such models
should be substantially revised in order to explicitly include
the degree sequence of the ITN among the key properties to
reproduce.

II. DATA AND METHODS

This section describes the data we use to construct the vari-
ous representations of the network in this and in the following
paper [21], discusses how the country-specific properties that
are usually considered in world-trade economics translate into
local topological properties of the ITN, and discusses how
these properties should be kept as constraints of our analysis
using an appropriate network randomization method.

A. The International Trade Network

We use yearly bilateral data on exports and imports
from the United Nations Commodity Trade Database (UN
COMTRADE)! from year 1992 to 2002. We have chosen
this database because, despite its relatively short time interval
(11 years), it contains trade data between countries disaggre-
gated across commodity categories. This allows us to perform
our analyses both at the aggregate level (total trade flows) and
at the commodity-specific level, e.g., investigating whether
local properties are sufficient to explain higher-order ones in
commodity-specific networks of trade.

In order to perform a temporal analysis and allow com-
parisons across different years, we restrict ourselves to a
balanced panel of N = 162 countries that are present in the
data throughout the time interval considered. As to the level of
disaggregation, we choose the classification of trade values
into C = 97 possible commodities listed according to the
Harmonized System 1996 (HS1996).> Accordingly, for a given
year ¢ we consider the trade value ej;(¢) corresponding to
exports of the particular commodity ¢ (c =1, ...,C). Since,
for every commodity, exports from country i to country j are
reported twice (by both the importer and the exporter) and
the two figures do not always match, we follow Ref. [13]
and employ the flow only as reported by the importer. Besides
commodity-specific data, we also compute the total value e?j ®)
of exports from country i to country j as the sum over the
exports of all C = 97 commodity classes:

C
() =) €. (1)

c=1
The particular aggregation procedure described above, which
coincides with the one performed in Ref. [13], allows us to

Thttp://comtrade.un.org/.
Zhttp://unstats.un.org/.
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compare our analysis of the C commodity-specific networks
with a (C 4 1)-th aggregate network, avoiding possible incon-
sistencies between aggregated and disaggregated trade data.
We stress that the resulting aggregated network data are in
general different from those used in other analyses [3,4,12]
of the same network. Nonetheless, as we show below, when
we analyze network properties that have also been studied in
previous studies of aggregate trade, we find perfect agreement.
The quantities {efj(t)} (where ¢ = 0, ...,C) defined above
are the fundamental data that allow us to obtain different
possible representations of the trade network, as well as the
corresponding randomized counterparts (see below for the
units of measure we adopted). When we regard the ITN as
a weighted directed network, we define the weight of the link
from country i to country j in year ¢ for commodity c as

wi;(t) = |ef;(1)] ¢=0,....C, 2)

where |x] € N denotes the nearest integer to the non-negative
real number x. When we adopt a weighted but undirected
(symmetrized) description, we define the weight of the link
between countries i and j in year ¢ for commodity ¢ as

() + e;,mw

3 c=0,...,C. 3)

wfj(t) = w;fi(t) = {
Therefore, in both the directed and undirected case, wi"j(t) is
an integer quantity. Since in both cases we shall be interested
in tracking the temporal evolution of most quantities, we also
define rescaled weights (relative to the total yearly trade flow)
as
w;;(1) = w;j(t) c=0,...,C, (G))
Wio(?)
where in the directed case wfj(t) is given by Eq. (2)
and wi, (1) =), Z#i wicj(t) [the double sum runs over all
N(N — 1) ordered pairs of vertices], while in the undirected
case wl."j(t) is given by Eq. (3) and w; (1) = > Zj<l. wi"j(t)
[the double sum runs over all the N(N — 1)/2 unordered
pairs]. In such a way, trend effects are washed away, and we
obtain adimensional weights that are automatically deflated,
allowing consistent comparisons across different years and
different commodities.

In the binary representations of the network, we draw a link
from i to j whenever the corresponding weight wy; is strictly
positive. If ®(x) denotes the step function (equal to 1 if x > 0
and 0 otherwise), the adjacency matrix of the binary projection
of the network in year ¢ for commodity c is

ai;(t) = @[wfj(t)]

where w; (1) is given either by Eq. (2) or by Eq. (3), depending
on whether one is interested in a directed or undirected binary
projection of the network, respectively.

For each of the C + 1 commodity categories, we can
consider four network representations (binary undirected, bi-
nary directed, weighted undirected, weighted directed). When
reporting our results, we will first describe the aggregated
networks (¢ = 0) and then the disaggregated (commodity-
specific) ones. In particular, among the 97 commodity classes,
we will focus on the 14 particularly relevant commodities
identified in Ref. [13], which are reported in Table I. These 14

c=0,...,C, (5)
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commodities include the 10 most traded commodities (¢ =
84,85,27,87,90,39,29,30,72,71 according to the HS1996)
in terms of total trade value (following the ranking in year
2003 [13]), plus four classes (¢ = 10,52,9,93 according to the
HS1996) that are less traded but more relevant in economic
terms. Taken together, the 10 most traded commodities account
for 56% of total world trade in 2003; moreover, they also
feature the largest values of trade value per link (also shown
in the table). The 14 commodities considered account together
for 57% of world trade in 2003. As an intermediate level of
aggregation, we shall also consider the networks formed by
the sum of these 14 commodities. The original data {efj 3);
are available in current US dollars (USD) for all commodities;
however, due to the different trade volumes involved, we use
different units of measure for different levels of aggregation.’

B. Controlling for local properties

As we mentioned, our main interest in the present work
is assessing whether higher-order properties of the ITN can
be simply traced back to local properties, which are the main
focus of traditional macroeconomic analyses of international
trade. Such standard country-specific properties include: total
exports, total imports, total trade (sum of total exports and
total imports), trade openness (ratio of total trade to GDP), the
number of countries whom a country exports to and imports
from, and the total number of trade partners (irrespective
of whether they are importers or exporters, or both). All
these quantities can be simply obtained as local sums over
direct interactions (countries one step apart) in a suitable
representation of the network.

For instance, the number of trade partners of country i
is simply the number of neighbors of node i in the binary
undirected projection, i.e., the degree

k,‘ = Z(l,‘j. (6)

J#

In the above equation and in what follows, we drop the
dependence of topological quantities on the particular year
t for simplicity. We also drop the superscript ¢ specifying
a particular commodity, as all the formulas hold for any c.
This means that, if the aggregated network of total trade is
considered, then g;; and w;; represent the aggregate quantities
a; and w);, where the commodity ¢ = 0 formally represents
the sum over all commodities, as in Eq. (1). Otherwise, if the
commodity-specific network involving only the trade of the
particular commodity ¢ (with ¢ > 0) is considered, then a;;
and w;; represent the values a;; and wy; for that commodity.
The number of countries whom a country exports to and
imports from are simply the two directed analogues (the

3We left {e?j ()} and {e?ﬁ (1)} in current US dollars (USD); we divided
{e?jg(t)} and {e?;’(t)} by 10; we divided {e?f(t)} and the sum of the
top 14 commodities by 100; we divided aggregate data ({e?]. (1)}) by
1000. Accordingly, after the rounding defined by Egs. (2) and (3), we
obtained trade flows {wj;(#)} expressed in integer multiples of either
1 USD, 10 USD, 100 USD, or 1000 USD.
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TABLE I. The 14 most relevant commodity classes (plus aggregate trade) in year 2003 and the corresponding total trade value (USD), trade

value per link (USD), and share of world aggregate trade. From Ref. [13].
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HS code Commodity Value (USD) Value per link (USD) % of aggregate trade
84 Nuclear reactors, boilers 5.67 x 10" 6.17 x 107 11.37%
machinery and mechanical appliances; parts
thereof

85 Electric machinery, equipment and parts; 5.58 x 10" 6.37 x 107 11.18%

parts; sound equipment; television

equipment
27 Mineral fuels, mineral oils and products 4.45 x 10" 9.91 x 107 8.92%
of their distillation; bitumin
substances; mineral wax

87 Vehicles (not railway, tramway, 3.09 x 10" 4.76 x 107 6.19%

rolling stock); parts and accessories
90 Optical, photographic, cinematographic, 1.78 x 10! 2.48 x 10’ 3.58%

measuring, checking, precision,
medical, or surgical instruments

and apparatus; parts and accessories
39 Plastics and articles thereof 1.71 x 10" 2.33 x 107 3.44%
29 Organic chemicals 1.67 x 10" 3.29 x 107 3.35%
30 Pharmaceutical products 1.4 x 10" 2.59 x 107 2.81%
72 Iron and steel 1.35 x 10" 2.77 x 107 2.70%
71 Pearls, precious stones, metals, 1.01 x 10" 2.41 x 107 2.02%

coins, etc.
10 Cereals 3.63 x 10'0 1.28 x 107 0.73%
52 Cotton, including yarn and woven 3.29 x 10' 6.96 x 10° 0.66%
fabric thereof
9 Coffee, tea, and spices 1.28 x 10'° 2.56 x 10° 0.26%
93 Arms and ammunition, parts and 4.31 x 10° 2.46 x 10° 0.09%
accessories thereof

All Aggregate (all 97 commodities) 4.99 x 102 3.54 x 108 100.00%

out-degree k?" and the in-degree k", respectively) of the above
quantity in the binary directed description:

ko = Z aij, (7
JF#i
kM = Z aji. (8)
J#
Similarly, as evident from Eq. (3), country i’s total trade
coincides with twice the sum of weights reaching node i in the
weighted undirected representation, i.e., the strength

Si = Z Wij. (9)
J#

Finally, total exports (imports) of country i are simply the
sum of out-going (in-coming) weights in the weighted directed
representation of the ITN. These quantities are known as the
out-strength s™ and in-strength s;" of node i:

s =" wi, (10)
J#
st =Y wji. (11)
JF#
Another country-specific property that is widely used as an

explanatory variable of trade patterns is the GDP or the per
capita GDP (i.e., the ratio of GDP to population). This property

is sometimes used to rescale trade values, as in the case of trade
openness, which is defined as a country’s ratio of total trade
to GDP. Unlike the quantities discussed above, the GDP is not
a topological entity. Nonetheless, it is empirically observed
to be positively (and strongly) correlated with the degree [3]
and with node strength [12] (we will comment more on this
in Sec. III). Therefore, even if this is not the main aim of the
present work, one should be aware that assessing the role of
local topological properties also indirectly implies, to a large
extent, assessing the role of the GDP of countries.

C. Rewiring the ITN

We showed that, in a network language, the standard
country-specific properties used to characterize world trade
translate into simple local topological properties of the ITN.
This naturally implies that, in our analysis, it is important to
consider a null model of the ITN where such properties are en-
forced as constraints, and the topology is otherwise maximally
random. Different methods that produce randomized ensem-
bles of networks with given constraints exist [22,24-33]. As we
mentioned, we aim at studying many topological properties of
several different representations and temporal snapshots of the
ITN. Therefore, we need a fast method that can deal with many
networks in a relatively short time and treat binary, weighted,
directed, and undirected graphs in a consistent fashion. To this
end, we employ the maximum-likelihood method introduced
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in Ref. [22], which provides the expectation values (over the
randomized ensemble) of the desired topological properties
analytically, in contrast with alternative methods [31,32],
which require one to explicitly generate many randomized
variants of the real network computationally. Moreover, the
method is density-independent and works for both sparse and
dense networks. By contrast, other (analytical or computa-
tional) approaches are density-dependent and not optimized
for dense networks: The Chung-Lu (analytical) approach [33]
works only for sparse networks, and the Maslov-Sneppen
(computational) algorithm [31,32] becomes too time consum-
ing for dense networks. Since the ITN is an unusually dense
network, the maximum-likelihood method is the natural choice
that allows us to perform a detailed analysis, covering all
possible representations across several years, which would
otherwise require an impressive amount of time.

In the Appendix A, B and C we describe the maximum-
likelihood method in some detail, in particular its application to
the topological properties of interest for the present case study.
Given any topological property X, the method provides the
average value (X) of X across the ensemble of random graphs
with the same average (across the ensemble itself) constraints
as the real network. For simplicity, in this and in the companion
paper we sometimes denote (X ) as a randomized property, and
its value as the randomized value of X, even if technically no
randomization process has been required (all the results have
been obtained analytically). Similarly, we imagine the graph
ensemble as a rewired version of the original network, even if
no rewiring has taken place explicitly.

III. THE ITN AS A BINARY UNDIRECTED NETWORK

As we mentioned in Sec. II A, in its binary representation
the ITN is defined as a graph whose edges report the presence
of trade relationships among world countries, irrespective of
the intensity of these relationships. The binary representation
of the ITN can be either undirected or directed, depending
on whether one is interested in specifying the orientation of
trade flows. In both cases, the complete information about the
topology of the network is encoded in the adjacency matrix A,
whose entries {a;;} are defined as in Eq. (5).

In the simplest case, the presence of at least one of the
two possible trade relationships between any two countries
i and j (either from i to j or from j to i) is represented
as one undirected edge between nodes i and j. Therefore
a;j = aj; and A is asymmetric matrix. In this binary undirected
description, as shown in Eq. (6), the local constraints {C,}
are the degrees of all vertices, i.e., the degree sequence {k;}.
Therefore, the maximum-likelihood randomization method
[22] (see Appendix B) works by specifying the constraints
{C,} = {k;} and allows us to write the probability of any
graph G in the grandcanonical ensemble, which is uniquely
specified by its generic adjacency matrix A. As summarized in
Appendix B, this allows us to easily obtain the expectation
value (X), formally defined in Eq. (A7), of any property
X across the ensemble of binary undirected graphs whose
expected degree sequence is equal to the empirical one. Note
that, among the possible properties, the degree of vertices
plays a special role, as its expectation value (k;) is exactly
equal to the empirical value k;, as required by the method.
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Therefore the values {k;} are useful control parameters and
can be efficiently used as independent variables in terms of
which other properties X can be visualized.

For the sake of simplicity, in Secs. III A and III B we first
report the results of this analysis on a single snapshot of the
commodity-aggregated network (the last year in our temporal
window, i.e., 2002). Then we discuss the robustness of our
results through time by tracking them backward in Sec. III C.
We finally consider the disaggregated analysis of commodity-
specific networks in Sec. III D.

A. Average nearest-neighbor degree

We start with the analysis of the aggregated version of the
ITN, representing the trade of all commodities (¢ = 0 in our
notation). In the following formulas, the matrix A therefore
denotes the aggregate matrix A°, where we drop the superscript
for brevity. As a first quantity, we consider the average nearest-
neighbor degree (ANND) of vertex i, defined as

Zj;ﬁi ajjk; . Zj;éi Zk;ﬁj aijdjk
ki Zj;éi aij

and measuring the average number of partners of the neighbors
of a given node i. The above quantity involves indirect
interactions of length two, as evidenced from the presence of
terms of the type a;;a i in the definition. Whether these 2-paths
are a simple outcome of the concatenation of two independent
edges can be inspected by considering the correlation structure
of the network, and in particular by plotting k" versus k;.
The result is shown in Fig. 1. We observe a decreasing trend,
confirming what already found in previous studies employing
different data sets [2,4,12]. This means that countries trading
with highly connected countries have a few trade partners,
whereas countries trading with poorly connected countries
have many trade partners. This correlation profile, known
as disassortativity, might signal an interesting pattern in the
trade network. However, if we compare this trend with the one
followed by the corresponding randomized quantity (k") (see
Appendix B for its expression), we find that the two behaviors
coincide. This is an important effect of structural constraints in
a dense network [34]: Contrary to what naively expected [35],
even in a network where links are drawn randomly between
vertices with given heterogeneous degrees, the ANND is not
constant. This means that the degree sequence constrains the
correlation structure, and that it is impossible to have a flat
profile (k! independent of k;) unless one forces the system
to display it by introducing additional mechanisms (hence
additional correlations of opposite sign).

k= (12)

B. Clustering coefficient

A similar result is found for the behavior of the clustering
coefficient c;, representing the fraction of pairs of neighbors
of vertex i that are also neighbors of each other:

ci = 2 Dokt Uik
L kiki — 1)
_ Z#i Zk#i,j Q;ja ki

Zj;ﬁi Zk;éi,j dijdik

13)
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FIG. 1. (Color online) Average nearest-neighbor degree k" ver-
sus degree k; in the 2002 snapshot of the real binary undirected ITN

(red points), and corresponding average over the maximum-entropy
ensemble with specified degrees (blue solid curve).

The clustering coefficient is a measure of the fraction of
potential triangles attached to i that are actually realized. This
means that indirect interactions of length three, corresponding
to products of the type a;jajiay; entering Eq. (13), now
come into play. Again, we find a decreasing trend of ¢; as
a function of k; (Fig. 2). This means that trade partners
of highly connected countries are poorly interconnected,
whereas partners of poorly connected countries are highly
interconnected. However, if this trend is compared with the one
displayed by the randomized quantity (c;) (see Appendix B),
we again find a very close agreement. This signals that in the
ITN also the profile of the clustering coefficient is completely
explained by the constraint on the degree sequence, and does
not imply the presence of meaningful indirect interactions on
top of a concatenation of direct interactions alone.

The above results show that the patterns observed in the
binary undirected description of the ITN do not require, besides
the fact that different countries have specific numbers of
trade partners, the presence of higher-order mechanisms as
an additional explanation. On the other hand, the fact that
the degrees alone are enough to explain higher-order network
properties means that the degree sequence is an important
structural pattern in its own. This highlights the importance of
reproducing the observed degree sequence in models of trade.
We will comment more about this point later.

C. Evolution of binary undirected properties

We now check the robustness of the previous results through
time. This amounts to performing the same analysis on each
of the 11 years in our time window ranging from 1992 to
2002. For each of these snapshots, we specify the degree
sequence and evaluate the maximally random ensemble of
binary undirected graphs. We then compare each observed
property X with the corresponding average (X) (repeating
the procedure described in Appendix B) over the null model
for that specific year. We systematically find the same results
described above for each and every snapshot. For visual
purposes, rather than replicating the same plots shown above
for all the years considered, we choose a more compact
description of the observed patterns and portray its temporal
evolution in a simple way. As we now show, this also provides
us with a characterization of various temporal trends displayed
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FIG. 2. (Color online) Clustering coefficient ¢; versus degree k;
in the 2002 snapshot of the real binary undirected ITN (red points),
and corresponding average over the maximum-entropy ensemble with
specified degrees (blue solid curve).

by each topological property, conveying more information than
a fixed-year description of the trade system.

We first consider the average nearest-neighbor degree. For
a given year, we focus on the two lists of vertex-specific
values {k""} and {{k]")} for the real and randomized network,
respectively. We compute the average (m . and m gny) and the
associated 95% confidence interval of both lists and plot them
together as in Fig. 3(a). We repeat this for all years and obtain a
plot that informs us about the temporal evolution of the ANND
in the real and randomized network separately. We find that
the average value of the empirical ANND has been increasing
steadily during the time period considered. However, the same
is true for its randomized value, which is always consistent
with the real one within the confidence intervals. This means
that the null model completely reproduces the temporal trend
of degree-degree correlations.

In principle, the increase of the ANND could be simply
due to an overall increase in link density. To further study
this possibility, we have compared the yearly growth rate
(X:/X;—1 — 1) of the average ANND and of the link density in
the period considered. We found two regimes: Initially (from
1993 to 1997) the density has a larger (but decreasing) growth
rate than the ANND, while from 1998 to 2002 onwards the
two rates converge. Therefore it is useful to keep in mind that
the evolution of the average ANND, as well as that of other
average properties we consider below, is in general not merely
reflecting the evolution of the overall link density.

In Fig. 3(b) we also plot the temporal evolution of the
standard deviations s and sy, (with associated 95%
confidence intervals) of the two lists of values {k]"} and
{(k7")}. We find that the variance of the empirical average
nearest-neighbor degree has been decreasing in time, but once
more this behavior is completely reproduced by the null model
and therefore fully explained by the evolution of the degree
sequence alone. Moreover, in Fig. 3(c) we show the Pearson
(product-moment) correlation coefficient rym ; (with 95%
confidence interval) between {k!"} and {k;}, and similarly
the correlation coefficient rym; between the randomized
quantities {(k")} and f{k;} (recall that {(k;)} = {k;} by
construction). This informs us in a compact way about the
evolution of the dependence of the ANND on the degree, i.e.,
of the change in the structure of the scatter plot we showed
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FIG. 3. (Color online) Temporal evolution of the properties of
the nearest-neighbor degree k™ in the 1992-2002 snapshots of the
real binary undirected ITN and of the corresponding maximum-
entropy null model with specified degrees. (a) Average of k"
across all vertices (red: real data; blue: null model, indistinguishable
from real data). (b) Standard deviation of k" across all vertices
(red: real data; blue: null model, indistinguishable from real data).
(c) Correlation coefficient between k" and k; (red, upper symbols:
real data; blue, lower symbols: null model). (d) Correlation coefficient
between k" and (k). The 95% confidence intervals of all quantities
are represented as vertical bars.

previously in Fig. 1. We find that the disassortative character
of the scatter plot results in a correlation coefficient close to
—1, which has remained remarkably stable in time across the
interval considered, and always very close to the randomized
value.

The complete accordance between the real and randomized
ANND in each and every snapshot is confirmed by Fig. 3(d),
where we show the correlation coefficient rgm (g (With 95%
confidence interval) between the empirical ANND, {k/"}, and
the randomized one, {{(k")}. We observe an approximately
constant value close to 1, signaling perfect correlation between
the two quantities. This exhaustively explains the accordance
between the real and randomized ANND for all vertices,
while the other three panels of Fig. 3 also inform about
various overall temporal trends of the ANND, as we discussed
above.

In Fig. 4 we show the same analysis for the values {c;}
and {(c;)} of the clustering coefficient. In this case we observe
an almost constant trend of the average clustering coefficient
[Fig. 4(a)], a decreasing standard deviation [Fig. 4(b)], and
a stable strong anticorrelation between clustering and degree
[Fig. 4(c)]. Again, we find that the real and randomized values
are always consistent with each other, so that the evolution of
the empirical values is fully reproduced by the null model. This
is confirmed by Fig. 4(d), which shows that the correlation
between {c;} and {(c;)} is always very close to 1. As for
the ANND, these results clearly indicate that the real and
randomized values of the clustering coefficient of all vertices
are always in perfect agreement, and that the temporal trends
displayed by this quantity are completely explained by the
evolution of the degree sequence.
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FIG. 4. (Color online) Temporal evolution of the properties of
the clustering coefficient ¢; in the 1992-2002 snapshots of the real
binary undirected ITN and of the corresponding maximum-entropy
null model with specified degrees. (a) Average of ¢; across all vertices
(red: real data; blue: null model, indistinguishable from real data).
(b) Standard deviation of ¢; across all vertices (red: real data; blue: null
model, indistinguishable from real data). (c) Correlation coefficient
between c; and k; (red, upper symbols: real data; blue, lower symbols:
null model). (d) Correlation coefficient between ¢; and (c;). The 95%
confidence intervals of all quantities are represented as vertical bars.

D. Commodity-specific binary undirected networks

We complete our analysis of the ITN as a binary undirected
network by studying whether the picture changes when one
considers, rather than the network aggregating the trade of
all types of commodities, the individual networks formed by
imports and exports of single commodities. To this end, we
focus on the disaggregated data described in Sec. IT A, and we
repeat the analysis reported above, by identifying the matrix
A with various disaggregated matrices A° (with ¢ > 0).

We find that the results obtained in our aggregated study also
hold for individual commodities. For brevity, we report only
the scatter plots of the average nearest-neighbor degree (Fig. 5)
and clustering coefficient (Fig. 6) for the 2002 snapshots of
six commodity-specific networks. The six commodities are
chosen among the top 14 reported in Table 1. In particular,
we select the two least traded commodities in the set (¢ =
93,9), two intermediate ones (¢ = 39,90), the most traded
one (¢ = 84), plus the network formed by combining all the
top 14 commodities, i.e., an intermediate level of aggregation
between single commodities and the completely aggregated
data (¢ = 0), which we already considered in the previous
analysis (Figs. 1 and 2). With the addition of the latter, the
results shown span seven different cases ordered by increasing
trade intensity and level of commodity aggregation. Similar
results hold also for the other commodities not shown.

If we compare Fig. 5 with Fig. 1, we see that the trend
displayed by ANND in the aggregated network is preserved,
even if with a slightly increasing scatter, as sparser and less
disaggregated commodity classes are considered. Importantly,
the accordance between real and randomized values is also pre-
served. The same is true for the clustering coefficient; cf. Fig. 6
and its comparison with Fig. 2. These results indicate that the
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FIG. 5. (Color online) Average nearest-neighbor degree k"
versus degree k; in the 2002 snapshots of the commodity-specific
(disaggregated) versions of the real binary undirected ITN (red
points), and corresponding average over the maximum-entropy
ensemble with specified degrees (blue solid curves). (a) Commodity
93; (b) commodity 09; (c) commodity 39; (d) commodity 90;
(e) commodity 84; (f) aggregation of the top 14 commodities (see
Table I for details). From (a) to (f), the intensity of trade and level of
aggregation increases.

degree sequence maintains its complete informativeness across
different levels of commodity resolution, and irrespective of
the corresponding intensity of trade. Thus, remarkably, the
knowledge of the number of trade partners involving only a
specific commodity still allows to reproduce the properties of
the corresponding commodity-specific network.

As a summary of our binary undirected analysis we
conclude that, in order to explain the evolution of the ANND
and clustering of the ITN, it is unnecessary to invoke additional
mechanisms besides those accounting for the evolution of
the degree sequence alone. Since the ANND and clustering
already probe the effects of indirect interactions of length two
and three, respectively, and since higher-order correlations
involving longer topological paths are built on these lower-
level ones, the null model we considered here is very likely to
fully reproduce the properties of the ITN at all orders. In other
words, we found that in the binary undirected representation
of the ITN the degree sequence is maximally informative, as
its knowledge allows to predict the higher-order topological
properties of the network that we have explored in this and in
the companion paper. An interesting question is whether the
degree sequence is also able to reproduce other higher-order
network properties, such as path lengths, node centrality, etc.
Whereas this study does not explicitly address this question,
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FIG. 6. (Color online) Clustering coefficient ¢; versus degree k;
in the 2002 snapshots of the commodity-specific (disaggregated)
versions of the real binary undirected ITN (red points), and corre-
sponding average over the maximum-entropy ensemble with specified
degrees (blue solid curves). (a) Commodity 93; (b) commodity 09;
(c) commodity 39; (d) commodity 90; (e) commodity 84; (f)
aggregation of the top 14 commodities (see Table I for details). From
(a) to (), the intensity of trade and level of aggregation increases.

we argue that the answer will be positive in the light of the
very nature of the ITN. Its high density indeed implies that
path lengths are almost never larger than 3. As a consequence,
network properties of order larger than three are typically
well proxied by local properties. An example is the extremely
high correlation between country centrality (measured, e.g.,
in terms of betweenness centrality) and node degree, typically
found in previous studies. The robustness of this result across
several years and different commodity classes strengthens our
previous discussion about the importance of including the
degree sequence among the focuses of theories and models
of trade, which are instead currently oriented mainly at
reproducing the weighted structure, rather than the topology
of the ITN.

IV. THE ITN AS A BINARY DIRECTED NETWORK

We now consider the binary directed description of the ITN,
with an interest in understanding whether the introduction
of directionality changes the picture we have described so
far. In the directed binary case, a graph G is completely
specified by its adjacency matrix A, which is in general not
symmetric, and whose entries are a;; = 1 if a directed link
from vertex i to vertex j is there, and a;; = 0 otherwise. The
local constraints {C,} are now the two sets of out-degrees and
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binary directed ITN (red points), and corresponding average over

the maximum-entropy ensemble with specified out-degrees and
in-degrees (blue solid curve).

in-degrees of all vertices defined in Egs. (7) and (8), i.e., the
out-degree sequence {k{"'} and the in-degree sequence {kl‘:“}. In
Appendix C we show how the randomization method enables
in this case to obtain the expectation value (X) of a property
X across the maximally random ensemble of binary directed
graphs with in-degree and out-degree sequences equal to the
observed ones. When inspecting the properties of the ITN and
its randomized variants, the useful independent variables are
now the values {k?"'} and {k;“} (or combinations of them), since
they are the special quantities X whose expected value (X)
coincides with the observed one by construction. Again, we
first consider the 2002 snapshot of the completely aggregated
ITN (Secs. IV A and IV B), then track the temporal evolution
of the results backward (Sec. IV C), and finally perform a
disaggregated analysis in Sec. IV D.

A. Directed average nearest-neighbor degrees

We start with the analysis of the binary directed trade
network aggregated over all commodities (¢ = 0). Therefore,
in the following formulas, we set A = A°. The average
nearest-neighbor degree of a vertex in a directed graph can
be generalized in four ways from its undirected analog. We
thus obtain the following quantities:

inin — Z#i allkj _ Z_j;éi Zk;&j ajiQgj
= =

- , (14)
v > i Qji
.. J-out o
finfout 2 ‘?ﬂkj _ 2 i Dot Liihjk (15)
l k" > j#i 4ji
in
o 2 i Gijk; _ 2 Dok G (16)
l k™ > i Gij
.. Joout )
jouout _ 2 jzi ik _ D i Dokt “w“/k' a7
l kP > j#i 4ij

In the above expressions, indirect interactions due to the
concatenation of pairs of edges are taken into account
according to their directionality, as clear from the presence of
products of the type a;;ay;. A fifth possibility is an aggregated
measure based on the total degree k' = kI 4 k™ of vertices:

kFol/tot _ Z,j#i(aij + aji)k;'m

1 k;ot

(18)
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FIG. 8. (Color online) Directed average nearest-neighbor degrees
versus vertex degrees in the 2002 snapshot of the real binary directed
ITN (red points), and corresponding averages over the maximum-
entropy ensemble with specified out-degrees and in-degrees (blue
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The latter is a useful one to start with, as it provides a simpler
analog to the undirected quantity k" we have already studied.
At the same time, it must be noted that the two quantities
are not trivially related since the total directed properties ;"
and k" carry more information than the corresponding
undirected ones k; and k", the difference being the local
reciprocity structure of the network [20]. To see this, note
that k;m = ki + k:_), where k;_> = Zj#i a;jdji (lf aijj is the
adjacency matrix of the directed network) is the reciprocated
degree of vertex i, defined as the number of bidirectional links
reaching i [20,36,37]. This quantity represents the number
of trade partners, acting simultaneously as importers and
exporters, of country i. Therefore, studying total directed
quantities also allows us to assess whether the reciprocity
structure of the directed network changes the results obtained
in the undirected case (similar considerations apply to the
directed clustering coefficients we introduce below).

In Fig. 7 we plot k""" as a function of k' for the
2002 snapshot of the binary directed ITN. The trend shown
does not differ substantially from its undirected counterpart
we observed in Fig. 1. In particular, we obtain a similar
disassortative character of the correlation profile. Importantly,
we find again a good agreement between the empirical quantity
and its expected value (k!°/') under the null model (obtained
as in Appendix C). In Fig. 8 we show a more refined analysis
by considering all the four directed versions of the ANND
defined in Egs. (14)-(17), as well as their expected values
under the null model (see Appendix C). We immediately see
that all quantities still display a disassortative trend, with
some differences in the ranges of observed values. Again,
all the four empirical behaviors are in striking accordance
with the null model, as the randomized curves (obtained as in
Appendix C) show. This means that both the decreasing trends
and the ranges of values displayed by all quantities are well
reproduced by a collection of random graphs with the same
average in-degrees and out-degrees as the real network.
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FIG. 9. (Color online) Total clustering coefficient ¢ versus total

degree k! in the 2002 snapshot of the real binary directed ITN
(red points), and corresponding average over the maximum-entropy
ensemble with specified out-degrees and in-degrees (blue solid
curve).

B. Directed clustering coefficients

We now consider the directed counterparts of the clustering
coefficient defined in Eq. (13). Again, there are four possible
generalizations depending on whether the directed triangles
involved are of the inward, outward, cyclic, or middleman
type [38]:

o D ki Wijidjk

= — , 19
! k" (k;“ — 1) (19)
out Dt Dk ikl jkdlij 20

¢ = k?m(k‘?m _ 1) s ( )

cye Zj;éi Zk#i,j Q;jajrAgi 91

G = Jingout _ p< ’ 20
mid _ g Dk j kaidjk 29

G = kingout _ p . (22)

The directed clustering coefficients are determined by indirect
interactions of length 3 according to their directionality,
appearing as products of the type a;jaxan, in the above
formulas. At the same time, since they always focus on three
vertices only, they capture the local occurrence of particular
network motifs [39] of order 3. A fifth aggregated measure,
based on all possible directions, is

ot _ D iz 2ok (@i + @ik + agj)ag + air)
o [kl (et — 1) — 2k ] '

(23)

As for k[°"*" the latter definition is a good starting point for a
comparison with the undirected case. In Fig. 9 we show ¢{** and
(c*") (see Appendix C) as a function k;** for our usual snapshot.
We see no fundamental difference with respect to Fig. 2. Again,
the randomized quantity does not deviate significantly from the
empirical one.

We now turn to the four directed clustering coefficients
defined in Egs. (19)—-(22). We show these quantities in
Fig. 10 as functions of different combinations of k" and k™,
depending on the particular definition. As for the directed
ANND, we observe some variability in the range of observed
clustering values. However, all the quantities are again in
accordance with the expected ones under the null model (see
Appendix C).
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FIG. 10. (Color online) Directed clustering coefficients versus
vertex degrees in the 2002 snapshot of the real binary directed ITN
(red points), and corresponding averages over the maximum-entropy
ensemble with specified out-degrees and in-degrees (blue solid
curves). (a) ¢ versus ki"; (b) ¢ versus k™; (c) ¢;* versus K"k
(d) ¢M versus kink.

C. Evolution of binary directed properties

We now track the temporal evolution of the above results
by performing, for each year in our time window, an analysis
similar to that reported in Sec. III C for the undirected case.

We start by showing the evolution of the total average
nearest-neighbor degree k°'" in the four panels of Fig. 11,
where we plot the same properties considered previously for
the undirected ANND in Fig. 3. We find that the temporal
evolution of the average [Fig. 11(a)] and standard deviation
[Fig. 11(b)] of k! is essentially the same as that of the
undirected k], apart from differences in the range of values.
Similarly, the correlation coefficients between k!’ and k'
[Fig. 11(c)], (k") and (k') = k' [Fig. 11(c)], k""" and
(k'°°Y [Fig. 11(d)] mimic their undirected counterparts,
confirming that the perfect accordance between k'’ and
(ki°”Y s stable over time, and that the disassortative trend
of kl°" a5 a function of k! (Fig. 7) is always completely
explained by the null model.

We now consider the four directed variants k}“/i“
koutin gouout Eor brevity, for these quantities we show only
the evolution of the average values, which are reported in
Fig. 12. We find that the overall behavior previously reported
for the average of k!’ [Fig. 11(a)] is not reflected in the
individual trends of the four directed versions of the ANND. In
particular, the averages of k™™ [Fig. 12(a)], k" [Fig. 12(b)],
and k?Y°" [Fig. 12(d)] increase over a downward-shifted
but wider range of values than that of k}"'j“’t, whereas the
average of k" [Fig. 12(c)] is almost constant in time. The
moderately increasing average of k!°/* is therefore the overall
result of a combination of different trends followed by the
underlying directed quantities, some of these trends being
strongly increasing and some being almost constant. Therefore
we find the important result that there is a substantial loss of
information in passing from the inherently directed quantities
to the undirected or symmetrized ones. Still, when we compare

kin/out
9 l 9
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FIG. 11. (Color online) Temporal evolution of the properties of
the total average nearest-neighbor degree k°/* in the 1992-2002
snapshots of the real binary directed ITN and of the corresponding null
model with specified out-degrees and in-degrees. (a) Average of k!
across all vertices (red: real data; blue: null model, indistinguishable
from real data). (b) Standard deviation of k" across all vertices
(red: real data; blue: null model, overlapping with real data).
(c) Correlation coefficient between k!’ and k! (red: real data; blue:
null model, overlapping with real data). (d) Correlation coefficient
between kU and (k°). The 95% confidence intervals of all
quantities are represented as vertical bars.

the empirical trends of the directed quantities with the random-
ized ones, we find an almost perfect agreement. This implies
that even the finer structure of directed correlation profiles,
as well as their evolution, is reproduced in great detail by
controlling for the local directed topological properties alone.

The same analysis is shown for the total clustering coef-
ficient cl‘."‘ in Fig. 13, and for the four directed variants c}“,
e, ¢;¥, ¢Md in Fig. 14. Again, we find that the four temporal
trends involving the overall quantity c¢!** (Fig. 13) replicate
what we have found for its undirected counterpart ¢; (shown
previously in Fig. 4). When we consider the four inherently
directed quantities (Fig. 14), we find that the averages of c"
[Fig. 14(a)] and ¢;*° [Fig. 14(c)] display an increasing trend,
whereas the average of ¢™¢ [Fig. 14(d)] is constant and that of
e [Fig. 14(b)] is even decreasing. When aggregated, these
different trends give rise to the constant behavior of the average
ci®, which is therefore not representative of the four underlying
directed quantities. This also means that, similarly to what we
found for the ANND, there is a substantial loss of information
in passing from the directed to the undirected description of the
binary ITN. However, even the fine-level differences among
the directed clustering patterns are still completely reproduced
by the null model.

D. Commodity-specific binary directed networks

We now study the binary directed ITN when disaggregated
(commodity-specific) representations are considered. We re-
peat the analysis described above by setting A = A° with
¢ > 0. For brevity, we report our analysis of the 6 commodities
described in Sec. III D and selected from the top 14 categories
listed in Table I (again, we found similar results for all
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FIG. 12. (Color online) Averages and their 95% confidence
intervals (across all vertices) of the directed average nearest-neighbor
degrees in the 1992-2002 snapshots of the real binary directed ITN
(red), and corresponding averages over the null model with specified
out-degrees and in-degrees (blue, indistinguishable from real data).
(a) Average of k™", (b) average of k™ (c) average of k!in;
(d) average of k2u/out,

commodities). Together with the aggregated binary directed
ITN already described, these commodity classes form a set of
seven different cases ordered by increasing trade intensity and
level of commodity aggregation.

In Figs. 15 and 16 we show the behavior of the total average
nearest-neighbor degree and total clustering coefficient for
the 2002 snapshots of the six selected commodity-specific
networks. When compared with Figs. 7 and 9, the plots confirm
what we have found in Sec. IIID for the binary undirected
case. In particular, the behavior displayed by the ANND and
clustering in the commodity-specific networks becomes less
and less noisy as more intensely traded commodities, and
higher levels of aggregation, are considered. Accordingly, the
agreement between real and randomized networks increases,
but the accordance is already remarkable in commodity-
specific networks, even the sparsest and least aggregated
ones. These results confirm that, irrespective of the level of
commodity resolution and trade volume, the directed degree
sequences completely characterize the topology of the binary
directed representations of the ITN.

V. CONCLUSIONS

All the above results clearly imply that, in the undirected
as well as the directed case, for all the years considered, and
across different commodity classes, the disassortativity and
clustering profiles observed in the real binary ITN arise as
natural outcomes rather than genuine correlations, once the
local topological properties are fixed to their observed values.
Therefore we can conclude that the higher-order patterns
observed in all the binary representations of the ITN, as well
as their temporal evolution, are completely explained by local
constraints alone. This means that the (undirected or directed)
degree sequence of the ITN is maximally informative, since
its knowledge systematically conveys a full picture of the
binary topology of the network. These results have important
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FIG. 13. (Color online) Temporal evolution of the properties
of the total clustering coefficient ¢} in the 1992-2002 snapshots
of the real binary directed ITN and of the corresponding null
model with specified out-degrees and in-degrees. (a) Average of ¢
across all vertices (red: real data; blue: null model, indistinguishable
from real data). (b) Standard deviation of ¢! across all vertices
(red: real data; blue: null model, indistinguishable from real data).
(c) Correlation coefficient between ci** and ;" (red, upper symbols:
real data; blue, lower symbols: null model). (d) Correlation coefficient
between ¢;** and (c). The 95% confidence intervals of all quantities

are represented as vertical bars.

consequences for economic models of trade. In particular,
they suggest that the ITN topology should become one of
the main focuses of international-trade theories. While most
of the literature concerned with modeling international trade
has focused on the problem of reproducing the magnitude of
nonzero trade volumes (the most important example being
gravity models [40]), much less emphasis has been put on
correctly replicating the binary topology of the ITN, i.e., under-
standing the determinants of the process governing the creation
of a link. However, our results clearly show that the purely
topological structural properties (and in particular the degree
sequence) of the ITN carry a significant amount of information.

A first step in reproducing the ITN topology is the model
in Ref. [3], where the probability p;; of a trade relationship
between two countries i and j was modeled as a function
of the GDP values of the countries themselves, and all
the topological properties of the network were successfully
replicated. Interestingly, the form of that function coincides
with the connection probability of the null model considered
here, shown in Appendix B in Eq. (B3), where the role of
the Lagrange multiplier x; associated with k; is played by
the GDP of country i. Indeed, an approximately monotonic
relationship between GDP and degree has been observed
[3], providing a connection between these two results. From
another perspective, the above remark also means that the
accordance between the real ITN as a binary undirected
network and its randomized counterpart is replicated under
an alternative null model, which controls for the empirical
values of the GDP rather than for the degree sequence. The
importance of reproducing the binary topology of trade is
reinforced by the analysis of the ITN as a weighted network
with local constraints, as we show in the following paper [21].

FIG. 14. (Color online) Averages and their 95% confidence
intervals (across all vertices) of the directed clustering coefficients
in the 1992-2002 snapshots of the real binary directed ITN (red),
and corresponding averages over the null model with specified
out-degrees and in-degrees (blue, indistinguishable from real data).
(@) s (b) 2 (0) ¢ (d) ™.
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APPENDIX A: THE RANDOMIZATION METHOD

Given areal network with N vertices, there are various ways
to generate a family of randomized variants of it [22,24-33].
The most popular one is the local rewiring algorithm proposed
by Maslov and Sneppen [31,32]. In this method, one starts
with the real network and generates a series of randomized
graphs by iterating a fundamental rewiring step that preserves
the desired properties. In the binary undirected case, where
one wants to preserve the degree of every vertex, the steps
are as follows: choose two edges, say, (i, ) and (k,l); rewire
these connections by swapping the end-point vertices and
producing two new candidate edges, say, (i,/) and (k,j); if
these two new edges are not already present, accept them and
delete the initial ones. After many iterations, this procedure
generates a randomized variant of the original network, and
by repeating this exercise a sufficiently large number of times,
many randomized variants are obtained. By construction, all
these variants have exactly the same degree sequence as
the real-world network, but are otherwise random. In the
directed and/or weighted case, extensions of the rewiring
steps defined above can be introduced, even if with some
caution [5,41]. Maslov and Sneppen’s method allows one to
check whether the enforced properties are partially responsible
for the topological organization of the network. For instance,
one can measure the degree correlations, or the clustering
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FIG. 15. (Color online) Total average nearest-neighbor degree
kit versus total degree k! in the 2002 snapshots of the commodity-
specific (disaggregated) versions of the real binary directed ITN
(red points), and corresponding average over the maximum-entropy
ensemble with specified out-degrees and in-degrees (blue solid
curves). (a) Commodity 93; (b) commodity 09; (¢c) commodity 39;
(d) commodity 90; (e) commodity 84; (f) aggregation of the top 14
commodities (see Table I for details). From (a) to (f), the intensity of
trade and level of aggregation increases.

coefficient, across the randomized graphs and compare them
with the empirical values measured on the real network. This
method has been applied to various networks, including the
Internet and protein networks [31,32]. Different webs have
been found to be affected in very different ways by local
constraints, making the problem interesting and not solvable
a priori.

The main drawback of the local rewiring algorithm is
its computational requirements. Since the method is entirely
computational, and analytical expressions for its results are not
available, one needs to explicitly generate several randomized
graphs, measure the properties of interest on each of them
(and store their values), and finally perform an average. This
average is an approximation for the actual expectation value
over the entire set of allowed graphs. In order to have a
good approximation, one needs to generate a large number
M of network variants. Thus, the time required to analyze
the impact of local constraints on any structural property is M
times the time required to measure that property on the original
network, plus the time required to perform many rewiring steps
producing each of the M randomized networks. The number of
rewiring steps required to obtain a single randomized network
is O(L), where L is the number of links [22,31,32], and
O(L) = O(N) for sparse networks while O(L) = O(N?) for
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FIG. 16. (Color online) Total clustering coefficient ¢|** versus

total degree k{* in the 2002 snapshots of the commodity-specific
(disaggregated) versions of the real binary directed ITN (red points),
and corresponding average over the maximum-entropy ensemble
with specified out-degrees and in-degrees (blue solid curves).
(a) Commodity 93; (b) commodity 09; (c) commodity 39; (d)
commodity 90; (e) commodity 84; (f) aggregation of the top 14
commodities (see Table I for details). From (a) to (f), the intensity of
trade and level of aggregation increases.

dense networks.* Thus, if the time required to measure a given
topological property on the original network is O(N7), the time
required to measure the randomized value of the same property
is OMML)+ O(MNT), whichis O(MNT®) as soonas T > 2.

A recently proposed alternative method, which is remark-
ably faster due to its analytical character, is based on the
maximum-likelihood estimation of maximum-entropy models
of graphs [22]. In this method one first specifies the desired set
of local constraints {C,}. Second, one writes the analytical
expression for the probability P(G) that, subject to the
constraints {C,}, maximizes the entropy

=_ Z P(G)In P(G), (A1)
G

where G denotes a particular graph in the ensemble, and P(G)
is the probability of occurrence of that graph. This probability

“It must be noted that the ITN is an unusually dense network.
Density in the aggregate directed network indeed ranges from 0.23 in
year 1992 to 0.56 in year 2001. Also product-specific networks are
relatively dense. Density attains its maximum value for commodity
84 and its minimum for commodity 93. As a result, in the case of the
ITN, applying the local rewiring algorithm computationally would
have been extremely time consuming.
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defines the ensemble featuring the desired properties, and be-
ing maximally random otherwise. Depending on the particular
description adopted, the graphs G can be either binary or
weighted, and either directed or undirected. Accordingly, the
sum in Eq. (A1), and in similar expressions shown later, runs
over all graphs of the type specified. The formal solution to the
entropy maximization problem can be written in terms of the
so-called Hamiltonian H (G), representing the energy (or cost)
associated to a given graph G. The Hamiltonian is defined as
a linear combination of the specified constraints {C,}:

H(G) =) 0.Cu(G), (A2)

where {0,} are free parameters, acting as Lagrange multipliers
controlling the expected values {{C,)} of the constraints across
the ensemble. The notation C,(G) denotes the particular value
of the quantity C, when the latter is measured on the graph
G. In terms of H(G), the maximum-entropy graph probability
P(G) can be shown to be

e—H©G)
P(G) = , A3
(G) Z (A3)
where the normalizing quantity Z is the partition function,
defined as
7 = Ze*’“‘;). (A4)
G

Third, one maximizes the likelihood P(G*) to obtain the
particular graph G*, which is the real-world network that
one wants to randomize. This steps fixes the values of the
Lagrange multipliers that finally allow to obtain the numerical
values of the expected topological properties averaged over the
randomized ensemble of graphs. The particular values of the
parameters {6,} that enforce the local constraints, as observed
on the particular real network G*, are found by maximizing
the log-likelihood

A=InPG)=—-HG)—1InZ (AS)

to obtain the real network G*. It can be shown [18] that this is
equivalent to the requirement that the ensemble average (C,)
of each constraint C, equals the empirical value measured on
the real network:

(Ca) = Ca(G™)  Va. (AO6)

Note that we generally adopted a simplified notation by writing
C (or even only C,) instead of C,(G*) for the empirically
observed values of the constraints (see, e.g., Secs. ITA
and II B). Once the parameter values are found, they are in-
serted into the formal expressions yielding the expected value

(X) =) X(G)P(G) (A7)
G

of any (higher-order) property of interest X. The quantity
(X) represents the average value of the property X across the
ensemble of random graphs with the same average (across
the ensemble itself) constraints as the real network. In what
follows we provide a detailed account of the expressions for
the randomized properties appearing in our analysis.
Technically, while the local rewiring algorithm generates
a microcanonical ensemble of graphs, containing only those
graphs for which the value of each constraint C, is exactly
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equal to the observed value C,(G*), the maximum-likelihood
method generates an expanded grandcanonical ensemble
where all possible graphs with N vertices are present, but
where the ensemble average of each constraint C, is equal
to the observed value C,(G*). One can show that the micro-
canonical approach converges to the grand-canonical one as
the number of microcanonical randomization steps increases
[22]. However, the maximum-likelihood one is significantly
faster. Importantly, enforcing only local constraints implies
that P(G) factorizes as a simple product over pairs of vertices.
This has the nice consequence that the expression for (X) is
generally only as complicated as that for X. In other words,
after the preliminary maximum-likelihood estimation of the
parameters {6,}, in this method the time required to obtain
the exact expectation value of an O(N') property across the
entire randomized graph ensemble is the same as that required
to measure the same property on the original real network,
i.e., still O(NT). Therefore, as compared to the local rewiring
algorithm, which requires a time O(MN'), the maximum-
likelihood method is O (M) times faster, for arbitrarily large M.

APPENDIX B: BINARY UNDIRECTED PROPERTIES

In the binary undirected case, each graph G is completely
specified by its (symmetric) Boolean adjacency matrix A. The
randomization method described above proceeds by

(1) Specifying the degree sequence as the constraint:
{C,} = {k;}. The Hamiltonian therefore reads

H(A) =) 60iki(A)=)_> (6 +0pa;;,  (BI)
i i j<i
and one can show [42] that this allows to write the graph
probability as

PA) =[]]]riya—pip'—, (B2)
i j<i
where
Py =l (B3)
1+ XiX;j

(with x; = e~%) is the probability that a link exists between
vertices i and j in the maximum-entropy ensemble of binary
undirected graphs, subject to specifying a given degree
sequence as the constraint.

(2) Solving the maximum-likelihood equations, by setting
the parameters {x;} to the values that maximize the likelihood
P(A*) to obtain the real network A* [18,22]. These values can
be found as the solution to the following set of N coupled
nonlinear equations [18]:

XiX; . ,
(k) =21 Tar, Sk@AY (B4)
J#

where {k;(A*)} is the empirical degree sequence of the real
network A*. For a detailed analysis about solving such system
see Ref. [43] (for a discussion about the existence of solutions)
and [22] (for a discussion about the convergence of the
algorithm). In principle, dimensionality and memory problems
can arise when N is too large (luckily, this is not the case of
the ITN considered here). In such a case, the system can be
rewritten with a lower number of equation to solve. In fact,
the hidden variables of the vertices with the same degree have
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TABLE II. Expressions for the empirical and expected properties in the binary (undirected and directed) representations of the network.

Empirical undirected properties

Expected undirected properties

aij

ki=3" i dij
k= Zj#i ajjkj
i ki

D jti Doketi,j Bijqjkaki

¢ =
! Do jti Dokt j GijGik

(aij) = pij = 7355
(ki) = Zj;éi Dij

(knn> _ Zj#i pijkj

i (ki)

(i) = 2 jti 2k j PijPjkPki
! Do jti 2oketi,j Pij Pik

Empirical directed properties

Expected directed properties
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out __ .
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(c

(c

(c

the same value. So, one can straightforwardly solve the system
only for them [18].

(3) Computing the probability coefficients p;;, by inserting
the values {x;} into Eq. (B3), which allows to easily compute
the expectation value (X) of any topological property X
analytically, without generating the randomized networks
explicitly [22]. With this choice, Eq. (B3) yields the exact value
of the connection probability in the ensemble of randomized
networks with the same average degree sequence as the
empirical one. Note that p;; is the probability of a link between
vertex i and vertex j in the grand-canonical ensemble (which
is directly obtained analytically), and not the frequency of such
a link in the corresponding microcanonical ensemble (which
would require the explicit generation of artificially rewired
networks). In Ref. [22], it was shown that the microcanonical
frequency converges to p;; asymptotically as the number
of randomization steps in the microcanonical algorithm in-
creases. Equation (B4) shows that, by construction, the degrees
of all vertices are special local quantities whose expected
and empirical values are exactly equal: (k;) = k;. It follows
that the p;; coefficients can be calculated by using any of
the networks in the corresponding microcanonical ensemble
with constrained degree sequence: The expected values of the
high-order properties will be the same.

(4) Computing the expectation values of higher-order topo-
logical properties, as in Table II. The expressions are derived
exploiting the fact that (a;;) = p;;, and that different pairs of
vertices are statistically independent, which implies (a;;ay) =
pijpu if (i — j) and (k — 1) are distinct pairs of vertices,
whereas (a,‘jak1> = (alzj) = <(l,’j) = Dij if (l — ]) and (k — l)
are the same pair of vertices. Also, the expected value of the
ratio of two quantities is approximated with the ratio of the
expected values: (n/d) ~ (n)/{d).

APPENDIX C: BINARY DIRECTED PROPERTIES

In the binary directed case, the above results can be
generalized as follows. Each graph G is completely specified
by its Boolean adjacency matrix A, which now is in general not
symmetric. The maximum-likelihood randomization method
[22] proceeds in this case by

(1) Specifying both the in-degree and the out-degree
sequences as the constraints: {C,} = {k}“,kf"“}. The
Hamiltonian takes the form

H(A) = Z [0 k"(A) + 62" k" (A)]

=D > (O +65")ayy. (C1)

i j#
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The above choice leads to the graph probability [22]

PA) =[]]1rya—=pip'—, (C2)
i i
where
Xiyj
= i C3
Pi = Ty, ©
(with x; = ¢=%" and y; = ¢~%") is the probability that a link

exists from vertex i to vertex j in the maximum-entropy
ensemble of binary directed graphs with specified in- and
out-degree sequences.

(2) Solving the maximum-likelihood equations, by setting
the parameters {x;} and {y;} to the values that maximize the
likelihood P(A*) to obtain the real network A* [18,22]. These
values can be found as the solution to the following set of 2N
coupled nonlinear equations [18]:

k) =2 T

= k"(A* Vi, C4
DTy, THIAY v

in\ __ XjYi — 1:n * .
(Kt )_;—1+xjyi KNA*) Vi, (C5)
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where {k}“(A*)} and {k?"'(A*)} are the empirical degree
sequences of the real network A*. Again, for a detailed analysis
about solving such system see Refs. [22,43].

(3) Computing the probability coefficients p;;, by inserting
the values {x;} and {y;} into Eq. (C3), which allows us to
easily compute the expectation value (X) of any topological
property X analytically, without generating the randomized
networks explicitly [22]. So Eq. (C3) yields the exact value
of the connection probability in the ensemble of randomized
directed graphs with the same average degree sequences as the
empirical ones, and Egs. (C4)—(C5) show that, by construction,
the in-degrees and out-degrees of all vertices are special local
quantities whose expected and empirical values are exactly
equal: (k}n) = k}“ and (k™) = k. It follows that the p;;
coefficients can be calculated by using any of the networks in
the corresponding microcanonical ensemble with constrained
in-degree and out-degree sequences: The expected values of
the high-order properties will be the same.

(4) Computing the expectation values of the higher-order
topological properties, as in Table II, by using the same
prescription as in the undirected case plus the additional care
that now (i — j) and (j — i) are different (and statistically
independent) directed pairs of vertices. Therefore (a;;a;;) =

PijDPji-
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